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Abstract
Acoustic scattering by a bounded obstacle in three di-

mensions is considered. Relations between theT -matrix
and the far-field pattern are derived, and then used to ob-
tain new approximations for theT -matrix for a small ob-
stacle. Various extensions and applications are suggested.

Introduction
Consider the scattering of acoustic waves by a

bounded, three-dimensional obstacle,B. Choose an ori-
gin O insideB, and letC denote the smallest sphere that
is centred atO and enclosesB. If we know theT -matrix
for B, we can calculate the scattered field outsideC for
any given incident field. Similarly, if we know the far-
field pattern,f , we can also calculate the scattered field
outsideC, but only for the incident field that generated
the far-field pattern via the scattering process: f depends
on the direction of observation and on the choice of inci-
dent field.

Evidently, we can calculate the far-field pattern from
the T -matrix. However, we can also calculate theT -
matrix from the far-field pattern, provided we knowf for
all directions of observation and for all directions of inci-
dence when the incident field is a plane wave. This simple
observation means that we can use known results for low-
frequency scattering of plane waves to obtain expressions
for theT -matrix of small scatterers.

The main utility of these results occurs with multiple-
scattering problems, where waves interact with two or
(many) more obstacles. Such problems are often treated
usingT -matrix methods. Notice that the basic ideas are
not limited to problems of acoustics, but may be gener-
alised to electromagnetic and elastodynamic problems.

Formulation
Suppose that the scattererB has surfaceS. Suppress-

ing a time dependence ofe−iωt, the total fieldu satisfies
the Helmholtz equation,

(∇2 + k2)u = 0,

in the unbounded region outsideS, wherek = ω/c and
c is the constant sound speed. We writeu = uin + usc,

whereuin is the known incident field andusc is the un-
known scattered field. We require thatusc satisfies the
Sommerfeld radiation condition at infinity. Consequently,

usc(r) ∼ f(r̂)h0(kr) asr → ∞,

wherer = |r|, r̂ = r/r is a unit vector in the direction
of observation (fromO towardsP , the point with posi-
tion vectorr with respect toO), hn(kr) ≡ h

(1)
n (kr) is a

spherical Hankel function, andf(r̂) is known as thefar-
field pattern. Note thath0(kr) = eikr/(ikr).

For direct problems, one is often interested in calcu-
lating f . For inverse problems, one often starts withf
and then tries to say something about the scatterer. It is
well known that if one knowsf(r̂) for all r̂ ∈ Ω (the
unit sphere), then one can reconstructusc(r) everywhere
outside the escribed sphereC; this sphere has radiusrc.
Explicitly, we have the Atkinson–Wilcox theorem,

usc(r) = h0(kr)
∞

∑

n=0

fn(r̂)

rn
for r > rc, (1)

wheref0 ≡ f . Forn = 1, 2, . . ., fn is obtained by apply-
ing a second-order differential operator (essentially, the
angular part of the Laplacian) tofn−1. In principle, (1)
can be used to continueusc from the far field to the near
field.

The T -matrix and the far-field pattern
Outside the escribed sphereC, we have the expansion

usc(r) =
∑

n,m

cm
n hn(kr)Y m

n (r̂), r > rc, (2)

whereY m
n is a spherical harmonic and

∑

n,m

=
∞

∑

n=−∞

n
∑

m=−n

.

We use normalised complex-valued spherical harmonics,
so thatY m

n = (−1)mY −m
n and

∫

Ω
Y m

n Y µ
ν dΩ = δnνδmµ, (3)



where the overbar denotes complex conjugation. Using
hn(x) ∼ (−i)nh0(x) asx → ∞, we have

f(r̂) =
∑

n,m

(−i)ncm
n Y m

n (r̂). (4)

For the incident field, we have the expansion

uin(r) =
∑

n,m

dm
n jn(kr)Y m

n (r̂), (5)

wherejn is a spherical Bessel function. This expansion
holds in some ball centred atO. The coefficientsdm

n in
(5) are known. In particular, for an incident plane wave,

uin(r) = exp (ikr · α̂),

and then we have

dm
n = 4πinY m

n (α̂); (6)

here,α̂ is the direction of incidence.
TheT -matrix relates the coefficients in (2) and (5):

cm
n =

∑

ν,µ

Tmµ
nν dµ

ν . (7)

For properties of theT -matrix, see [1]. TheT -matrix can
be computed in various ways, such as by solving bound-
ary integral equations [2].

For an incident plane wave, with the corresponding far-
field pattern denoted byf(r̂; α̂), (4), (6) and (7) give

f(r̂; α̂) = 4π
∑

n,m

∑

ν,µ

iν−nTmµ
nν Y m

n (r̂)Y µ
ν (α̂).

Then, using the orthonormality relation (3) twice, we ob-
tain

Tmµ
nν =

in−ν

4π

∫

Ω

∫

Ω
f(r̂; α̂)Y m

n (r̂)Y µ
ν (α̂) dΩ(r̂) dΩ(α̂).

(8)
This formula is exact. It can be found in [3]. It may be
used to continueusc from the far field to the near field;
cf. (1).

