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Linear models of imperfect interfaces between elastic bodies are studied; both
inclusions and laminated structures are considered. After a brief review of the
literature, the problem of scattering by an inclusion with an imperfect interface
is analysed. Uniqueness theorems are obtained, and boundary integral equations
over the interface are derived.

1. INTRODUCTION

There are several branches of mechanics in which two solids interact across a common in-
terface. Examples are adhesive joints [1], frictional contacts [2], laminated structures and
composite materials [3, 4]. The simplest situations are those where the two solids are welded
together (‘perfect interface’), so that the displacement and traction vectors are continuous
across the interface. The opposite extreme is when there is no interaction (‘complete debond-
ing’). Intermediate situations arise when the two solids can slip or separate, or when there
is a thin layer of a different material (such as glue or lubricant) between the solids. In this
paper, we are especially interested in those intermediate situations that can be modelled by
simple linear modifications to the perfect-interface continuity conditions.

2. IMPERFECT PLANE INTERFACES: A REVIEW

Consider a plane interface x3 = z = 0 between two elastic solids. Let u±

i and τ±

ij be the
components of the displacement vector and stress tensor, respectively, in ±z > 0. The
traction vectors on z = 0 are given by t±i = τ±

i3 . If z = 0 is a perfect interface, we have

[t] = 0 and [u] = 0, (2.1)

where square brackets denote discontinuities across the interface:

[u] = u
+ − u

−, evaluated on z = 0.

The perfect-interface conditions (2.1) were first modified by Newmark in 1943 [5]. He ex-
plicitly allows slipping to occur, so that (2.1) are replaced by

[t] = 0, [u3] = 0 and [uα] = Mtα (2.2)

where α = 1 or 2, and M is a positive constant. Note that M = 0 corresponds to a perfect
interface, whereas M = ∞ corresponds to a ‘lubricated interface’, i.e. one where there is a
thin layer of inviscid fluid between the two solids.

Newmark’s theory is for two beams in two dimensions, but it has been generalized to

[t] = 0, [u3] = 0 and [uα] = Mαβtβ (2.3)
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where summation of β over β = 1 and β = 2 is implied, and Mαβ can be a function of tγ
and [uγ ]. For a review, see [6], where Mαβ is assumed to be a positive diagonal matrix.

Similar boundary conditions have been used by Murty [7] to model the propagation of waves
through a ‘loosely-bonded interface’. In [8], (2.2) are derived by assuming that there is a
thin interface layer of viscous fluid. Now, the parameter M is given by

M = ih/(ωη), (2.4)

where h is the thickness of the layer, η is the shear viscosity coefficient of the fluid, and a
harmonic time-dependence of e−iωt is implied.

It is perhaps worth noting that the problem of wave propagation through a layer of viscous
fluid (or of viscoelastic solid) between two elastic solids can be analysed exactly. However,
the extraction of approximate conditions, connecting the displacements and tractions across
a thin layer, is not usually the aim of such analyses [9].

Jones and Whittier [10] have modelled wave propagation through a ‘flexibly-bonded inter-
face’ by allowing both slip and separation. They replace (2.1) with

[t] = 0, [u3] = Mnt3 and [uα] = Mstα, (2.5)

where Mn and Ms are constants. Several authors have used (2.5) [11–16]. In [15, 16], the
formulae

Mn = h/(λ + µ) and Ms = h/µ, (2.6)

are given, where λ and µ are the Lamé moduli of a thin elastic layer modelling the bond.

3. SCATTERING BY AN INCLUSION

Let Bi denote a bounded domain, with a smooth closed boundary S and simply-connected
exterior, Be. We seek displacements ue(P ) and ui(P ) so that

Leue(P ) = 0, P ∈ Be and Liui(P ) = 0, P ∈ Bi, (3.1a, b)

where u(P ) = ue(P ) + uinc(P ) for P ∈ Be, uinc is the given incident wave and ue satisfies
a radiation condition at infinity. In addition, we shall impose certain continuity conditions
across S; these are specified below. The operator La is defined by

Lau = k−2
a grad div u − K−2

a curl curl u + u

where ρaω2 = (λa + 2µa)k2
a = µaK2

a and a = e or i. ρa is the density of the solid in Ba,
whereas λa and µa are the Lamé moduli. The traction operator Ta is defined on S by

(Tau)m(p) = λanm div u + µanℓ(∂um/∂xℓ + ∂uℓ/∂xm)

where n(p) is the unit normal at p ∈ S, pointing into Be.

