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Abstract

We consider the propagation of time-harmonic torsional waves in composite bi-material
elastic cylinders. The interface between the core and the surrounding cladding is
assumed to be imperfect: the tractions are continuous across the interface but the
displacement jump is proportional to the stress acting on the interface. For torsional
waves, this requires the introduction of a single constant of proportionality, F . We
derive a frequency equation for the cylinder. The analysis recovers the known dispersion
curves for a bimaterial rod with a perfect (welded) interface (F = 0), and has the correct
limiting behavior for large F . We show that the modes, at any given frequency, are
orthogonal, and outline how the problem of reflection of a torsional mode by a planar
defect (such as a circumferential crack) can be treated.

1 Introduction

Electromagnetic–acoustic transducers (EMATs) have found a variety of applications in
the non-destructive evaluation of materials and structures. For reviews, see [6] and [8].
We are especially interested in their use to launch and receive time-harmonic torsional
waves in reinforced cables, so as to detect breaks and other defects. We model the cable
as an infinitely long bimaterial cylinder, with a core of circular cross-section surrounded
by a coaxial cladding; the core and the cladding are assumed to be made from different
homogeneous isotropic elastic solids. EMATs have been used to study standing torsional
modes in a single-material circular cylinder [9]. This is a classical problem, originally
studied by Pochhammer [1, §6.10].

Propagation of torsional waves in a rod composed of two or more elastic layers has also
been studied; see [13] for a review. Early work was done by Armenàkas [2]. He studied the
dispersion of harmonic waves in a bimaterial cylinder and obtained the frequency equation.
There has also been work on the free vibrations of a bimaterial rod of finite length [4] and
on infinite rods with many co-axial layers [11].

We consider a bimaterial elastic cylinder with an imperfect interface between the core
and the cladding. We do this because it is unrealistic to assume a perfectly bonded (welded)
interface for our intended application to reinforced cables. We model the imperfect interface
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using a (linear) modification to the standard perfect-interface conditions, allowing some
slippage. The interface conditions involve a single dimensionless parameter F . We have
studied the effect of varying F on the dispersion relations; results for a perfectly bonded
interface can be recovered by setting F = 0.

EMATs can be used to excite propagating modes with a specified axial wavelength λ,
where λ is determined by the physical spacing between the magnets of alternating polarity.
One then adjusts the frequency ω until one of the propagating torsional modes is excited.
When such a mode interacts with a defect in the composite cylinder, other allowable modes
at the frequency ω, but with various wavelengths, will be stimulated; evanescent modes
(decaying exponentially with distance from the defect) will also be present, in general.
We show that the torsional modes at a given frequency are orthogonal, extending a proof
due to Gregory [7]. Finally, we outline how our knowledge of the modal structure for the
composite cylinder can be used to model the problem of reflection of a torsional mode by
a thin defect in a cross-sectional plane. The EMAT system can only receive waves with
the same wavelength as the incident mode, so that some information at the excitation
frequency ω is lost; but the experiment can be repeated at other modal frequencies.

2 Formulation

We consider an infinite isotropic elastic bimaterial cylinder, consisting of a solid core,
r < a, surrounded by an annular cladding, a < r < b, where (r, θ, z) are cylindrical polar
coordinates. The core and cladding are made of materials 1 and 2, respectively; material m
has Lamé moduli λm and µm, m = 1, 2. Our analysis generally follows [2]. For torsional
waves, the only non-trivial displacement component is the tangential displacement v, and
v itself is required to be independent of θ. We can write

v = −∂ψ/∂r,(1)

where the potential ψ satisfies the wave equation ∇2ψ = c−2∂2ψ/∂t2 and c is the shear
wave-speed. The only non-trivial stress components are

σrθ = µ

(

∂v

∂r
−
v

r

)

and σθz = µ
∂v

∂z
.(2)

