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Abstract. Acoustic scattering problems are considered when the density and speed
of sound are functions of position within a bounded region. An integro-differential
equation for the pressure in this region is obtained. Solving this equation is equivalent to
solving the scattering problem. Problems of this kind are often solved by regarding the
effects of the inhomogeneity as an unknown source term driving a Helmholtz equation,
leading to an equation of Lippmann–Schwinger type. It is shown that this approach is
erroneous when the density is discontinuous.

1 Introduction

Time-harmonic acoustic waves in an inhomogeneous compressible fluid can be
modelled using Bergmann’s equation (see [1], [5] and [7, p. 408])

Bp ≡ ρ div
(
ρ−1 grad p

)
+ k2p = 0, (1)

where ρ is the density, p is the total acoustic pressure, k = ω/c, ω is the frequency
and c is the speed of sound; in general, ρ and c can vary with position.

Equation (1) can be written as (∇2 + k2
e )p = V p, where k2

e is constant and
the operator V is defined by

V u = (k2
e − k2)u+ ρ−1(grad ρ) · gradu. (2)

We are interested in scattering problems, so that p = pinc + psc, where the
incident field pinc satisfies (∇2 + k2

e )pinc = 0 and the scattered field psc satisfies
the Sommerfeld radiation condition. Thus

(∇2 + k2
e )psc = V p. (3)

Formally, we may regard the right-hand side of (3) as known, so that

p(P ) = pinc(P ) +
∫
Ge(P,Q) (V p)(Q) dVQ. (4)

where P and Q are typical points in three-dimensional space. Here, Ge(P,Q) is
the free-space Green’s function, defined by

Ge(P,Q) = − exp (ikeR)/(4πR), (5)
? Appeared in Mathematical and Numerical Aspects of Wave Propagation (WAVES

2003 ) (ed. G. C. Cohen, E. Heikkola, P. Joly and P. Neittaanmaki), Springer, Berlin,
2003, pp. 233–238.



2 P. A. Martin

where R is the distance between P and Q.
In this calculation, we have used the fact that

u(P ) =
∫
Ge(P,Q) f(Q) dVQ solves (∇2 + k2

e )u = f (6)

and satisfies the radiation condition. Formal derivations of this kind are often
found in textbooks; see, for example, [2, §8.9.1]. The result (6) can be justified
readily if one assumes that f is (Hölder) continuous. However, for discrete scat-
terers, there will be interfaces across which k(Q) and the normal derivative of p,
∂p/∂n, will be discontinuous (although p and ρ−1∂p/∂n are both continuous
across such interfaces).

We shall derive a new equation that respects the proper transmission condi-
tions across interfaces. Solving this equation is equivalent to solving the trans-
mission problem for the acoustic pressure. The new equation reduces to the
well-known Lippmann–Schwinger equation when the density in the inhomogene-
ity is constant and equal to the density of the surrounding homogeneous fluid. It
also reduces to the equation derived formally above, namely (4), but only when
there is no discontinuity in the density across the boundary of the inhomogeneity.
If there is such a discontinuity (as is typical in applications), an extra term is
needed; see (18) below.

2 Formulation

Consider the scattering of sound waves in a homogeneous compressible fluid
by a bounded inhomogeneous obstacle. In the exterior fluid, Be, we can write
pe = pinc + psc, where pe is the total pressure. The governing equation for psc is

(∇2 + k2
e )psc = 0 in Be, (7)

where ke = ω/ce and ce is the constant speed of sound.
Within the obstacle, B, the governing equation is Bergmann’s equation,

Bpi = 0, where pi is the pressure; the interior density ρ and speed of sound
c can vary with position in B. At the interface S between B and Be, we have
a pair of transmission conditions, expressing continuity of pressure and normal
velocity. These are

pe = pi and
1
ρe

∂pe

∂n
=

1
ρ

∂pi

∂n
on S, (8)

where ρe is the (constant) density of the fluid in Be.
Summarising, we have the following problem to solve.