Small soft scatterers
As a simple example, consider Rayleigh scattering by

a small sound-soft obstacle (so thatu = 0 onS). Then, it
is known that (see, for example, [4])

f(r̂; α̂) = −ikC + O(k2) ask → 0,

where the constantC is thecapacityof S; by definition,

C = − 1

4π

∫

S

∂φ

∂n
ds,

where∂/∂n denotes normal differentiation onS away
from B, and the potentialφ solves the following prob-
lem:∇2φ = 0 outsideS, φ = 1 onS andφ = O(r−1) as
r → ∞. Then, (8) gives the correspondingT -matrix as

Tmµ
nν = −ikCym

n yµ
ν + O(k2) ask → 0,

where

ym
n =

(−i)n

√
4π

∫

Ω
Y m

n dΩ = δn0δm0,

usingY 0
0 = (4π)−1/2. Thus, we find that every entry of

theT -matrix isO(k2) except that

T 00
00 = −ikC + O(k2) ask → 0.

Consequently, forany incident field,uin(r), we have

usc(r) ≃ T 00
00 d0

0 h0(kr)Y 0
0

where, from (5),d0
0Y

0
0 = uin(0). Hence, we obtain the

approximation

usc(r) ≃ −ikC uin(0)h0(kr). (9)

Thus, as is generally known, small soft obstacles scatter
isotropically (there is no dependence onr̂), with ampli-
tude proportional to the value of the incident field at the
scatterer’s ‘centre’,r = 0. This was the starting point for
Foldy’s famous study on multiple scattering [5]. In fact,
Foldy wrote

usc(r) ≃ g uin(0)h0(kr), (10)

whereg is a ‘scattering coefficient’. Our asymptotic anal-
ysis gives

g = −ikC. (11)

However, energy considerations show thatg must satisfy

|g|2 + Re(g) = 0, (12)

so that a better choice forg is

g = −ikC/(1 + ikC); (13)

this choice satisfies (12) and agrees with (11) ask → 0.



Small hard scatterers
For a sound-hard obstacle, we have∂u/∂n = 0 on S.

From [4], we have

f(r̂; α̂) =
ik3

4π

{

VB (r̂ · α̂ − 1) −
∫

S
(r̂ · n)(α̂ · Ψ) ds

}

ask → 0, with an error that isO(k4). In this formula,VB

is the volume ofB, n(q) is the unit normal vector atq ∈ S
pointing away fromB, and the vector fieldΨ solves the
following problem:∇2

Ψ = 0 outsideS, ∂Ψ/∂n = n

onS andΨ = O(r−2) asr → ∞; see [4, eqn. (5.20)].
Now, following Dassios and Kleinman [4, p. 166], we

define thevirtual mass tensorW by

Wij = −
∫

S
niΨj ds = Wji, (14)

and themagnetic polarizability tensorM by

Mij = Wij + VBδij = Mji. (15)

(For the special case of a sphere,Mij = 3
2VBδij .) Then,

we can express the far-field pattern concisely by

f(r̂; α̂) =
ik3

4π
{r̂ · M · α̂ − VB} + O(k4) ask → 0.

(16)
Thus, the far field of a small hard scatterer depends lin-
early on both the observation direction and the incident
direction, and it is much smaller than the far field of a
small soft scatterer. Of course, this result was known to
Lord Rayleigh.

We can use (16) to calculate theT -matrix for a small
sound-hard scatterer. Substituting in (8), we find after
some calculation that theT -matrix has ten entries that are
O(k3) ask → 0:

T 00
00 = −ik3VB/(4π),

T 00
11 = ik3M33/(12π),

T 01
11 = −ik3(M31 + iM32)/(12π

√
2) = −T−1,0

11 ,

T 10
11 = −ik3(M31 − iM32)/(12π

√
2) = −T 0,−1

11 ,

T 11
11 = ik3(M11 + M22)/(24π) = T−1,−1

11 ,

T 1,−1
11 = ik3(M22 − M11 + 2iM12)/(24π),

T−1,1
11 = ik3(M22 − M11 − 2iM12)/(24π).

Let us calculate the scattered field for any incident
field, uin(r). We introduce a vectorU with components

Uj =
1

k

∂uin

∂xj
evaluated atr = 0. (17)

Then, we find thatd0
1 =

√
12πU3, d1

1 = −
√

6π(U1−iU2)
and d−1

1 =
√

6π(U1 + iU2). Also, as before,d0
0 =√

4πuin(0). We then calculatecm
n , using (7) and the ap-

proximations to theT -matrix given above. Eventually,
we obtain

usc(r) ≃
ik3

4π
{r̂ · M · Uh1(kr) − VBuin(0)h0(kr)} .

(18)
This can be used to generalise Foldy’s method to collec-
tions of small hard scatterers.

Conclusions
We have described a systematic method for obtaining

approximations to theT -matrix, valid for small scatterers
of any shape. (The only other related results known to
us are for spheroids in [6].) The method generalises to
penetrable scatterers, to two dimensions (for which the
low-frequency asymptotics are more complicated [7]) and
to other physical situations.
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