For waves propagating in the positive z-direction, we can write

ψ(r, z, t) = Re
{

Ψ(r) ei(kz−ωt)
}

,(3)

where k and ω are real, and Ψ solves Bessel’s equation of order zero,

r−1(d/dr)
(

rΨ′
)

+
(

(ω/c)2 − k2
)

Ψ = 0,(4)

with solutions that depend on the sign of ω2 − k2c2. Thus, we define

Zn = Jn, Wn = Yn and q =
√

(ω/c)2 − k2 if ω2 > k2c2, and(5)

Zn = (−1)nIn, Wn = Kn and q =
√

k2 − (ω/c)2 if ω2 < k2c2,(6)

where Jn, Yn are Bessel functions and In, Kn are modified Bessel functions. The factor
(−1)n will allow a unified treatment for all frequencies. The appropriate solution of (4) is

Ψ(r) = q−2AZ0(qr) + b2BW0(qr),(7)
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where A and B are arbitrary dimensionless constants.
Omitting the time-dependence, substituting (3) and (7) in (1) gives

v =
{

q−1AZ1(qr) + qb2BW1(qr)
}

eikz(8)

as Z ′
0(x) = −Z1(x) and W ′

0(x) = −W1(x). From (2), we obtain for the stress

σrθ = −µ
{

AZ2(qr) + (qb)2BW2(qr)
}

eikz,(9)

as Z ′
1(x) − x−1Z1(x) = −Z2(x) and W ′

1(x) − x−1W1(x) = −W2(x).
Let us now use the expressions above, using subscripts 1 and 2 to indicate quantities

in the core and cladding, respectively. Thus, from (8), the displacement in the cladding is

v2 =
{

q−1
2 A2 Z1(q2r) + q2b

2B2W1(q2r)
}

eikz.(10)

For the core, the solution for v1 must be bounded at the origin so we have

v1 = q−1
1 A1 Z1(q1r) eikz.(11)

In these expressions, qj is defined by

qj =
√

k2
j − k2 if k2

j > k2 and qj =
√

k2 − k2
j if k2

j < k2, for j = 1, 2,(12)

where kj = ω/cj . Note that the wavenumber, k, is the same in the expressions for q1 and q2;
this observation gives a relation between q1 and q2.

It remains to specify boundary and interface conditions on the displacement field given
by (10) and (11). At the outer surface, we have the traction-free boundary condition

σrθ = 0 at r = b.(13)

For the imperfect interface at r = a, we suppose that

σrθ(a
−) = σrθ(a

+) and [v] = (a/µ1)F σrθ(a),(14)

where [v] = v2(a
+)−v1(a

−) and F is a dimensionless scalar. Note that if F = 0, the perfect
interface conditions of continuity of traction and displacement are recovered. For a review
of interface conditions such as (14), and their derivation, see [10].

3 Frequency Equation for the Rod

Substituting the displacement field of (10) in the boundary condition, (13), yields

A2 Z2(q2b) + (q2b)
2B2W2(q2b) = 0.(15)

Similarly, (10), (11), and (14) give

(µ1/µ2)A1 Z2(q1a) −A2 Z2(q2a) − (q2b)
2B2W2(q2a) = 0,(16)

(q1b)
−1A1{Z1(q1a) − Fq1aZ2(q1a)} − (q2b)

−1A2Z1(q2a) − q2bB2W1(q2a) = 0.(17)

Equations (15)–(17) provide three equations in the three unknown constants A1, A2 and B2.
In matrix form, the system of equations is Db = 0, where the elements of the non-symmetric
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matrix D are obtained directly from (15)–(17) and b = (A1, A2, B2)
T . For a non-trivial

solution we then require
detD = 0.(18)

This is the frequency equation for the rod.
The quantity detD seems to depend on only five dimensionless parameters, namely

q1b, q2b, a/b, µ1/µ2 and F ;(19)

in particular, the density ratio (or, equivalently, c1/c2) does not appear explicitly. However,
this is illusory: we have to know how to choose Zn (Jn or (−1)nIn?) and Wn (Yn or Kn?) in
each material, and these choices depend on the relative sizes of k2, k2

