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Abstract

We consider elastic waves in materials with cylindrical orthotropy, this being a plausible
model for wood. For time-harmonic motions, the problem is reduced to some coupled
ordinary differential equations. Previously, these have been solved using the method
of Frobenius (power-series expansions). We use Neumann series (expansions in Bessel
functions of various orders), motivated by the known classical solutions for homogeneous
isotropic solids. This gives an effective and natural method for wave propagation in
cylindrically orthotropic materials. The problem itself arose from a study of ultrasonic
devices as used in the detection of rotten regions inside wooden telegraph (utility) poles.

1 Introduction

‘Wood is a unique material. . . . It is multicomponent, hygroscopic, anisotropic,
inhomogeneous, discontinuous, inelastic, fibrous, porous, biodegradable, and
renewable.’ [2, p. vii]

Despite these complications, there is a need to have physical models for the behaviour
of wood. One application (which motivated the present study) is to model the use of
ultrasonic devices for the detection of rotten regions inside telegraph poles, so as to predict
the strength of in-service poles. Typically, these devices use stress waves through the pole
cross-section, which we can take to be circular.

Traditionally, wood is modelled as an orthotropic elastic solid [2, chapter 3]. Thus,
at any point P in a wooden pole, we can identify three mutually orthogonal directions,
namely longitudinal (along the grain), radial and tangential. These can be taken to specify
three symmetry planes at P , and this leads to the orthotropic model. Elastic waves in
orthotropic materials are discussed in detail by Musgrave [6, chapter 9].

However, the local orthotropic description ignores one obvious characteristic of trees
and poles — the presence of annual rings. Thus [3, p. 3]: ‘At the annual ring level the
structure is again one of a layered composite built up with two layers corresponding to
the earlywood and latewood’. Typically, the density of earlywood is about half that of
latewood [3, p. 151]. Bodig & Jayne [2, §10.3.2] give more details.

The effect of this layered structure on wave-speed measurement is discussed by Bucur [3,
§4.3.2.4]: ‘The opinions of different authors are rather divergent’. However, it is clear that
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the curvature of the rings should be taken into account if wave propagation over significant
distances is to be modelled; and this is precisely the case in the telegraph-pole problem.

The above considerations suggest that a pole could be modelled as a composite material
with concentric layers of two different materials, giving an axisymmetric structure. For
simplicity, each layer could be assumed to be homogeneous (constant material parameters)
with continuity conditions across the interfaces between layers.

For the wood itself, an alternative formulation of the theory suggests itself, in which the
wood is assumed to be cylindrically anisotropic. Thus, Bodig & Jayne [2, p. 21] wrote that
one ‘might model [trees or poles] as homogeneous with cylindrical anisotropy due to the
layered growth ring structure’, although they did not go further. By definition, cylindrical
anisotropy means that the elastic stiffnesses are constants when referred to cylindrical
polar coordinates. Properties of materials with cylindrical anisotropy have been studied by
several authors; see, for example, [5], [1] and [7]. We shall develop the theory of cylindrical
anisotropy for wave propagation through wooden poles. Specifically, we consider a material
with cylindrical orthotropy, and then study the resulting system of ordinary differential
equations. These equations have been solved by others using the method of Frobenius. We
use a generalization of this method, in which we expand using Bessel functions rather than
powers. We claim that the use of such Neumann series is more effective (and more natural)
for wave propagation in cylindrical situations.

2 Formulation

Let x1 ≡ x, x2 ≡ y and x3 ≡ z be Cartesian coordinates. Then, the governing equations of
motion for an anisotropic elastic material are

∂

∂xj

τ̃ij = ρ
∂2

∂t2
ũi where τ̃ij = C̃ijkℓ

∂

∂xk

ũℓ

is the stress tensor, ũ is the displacement vector, ρ is the mass density, t is the time, C̃ijkℓ

are the elastic stiffnesses and the summation convention holds. As usual, we assume that
C̃ijkℓ = C̃jikℓ = C̃kℓij = C̃ijℓk.

Introduce cylindrical polar coordinates (r, θ, z), where x = r cos θ and y = r sin θ. If
Cijkℓ denote the elastic stiffnesses referred to (r, θ, z), we have

Cijkℓ(θ) = ΩipΩjqΩkrΩℓsC̃pqrs(θ),

where

Ωij(θ) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .

We are interested in special materials for which Cijkℓ(θ) are constant, so that Cijkℓ(θ) =

Cijkℓ(0) = C̃ijkℓ(0); such materials are said to be cylindrically anisotropic. Cylindrical
anisotropy seems to be a good model for wooden poles [2, p. 21].

Following Ting’s formulation [7] for static problems, we write the equations of motion
as

∂

∂r
(rtr) +

∂

∂θ
tθ + Ktθ + r

∂

∂z
tz = ρr

∂2

∂t2
ũ,

where

tr =




τrr

τrθ

τrz


 , tθ =




τθr

τθθ

τθz


 , tz =




τzr

τzθ

τzz


 , ũ =




ur

uθ

uz


 , K =




0 −1 0
1 0 0
0 0 0


 .



Waves in Wood 3

Ting [7, p. 2399] gives expressions for the traction vectors ti in terms of ũ. If we assume
that ũ does not depend on z, we find that two-dimensional motions are governed by

rQ
∂

∂r

(
r

∂

∂r
ũ

)
+ r(R + R

T )
∂2

∂r ∂θ
ũ + T

∂2

∂θ2
ũ(1)

+ r(RK + KR
T )

∂

∂r
ũ + (TK + KT)

∂

∂θ
ũ + KTKũ = ρr2 ∂2

∂t2
ũ,

generalising [7, eqn. (3.1)] to dynamic problems. The 3 × 3 matrices occurring here are
given by Ting [7] as

Q =




C11 C16 C15

C16 C66 C56

C15 C56 C55


 , R =




C16 C12 C14

C66 C26 C46

C56 C25 C45


 , T =




C66 C26 C46

C26 C22 C24

C46 C24 C44


 ;

RT is the transpose of R, and we have used the contracted notation Cαβ for the elastic
stiffnesses [8, §2.3].

