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Abstract

Acoustic scattering by a bounded obstacle in three di-
mensions is considered. Relations betweeriltiraatrix
and the far-field pattern are derived, and then used to ob-
tain new approximations for tHE-matrix for a small ob-

stacle. Various extensions and applications are suggested.W

Introduction

Consider the scattering of acoustic waves by a
bounded, three-dimensional obstadle, Choose an ori-
gin O inside B, and letC denote the smallest sphere that
is centred ab and enclose®. If we know theT-matrix
for B, we can calculate the scattered field outgitiéor
any given incident field. Similarly, if we know the far-
field pattern,f, we can also calculate the scattered field
outsideC, but only for the incident field that generated
the far-field pattern via the scattering procegsdepends
on the direction of observation and on the choice of inci-
dent field.

Evidently, we can calculate the far-field pattern from
the T-matrix. However, we can also calculate tfie
matrix from the far-field pattern, provided we kngifor
all directions of observation and for all directions of inci-
dence when the incident field is a plane wave. This simple
observation means that we can use known results for low-
frequency scattering of plane waves to obtain expressions
for theT-matrix of small scatterers.

The main utility of these results occurs with multiple-
scattering problems, where waves interact with two or

(many) more obstacles. Such problems are often treated

usingT-matrix methods. Notice that the basic ideas are
not limited to problems of acoustics, but may be gener-
alised to electromagnetic and elastodynamic problems.

Formulation

Suppose that the scatterBrhas surfaceS. Suppress-
ing a time dependence ef *“*, the total fieldu satisfies
the Helmholtz equation,

(V2 +EHu =0,

in the unbounded region outside wherek = w/c and
c is the constant sound speed. We wiite= w;, + usgc,

wherewu;, is the known incident field and,. is the un-
known scattered field. We require that. satisfies the
Sommerfeld radiation condition at infinity. Consequently,

Usc(r) ~ f(f') hO(kT)

herer = |r|, & = r/r is a unit vector in the direction
of observation (fromD towards P, the point with posi-
tion vectorr with respect taD), h,, (kr) = hg)(kr) isa
spherical Hankel function, anf(r) is known as théar-
field pattern Note thathg(kr) = e /(ikr).

For direct problems, one is often interested in calcu-
lating f. For inverse problems, one often starts wjth
and then tries to say something about the scatterer. It is
well known that if one knowsf () for all &+ € Q (the
unit sphere), then one can reconstrugt(r) everywhere
outside the escribed sphetkg this sphere has radius.
Explicitly, we have the Atkinson—Wilcox theorem,

asr — oo,

usc(r) = ho(kr) i fj,(:‘) forr > r, 1)
n=0

wherefy = f. Forn = 1,2, ..., f, is obtained by apply-
ing a second-order differential operator (essentially, the
angular part of the Laplacian) tf),—;. In principle, (1)
can be used to continug. from the far field to the near
field.

The T-matrix and the far-field pattern
Outside the escribed sphafe we have the expansion

use(r) = Y ha(kr) V' (E), 7 >1e, (2)
whereY," is a spherical harmonic and

n=—oom=—n
We use normalised complex-valued spherical harmonics,
so thaty,» = (—1)"Y, ™ and

Q



where the overbar denotes complex conjugation. Using where 9/9n denotes normal differentiation ofi away

hp(x) ~ (—=i)"ho(z) asz — oo, we have
F(E) =) (=) Y (B). (4)
For the incident field, we have the expansion
uin(r) =Y dn (kr) Y (), (5)

n,m

wherej,, is a spherical Bessel function. This expansion
holds in some ball centred &t. The coefficientsi" in
(5) are known. In particular, for an incident plane wave,

Uin(r) = exp (ikr - &),
and then we have
di = 4mi"Y;7(&); (6)

here,& is the direction of incidence.
TheT-matrix relates the coefficients in (2) and (5):

ar=> Trdy. 7)
v,p

For properties of th&-matrix, see [1]. Th@-matrix can

from B, and the potentiab solves the following prob-
lem: V2¢ = 0 outsideS, ¢ = 1 onS and¢ = O(r~1) as
r — oo. Then, (8) gives the correspondifigmatrix as

T = —ikCymyl + O(k*) ask — 0,
where
y:—? = n dQ) = 5n06m0a
usingYy = (47)~/2. Thus, we find that every entry of

the T-matrix isO(k?) except that

T30 = —ikC + O(k*) ask — 0.
Consequently, foanyincident field,u;, (r), we have
Tood ho(kr) Yy

Uge (1) o

where, from (5)d9Y = wuin(0). Hence, we obtain the
approximation

be computed in various ways, such as by solving bound-
ary integral equations [2].