Scattering Problem. Let pinc be a given incident field. Find a pair of func-
tions, {pe, pi}, where psc = pe − pinc satisfies (7) and the Sommerfeld radiation
condition, pi satisfies (1), and pe and pi satisfy the transmission conditions (8)
across the interface S.
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Werner wrote an important paper on the Scattering Problem in 1963 [8]. He
reduced the problem to a system of coupled integral equations, using single-layer,
double-layer and volume potentials; this is an example of an indirect method .
He proved that the Scattering Problem has exactly one solution. We shall use a
direct method , and we shall only use volume potentials.

Much has been written on the case where ρ is constant, so that the second
term on the right-hand side of (2) can be deleted [3, Chapter 8]. Here, we do not
make this assumption: we allow both ρ and k to vary with position. Note that if
the material in B is actually homogeneous, so that ρ and k are both constants,
boundary integral equations over S can be used; see [4] for a review.

3 An integro-differential equation

We shall consider integral representations obtained using the free-space Green’s
function for the exterior fluid, Ge, defined by (5). Two applications of Green’s
second theorem, one in Be to psc and Ge and one in B to pinc and Ge, give∫

S

{
Ge(P, q)

ρe

ρ

∂pi

∂nq
− pi(q)

∂

∂nq
Ge(P, q)

}
dsq =

{
psc(P ), P ∈ Be,
−pinc(P ), P ∈ B, (9)

where we have used pe = psc +pinc and the transmission conditions (8). The first
of these gives an integral representation for psc(P ). Such representations are
common in scattering theory. However, it is not very convenient here because
we do not know pi or ∂pi/∂n on S.

To make progress, recall Green’s first theorem,∫
B

{
φ∇2ψ + (gradφ) · (gradψ)

}
dV =

∫
S

φ
∂ψ

∂n
ds,

where φ and ψ are sufficiently smooth in B. Choose φ(Q) = pi(Q) and ψ(Q) =
Ge(P,Q) with P ∈ Be, whence∫

S

pi
∂

∂nq
Ge(P, q) dsq =

∫
B

{
(grad pi) · (gradQGe)− k2

epiGe(P,Q)
}
dVQ, (10)

where we have used (∇2 + k2
e )Ge(P,Q) = 0 for P 6= Q. Similarly, if we choose

ψ(Q) = pi(Q) and φ(Q) = (ρe/ρ)Ge(P,Q) with P ∈ Be, we obtain∫
S

ρe

ρ

∂pi

∂nq
Ge(P, q) dsq =

∫
B

ρe

ρ

{
(grad pi) · (gradQGe)− k2

e NpiGe

}
dVQ, (11)

where N = (k/ke)2 = (ce/c)2 is the refractive index and we have used Bpi = 0.
Subtracting (10) from (11) gives the left-hand side of (9) for P ∈ Be, whence
psc(P ) = (Lpi)(P ) for P ∈ Be, where

(Lv)(P ) =
∫

B

{
(α− 1)(grad v) · (gradQGe(P,Q)) + (1−Nα)k2

evGe

}
dVQ (12)
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and α(P ) = ρe/ρ(P ).
We repeat the calculations for P ∈ B, having excised a small sphere centred

at P . The singularity at P = Q has no effect on (11) but it causes −pi(P ) to be
added to the left-hand side of (10). Then, (9) for P ∈ B becomes

−pinc(P ) = −pi(P ) + (Lpi)(P ), P ∈ B.

At this stage, we have proved one half of the following theorem.

Theorem 1. Let the pair {pe, pi} solve the Scattering Problem. Then v(P ) ≡
pi(P ) solves

v(P )− (Lv)(P ) = pinc(P ), P ∈ B, (13)

where Lv is defined by (12). Conversely, let v solve (13). Then the pair {pe, pi},
defined by

pe(P ) = pinc(P ) + (Lv)(P ) for P ∈ Be (14)

and pi(P ) = v(P ) for P ∈ B, solves the Scattering Problem.