4. INCLUSIONS WITH IMPERFECT INTERFACES: A REVIEW

Suppose that the interface S is imperfect. For example, the inclusion might be surrounded
by a thin layer of a different elastic material. For simple geometries, such problems can
be treated exactly [17, 18]. The first approximate treatment, using continuity conditions
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across S similar to those described in §2, was given by Mal and Bose [19]. They considered
spherical inclusions with the following interface conditions:

[t] = 0, [un] = 0, and [uα] = Mtα. (4.1)

Here, t = Teu, ti = Tiui, [t] = t − ti is the discontinuity in the tractions across S and we
decompose vectors as u(p) = u1s1 + u2s2 + unn for p ∈ S, where s1 and s2 are unit vectors
in the tangent plane at p, satisfying s1.s2 = 0 and n = s1 × s2. The parameter M can be a
complex function of ω: M = 0 for a perfect interface; M is given by (2.4) for a thin layer of
viscous fluid; and M = ∞ for a lubricated interface, whence

[t] = 0, tα = 0 and [un] = 0. (4.2)

Similar interface conditions have been used in models of composite materials, where identical
inclusions are arranged periodically prior to analysis using homogenization techniques. Let
ǫ be a length scale associated with the periodicity. For elastostatics, Lene and Leguillon
[20] take M = kǫ, where k > 0. For time-harmonic waves, Santosa and Symes [21] use
M = iǫ/(ωc), where c is a ‘viscous constant’; cf. (2.4).

Aboudi [22] has used flexibly-bonded interfaces in a different model of composites, with

[t] = 0, [un] = Mntn, and [uα] = Mttα. (4.3)

He identifies Mn and Mt as h/E and h/µ, respectively, where the thin elastic interface layer
has thickness h, Young’s modulus E and shear modulus µ; cf. (2.6).

Kitahara, Nakagawa and Achenbach [23] consider an inclusion in ‘spring contact’ with the
exterior solid. This is intended to model a thin compliant interface layer and leads to

[t] = 0 and [u] = F.t, (4.4)

where the matrix F (called the ‘flexibility matrix’ [15]) is a positive diagonal matrix. Later,
we shall allow F to be a full matrix, with elements that vary with position p on S.

More complicated interface conditions are obtained in [24, 25], where all terms to O(h) are
included for an elastic interface layer of thickness h. Non-local terms, involving various
tangential derivatives, are present; see also [26]. The simplest (local) conditions discussed
in [24, 25] are

[t] = −ρhω2
u and [u] = 0, (4.5)

where the layer has density ρ. A generalization of (4.5) is

[t] = G.u and [u] = 0, (4.6)

where the elements of the matrix G could vary with position p on S.

Finally, we consider a model that includes both (4.4) and (4.6), namely (cf. [27])

[t] = G.〈u〉 and [u] = F.〈t〉, (4.7)

where 〈u〉 = 1
2 (u + ui) is the average of u and ui on S.

5. UNIQUENESS THEOREMS

Consider the problem of scattering by an inclusion with an imperfect interface. We can
prove uniqueness theorems for interfaces characterized by (4.4), (4.6) or (4.7), by adapting
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standard arguments from [28]. Thus, surround S with a large sphere SR of radius R. For
P ∈ Be, write

u(P ) = u
(p) + u

(s), where u
(p) = −k−2

e grad div u, u
(s) = u − u

(p),

and uinc ≡ 0. Then, an application of Betti’s reciprocal theorem to u and its complex
conjugate, u, in the region between S and SR gives

ke(λe + 2µe) lim
R→∞

∫

SR

|u(p)|2 ds + Keµe lim
R→∞

∫

SR

|u(s)|2 ds + I = 0, (5.1)

where

I =
1

2i

∫

S

(u.t − u.t) ds = Im

∫

S

u.t ds, (5.2)

Im denotes imaginary part and the radiation condition has been used (see [28], Chpt. 3,
§2). If we can show that I ≥ 0, we can deduce from (5.1) that u

(p) ≡ 0 and u
(s) ≡ 0,

whence u ≡ 0 in Be. Then, (4.4) imply that ui = 0 and ti = 0 on S, whence ui ≡ 0 in Bi.

Now, applying Betti’s theorem in Bi to ui and ui gives

0 =
1

2i

∫

S

(ui.ti − ui.ti) ds = Im

∫

S

ui.ti ds.