We look for time-harmonic solutions in the form

ũ(r, θ, t) = Rei

{
um(r) ejmθ e−iωt

}
,

where i and j are two non-interacting complex units, m is an integer, ω is the radian
frequency, and Rei denotes the real part with respect to i. Use of ejmθ rather than cosmθ
and sinmθ allows us to retain the nice matrix notation in what follows. Thus, from (1), we
find that um(r) solves

r2
Qu

′′
m + r(Q + RKm + KmR

T )u′
m + (ρω2r2 + KmTKm)um = 0,(2)

where Km = K + jmI. If m = 0 (axisymmetry) and ω = 0 (static), (2) reduces to [7,
eqn. (3.2)].

Setting um = (um, vm, wm), (2) gives three coupled ordinary differential equations for
the three components of um. For the special case of cylindrically orthotropic materials
(i.e. wood), these equations simplify slightly; for such materials, the non-trivial stiffnesses
are [8, pp. 36 & 45]

C11 = C1111, C12 = C1122, C13 = C1133,
C22 = C2222, C23 = C2233, C33 = C3333,
C44 = C2323, C55 = C1313, C66 = C1212.

We find that the 3×3 system (2) uncouples into a 2×2 system for um and vm, and a single
equation for wm. We can solve for wm explicitly in terms of certain Bessel functions; cf. [9].

The ordinary differential equations for um(r) and vm(r) are

r2C11u
′′
m + r

[
C11u

′
m + jm(C66 + C12)v

′
m

]
(3)

+ (ρω2r2 − m2C66 − C22)um − jm(C66 + C22)vm = 0,

r2C66v
′′
m + r

[
C66v

′
m + jm(C66 + C12)u

′
m

]
(4)

+ (ρω2r2 − C66 − m2C22)vm + jm(C66 + C22)um = 0.

They can be solved exactly when m = 0 (axisymmetric motions) but, so far, we have not
found any explicit solutions when m 6= 0.
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3 Expansion Methods

For non-axisymmetric motions (m 6= 0), we begin with a slight simplification of notation.
Thus, we define dimensionless stiffnesses by

c1 = C11/C66, c12 = C12/C66 and c2 = C22/C66.

Then, (3) and (4) become

c1(r
2u′′

m + ru′
m) + jm(1 + c12)rv

′
m + (κ2r2 − m2 − c2)um − jm(1 + c2)vm = 0,(5)

r2v′′m + rv′m + jm(1 + c12)ru
′
m + (κ2r2 − 1 − m2c2)vm + jm(1 + c2)um = 0,(6)

where κ2 = ρω2/C66.

3.1 The method of Frobenius

An obvious way of treating (5) and (6) is to look for solutions in the form of power series,

um(r) =
∞∑

n=0

ân (κr)2n+α and vm(r) = j
∞∑

n=0

b̂n (κr)2n+α,(7)

where the coefficients ân, b̂n and α are to be determined. (It turns out that there is no loss
of generality in using (κr)2n rather than (κr)n.) We find that α is given as the solution of
the indicial equation,

α4c1 + α2{m2(2c12 − c1c2 + c2
12) − (c1 + c2)} + (m2 − 1)2c2 = 0.(8)

Once a value of α has been selected, we can then generate the coefficients ân and b̂n

recursively.
This procedure for computing the coefficients is efficient. It has been used previously

by, for example, Chou and Achenbach [4] and by Yuan and Hsieh [10]. Its main drawback
is that it is essentially a static method: power-series expansions in r are only expected to
be good for small values of r.

3.2 Neumann series

As an alternative procedure, we can use a generalization of the method of Frobenius, in
which um and vm are expanded as Neumann series,

um(r) =
∞∑

n=0

an J2n+α(kr) and vm(r) = j
∞∑

n=0

bn J2n+α(kr).(9)

Here Jν is a Bessel function and the coefficients an, bn and α are to be determined. Note
that the parameter k is at our disposal. We are motivated to use Neumann series rather
than power series because we know that, in the isotropic case, both um and vm can be
written as linear combinations of just two Bessel functions.

We have investigated two methods for finding an and bn, which we call direct and
indirect. In the direct method, we substitute the expansions (9) in (5) and (6) and
then group terms. This requires manipulating series of Bessel functions, and so is more
complicated than at the analogous stage of the method of Frobenius. It turns out that
α solves the same indicial equation as before, namely (8). Eventually, we obtain some
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recurrence relations for an and bn, which we do not record here. It suffices to say that they
are fairly complicated but that they are well behaved numerically.

For the indirect method, we begin with the standard method of Frobenius, leading to
the computation of the coefficients ân and b̂n. From these, we then compute the coefficients
an and bn, using the known expansion of an arbitrary power in terms of Bessel functions:

(1
2
kr)ν =

∞∑

n=0

(2n + ν) Γ(n + ν)

n!
J2n+ν(kr).

(Compare this with the definition of a Bessel function,

Jν(kr) =
∞∑

n=0

(−1)n

n! Γ(n + ν + 1)
(1
2
kr)2n+ν ,

which can itself be obtained by the method of Frobenius.)
Comparisons between these methods are currently being made, with applications.

Preliminary results suggest that the use of Neumann series is more efficient for the problems
of wave propagation in wood that we have described above.
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