The second half of the theorem is proved in [6].

4 Discussion

4.1 Solvability

Solving the Scattering Problem is equivalent to solving equation (13), which
is an integro-differential equation for v(P ), P ∈ B. This equation is uniquely
solvable. To see this, we appeal to Werner’s existence result [8]: the solution
{pe, pi} of the Scattering Problem exists and, by the first half of Theorem 1,
pi solves (13). For uniqueness, suppose that v0(P ) solves (13) with pinc ≡ 0.
Construct pe = (Lv0)(P ) for P ∈ Be and pi = v0(P ) for P ∈ B. By the second
half of Theorem 1, these fields solve the homogeneous Scattering Problem; they
must vanish identically by the uniqueness theorem for the Scattering Problem.
In particular, v0(P ) ≡ 0 for P ∈ B, as required.

4.2 The Lippmann–Schwinger equation

As a special case, suppose that ρ(Q) = ρe for all Q ∈ B, so that the density of
the scatterer is the same as that of the surrounding homogeneous fluid. Then,
the integro-differential equation (13) reduces to the integral equation

v(P )− k2
e

∫
B

{1−N(Q)}v(Q)Ge(P,Q) dVQ = pinc(P ), P ∈ B, (15)

where N(Q) = (k/ke)2 = {ce/c(Q)}2. This integral equation and its numerical
treatment have been discussed in [2, §8.9.1].
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Let us define N(P ) = 1 for P ∈ Be, w(P ) = pe(P ) for P ∈ Be, and w(P ) =
pi(P ) for P ∈ B. Then, we can combine (15) with (14) to obtain

w(P )− k2
e

∫
(1−N)wGe(P,Q) dVQ = pinc(P ), for all P ∈ B ∪Be, (16)

where the integration is over all Q. We recognise this equation as the Lippmann–
Schwinger equation; see, for example, [3, §8.2]. Notice that our derivation shows
that (16) is valid even when N(Q) is discontinuous as Q crosses S.

4.3 An alternative equation

As we know that v ≡ pi solves Bv = 0 in B, we can use this fact to rewrite the
expression for Lv. Thus (α− 1)(grad v) · (gradQGe) = div {(α− 1)Ge grad v} −
Ge div {(α− 1)grad v} and

div {(α− 1) grad v} = (α− 1)∇2v + ρe

(
grad ρ−1

)
· grad v

= (α− 1)
{
∇2v + ρ

(
grad ρ−1

)
· grad v

}
+ ρ

(
grad ρ−1

)
· grad v

= (1− α) k2
eNv − ρ−1(grad ρ) · grad v.

Hence, substituting in (12), we obtain

(Lv)(P ) =
∫

B

Ge(P,Q) (V v)(Q) dVQ + (LEv)(P ),

where V v is defined by (2) and

(LEv)(P ) =
∫

B

div {(α− 1)Ge grad v} dVQ =
∫

S

(α− 1)Ge(P, q)
∂v

∂n
dsq, (17)

by the divergence theorem. Thus, the Scattering Problem reduces to solving

pi(P ) = pinc(P ) +
∫

B

Ge(P,Q) (V pi)(Q) dVQ + pE(P ), P ∈ B, (18)

where (using (8)2 in (17))

pE(P ) = (LEpi) (P ) =
∫

S

(
∂pe

∂n
− ∂pi

∂n

)
Ge(P, q) dsq.

If we had tried to solve the Scattering Problem using the formal method
described in Section 1, we would have obtained precisely (18) but with pE(P ) ≡
0. In general, this extra term is not zero. Observe that, from (17), pE does vanish
if ρ(q) = ρe for all q ∈ S, which means that the density is continuous across S.
Otherwise, the single-layer potential pE(P ) should be retained.
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