Hence, subtracting from (5.2) gives

I = Im

∫

S

t.[u] ds = Im

∫

S

t.F t ds,

after using (4.4). Thus, I ≥ 0, provided that

Fkℓ = F ℓk for k 6= ℓ and Im(Fkk) ≥ 0 (no sum). (5.3)

So, if the elements of F are finite and satisfy (5.3) (for all p ∈ S if F varies with p), we have
proved that the corresponding inclusion problem has at most one solution.

The above proof fails for lubricated interfaces, given by (4.2). We obtain I = 0, whence
u(P ) ≡ 0 for P ∈ Be. It follows that ti = 0 and n.ui = 0 on S. But, it does not follow
that ui ≡ 0 in Bi, as for some geometries and frequencies the interior solid can support free
oscillations which do not couple to the exterior solid. See [29] for more details.

We can obtain similar results for interfaces characterized by (4.6). For finite G, we find
uniqueness, subject to

Gkℓ = Gℓk for k 6= ℓ and Im(Gkk) ≤ 0 (no sum).

We can also prove uniqueness when (4.7) are used, provided that F and G are both real
diagonal non-zero matrices.

6. BOUNDARY INTEGRAL EQUATIONS

We conclude by deriving (direct) boundary integral equations over S for inclusions with
imperfect interfaces characterized by (4.4), in the plane case. First, we introduce two fun-
damental Green’s tensors, Ga(P ;Q) (a = e, i):

(Ga(P ;Q))ij =
1

µa

{

Ψaδij +
1

K2
a

∂2

∂xi∂xj

(Ψa − Φa)

}
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where Φa = −(i/2)H
(1)
0 (kaR), Ψa = −(i/2)H

(1)
0 (KaR) and R = |P − Q|. Next, we define

elastic single-layer and double-layer potentials by

(Sau)(P ) =

∫

S

u(q).Ga(q;P ) dsq and (Dau)(P ) =

∫

S

u(q).T q
aGa(q;P ) dsq,

respectively, where T q
a means Ta applied at q ∈ S. Then, three applications of Betti’s

theorem (one in Be to ue and Ge, one in Bi to uinc and Ge, and one in Bi to ui and Gi)
yield the familiar representations

2ue(P ) = (Set)(P ) − (Deu)(P ), P ∈ Be, (6.1)

and
−2ui(P ) = (Siti)(P ) − (Diui)(P ), P ∈ Bi. (6.2)

Letting P → p ∈ S, (6.1) and (6.2) give

(I + K∗
e )u − Set = 2uinc (6.3)

and
(I − K∗

i )ui + Siti = 0, (6.4)

respectively, where

K∗
au =

∫

S

u(q).T q
aGa(q; p) dsq.

(K∗
a is a singular integral operator.) Using (4.4) in (6.4) gives

(I − K∗
i )u + {Si − (I − K∗

i )F}t = 0. (6.5)

The pair (6.3) and (6.5) is a system of four coupled singular integral equations for the four
components of the two vectors u(p) and t(p), p ∈ S. It can be shown that this system
is a quasi-Fredholm system [30], provided that F is a non-singular matrix (for all p ∈ S if
F varies with p). This means that all the usual Fredholm theorems hold. In particular,
we can analyse the solvability of (6.3) and (6.5) by showing that the corresponding pair
of homogeneous equations has only the trivial solution. These aspects will be considered
elsewhere.

REFERENCES

[1] Mittal, K.L. (ed.), Adhesive Joints, Plenum, New York, 1984.
[2] Selvadurai, A.P.S. & Voyiadjis, G.Z. (ed.), Mechanics of Material Interfaces, Elsevier,

Amsterdam, 1986.
[3] Metcalfe, A.G. (ed.), Interfaces in Metal Matrix Composites, Academic, New York,

1974.
[4] Christensen, R.M., Mechanics of Composite Materials, Wiley, New York, 1979.
[5] Newmark, N.M., Siess, C.P. & Viest, I.M., ‘Tests and analysis of composite beams with

incomplete interaction’, Proc. Soc. for Experimental Stress Analysis 9, No.1 (1951)
75–92.

[6] Toledano, A. & Murakami, H., ‘Shear-deformable two-layer plate theory with interlayer
slip’, Proc. ASCE, J. Eng. Mech. 114 (1988) 604–623.

[7] Murty, G.S., ‘A theoretical model for the attenuation and dispersion of Stoneley waves
at the loosely bonded interface of elastic half spaces’, Phys. of the Earth & Planetary

Interiors 11 (1975) 65–79.