1 and k2
2, information

that we cannot extract from a knowledge of (19) alone. Thus, we proceed as follows. Assume
that we are given values for a/b, µ1/µ2, F and c2/c1 = k1/k2 = α, say. Choose a value for
the axial wavenumber kb. We then seek values of k2b, say, so that (18) is satisfied. Note
that k1b = αk2b, and then q1b and q2b are defined by (12), with the associated selections
of Zn and Wn dictated by (5) and (6).

Numerical results are presented and discussed in [3], with emphasis on the role of F .
That paper also considers what happens when q → 0 (the ‘first’ torsional mode) and the
construction of evanescent modes (which decay exponentially with z).

4 Discussion and Mode Orthogonality

We have found a variety of torsional modes for the bimaterial cylinder in the general form

u(r, θ, z, t) = Re
{

U(r, θ) ei(kz−ωt)
}

. In our computations, we fixed the axial wavenumber k

and then calculated the frequencies ω of the allowable modes. This is appropriate for the
application to EMATs, as these can be used to excite propagating modes of a specified axial
wavelength. However, once such a mode has been excited, we want to study its reflection
by defects in the cylinder. This is most conveniently done by specifying the frequency and
then determining all the allowable modes at that frequency. Thus, we write a typical mode
as

u
(n)(r, θ, z, t) = Re

{

U
(n)(r, θ) ei(k(n)z−ωt)

}

,

where the wavenumber k(n) need not be real. These modes are bi-orthogonal. To be more
explicit, denote the stresses corresponding to u

(n) by

σ
(n)(r, θ, z, t) = Re

{

S
(n)(r, θ) ei(k(n)z−ωt)

}

.

Then, if A is the cross-section of the composite cylinder, and if k(n) 6= ±k(m), we have
∫

A

{

U (m)
z S(n)

zz − S(m)
rz U (n)

r − S
(m)
θz U

(n)
θ

}

r dr dθ = 0.(20)

This relation can be proved by a simple extension of the proof given by Gregory [7]. (Apply
the elastic reciprocal theorem twice, once in the core and once in the cladding, and then add
the results; the interface conditions imply that the contributions from integrating over the
two sides of the interface cancel.) In fact, (20) holds for all modes in composite cylinders
of any cross-section, and with any number of imperfect (cylindrical) interfaces. For our
problem, with torsional modes given by

v(n)(r, z, t) = Re
{

V (n)(r) ei(k(n)z−ωt)
}

,
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equation (20) reduces to

∫ b

0
V (m)(r)V (n)(r) r dr = 0, m 6= n,(21)

so that torsional modes are actually orthogonal. This orthogonality relation is useful when
the reflection of a torsional mode by certain defects is examined. For example, we may
consider a bimaterial cylinder with a planar break (crack) perpendicular to the cylinder’s
axis, giving an idealised model of a damaged cable. Specifically, we partition the cross-
section A into a broken part Ab and an unbroken part Au, so that A = Ab ∪ Au. The
boundaries of Ab and Au are concentric circles. Then, if a torsional mode is incident on the
defect, the reflected and transmitted fields can be written as modal sums. This is a standard
approach for planar obstacles in waveguides. In the context of torsional waves, see [5] for
an analysis of the effect of a step-change in radius of homogeneous circular cylinders. For
the present problem, application of the boundary conditions at the defect plane leads to
a system of equations for the reflection and transmission coefficients; of particular interest
are the reflected and transmitted modes with the same wavelength as the incident mode,
because these are the only modes that can be detected by the EMAT. Again, in a standard
way, one can derive integral equations and/or variational expressions for the reflection
and transmission coefficients; see, for example, [12] for a discussion on related scattering
problems. It remains to make detailed computations for a cracked composite cylinder.
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