221



[8] Banghar, A.R., Murty, G.S. & Raghavacharyulu, I.V.V., ‘On the parametric model of
loose bonding of elastic half spaces’, J. Acoust. Soc. Amer. 60 (1976) 1071–1078.

[9] Rokhlin, S., Hefets, M. & Rosen, M., ‘An elastic interface wave guided by a thin film
between two solids’, J. Appl. Phys. 51 (1980) 3579–3582.

[10] Jones, J.P. & Whittier, J.S., ‘Waves at a flexibly bonded interface’, J. Appl. Mech. 34

(1967) 905–909.
[11] Schoenberg, M., ‘Elastic wave behaviour across linear slip interfaces’, J. Acoust. Soc.

Amer. 68 (1980) 1516–1521.
[12] Chonan, S., ‘Vibration and stability of a two-layered beam with imperfect bonding’, J.

Acoust. Soc. Amer. 72 (1982) 208–213.
[13] Angel, Y.C. & Achenbach, J.D., ‘Reflection and transmission of elastic waves by a

periodic array of cracks’, J. Appl. Mech. 52 (1985) 33–41.
[14] Mal, A.K., ‘Guided waves in layered solids with interface zones’, Int. J. Eng. Sci. 26

(1988) 873–881.
[15] Mal, A.K. & Xu, P.C., ‘Elastic waves in layered media with interface features’, in: Elas-

tic Wave Propagation (ed. M.F. McCarthy & M.A. Hayes), North-Holland, Amsterdam,
1989, 67–73.

[16] Pilarski, A. & Rose, J.L., ‘A transverse-wave ultrasonic oblique-incidence technique for
interfacial weakness detection in adhesive bonds’, J. Appl. Phys. 63 (1988) 300–307.

[17] Datta, S.K. & Ledbetter, H.M., ‘Effect of interface properties on wave propagation in
a medium with inclusions’, in: [2], 131–141.

[18] Paskaramoorthy, R., Datta, S.K. & Shah, A.H., ‘Effect of interface layers on scattering
of elastic waves’, J. Appl. Mech. 55 (1988) 871–878.

[19] Mal, A.K. & Bose, S.K., ‘Dynamic elastic moduli of a suspension of imperfectly bonded
spheres’, Proc. Camb. Phil. Soc. 76 (1974) 587–600.

[20] Lene, F. & Leguillon, D., ‘Homogenized constitutive law for a partially cohesive com-
posite material’, Int. J. Solids Struct. 18 (1982) 443–458.

[21] Santosa, F. & Symes, W.W., ‘A model for a composite with anisotropic dissipation by
homogenization’, Int. J. Solids Struct. 25 (1989) 381–392.

[22] Aboudi, J., ‘Wave propagation in damaged composite materials’, Int. J. Solids Struct.

24 (1988) 117–138.
[23] Kitahara, M., Nakagawa, K. & Achenbach, J.D., ‘On a method to analyze scatter-

ing problems of an inclusion with spring contacts’, in: Boundary Element Methods in

Applied Mechanics (ed. M. Tanaka & T.A. Cruse), Pergamon, Oxford, 1988, 239–244.
[24] Datta, S.K., Olsson, P. & Boström, A., ‘Elastodynamic scattering from inclusions with

thin interface layers’, in: Wave Propagation in Structural Composites (ed. A.K. Mal &
T.C.T. Ting), ASME, New York, 1988, 109–116.

[25] Olsson, P., Datta, S.K. & Boström, A., ‘Elastodynamic scattering from inclusions sur-
rounded by thin interface layers’, J. Appl. Mech. to appear.

[26] Nayfeh, A.H. & Nassar, E.A.M., ‘Simulation of the influence of bonding materials on
the dynamic behavior of laminated composites’, J. Appl. Mech. 45 (1978) 822–828.

[27] Baik, J. & Thompson, R.B., ‘Long wavelength elastic scattering from a planar distri-
bution of inclusions’, J. Appl. Mech. 52 (1985) 974–976.

[28] Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., & Burchuladze, T.V., Three-
dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
North-Holland, Amsterdam, 1979.

[29] Jones, D.S., ‘Low-frequency scattering by a body in lubricated contact’, Quart. J.

Mech. Appl. Math. 36 (1983) 111–138.
[30] Muskhelishvili, N.I., Singular Integral Equations, Noordhoff, Groningen, 1953.

222