For an incident plane wave, with the corresponding far-
field pattern denoted by(r; &), (4), (6) and (7) give

Ar S E T E) Y (@),

n,m v,i

Use(r) >~ —ikC uin (0) ho(kr).

9)
Thus, as is generally known, small soft obstacles scatter
isotropically (there is no dependence o with ampli-
tude proportional to the value of the incident field at the
scatterer’s ‘centrey = 0. This was the starting point for
Foldy’s famous study on multiple scattering [5]. In fact,
Foldy wrote

f(r; &) =
Then, using the orthonormality relation (3) twice, we ob-
tain

T = 47r

Y ()Y (&) dQUE) dQ(é&).
(8)
This formula is exact. It can be found in [3]. It may be

used to continues,. from the far field to the near field;
cf. ().

use(r) =~ g uin (0) ho(kr), (10)

whereg is a ‘scattering coefficient’. Our asymptotic anal-
ysis gives

g = —ikC. (11)

Small soft scatterers
As a simple example, consider Rayleigh scattering by

However, energy considerations show thatust satisfy

a small sound-soft obstacle (so that 0 on S). Then, it g2 + Re(g) = 0, (12)
is known that (see, for example, [4])
F#: &) = —ikC + O(K?) ask — 0, so that a better choice fgris
where the constartt is thecapacityof S; by definition, g = —ikC/(1 +ikC); (13)
09 .

3n this choice satisfies (12) and agrees with (11} as 0.



Small hard scatterers
For a sound-hard obstacle, we hae/on = 0 on S.
From [4], we have

3
e =" {vaa-n - [@m@ v
47T S
ask — 0, with an error that i€ (k*). In this formula,Vz
is the volume ofB, n(q) is the unit normal vector ate S
pointing away fromB, and the vector fieldP solves the
following problem: V2¥ = 0 outsideS, 0¥ /0n = n
onS and¥ = O(r—2) asr — oo; see [4, egn. (5.20)].

Now, following Dassios and Kleinman [4, p. 166], we

define thevirtual mass tensoW by
Wij = —/ ni\I/j ds = Wji, (14)
s

and themagnetic polarizability tensaM by
Zj — Wz] + VB(Sz] - (15)

(For the special case of a sphehd;; = %VB%-) Then,
we can express the far-field pattern concisely by
. ik3
f(x; a)——{r M- & —Vg}+O(k') ask — 0.
(16)

Thus, the far field of a small hard scatterer depends lin-
early on both the observation direction and the incident
direction, and it is much smaller than the far field of a
small soft scatterer. Of course, this result was known to

Lord Rayleigh.
We can use (16) to calculate tiematrix for a small

sound-hard scatterer. Substituting in (8), we find after

some calculation that tHE-matrix has ten entries that are
O(k3) ask — 0:
T00 = —ik3 Vg /(4),
11 = Z]<33]\4:),;),/(1271')
Tlol1 = _Zk3<M31 + ZM32)/(127T\[) _1 07
T11 = —ik3(Ms; — iMsp)/(120V/2) = =T,
T = ik®(Myy + M)/ (247) = Tl_ll _1,
T\ = ik3(Mag — My + 2iMy)/(247),
Tt = ik3(Mag — My — 2iMy)/(247).

Let us calculate the scattered field for any incident

field, ui, (r). We introduce a vectdd with components

1 8uin
U;: = =
J k 8.%’j

evaluated at = 0. a7)

Then, we find thatl) = /127U3, d} = —v/67(U1 —ilU>)
andd;' = V6r(U; + ilUz). Also, as befored) =
V4rui, (0). We then calculate””, using (7) and the ap-
proximations to theél-matrix given above. Eventually,
we obtain
zk3
Use(r) > — {r M - U hy(kr) — VBuin(0) ho(kr)} .

(18)
This can be used to generalise Foldy’s method to collec-
tions of small hard scatterers.

Conclusions

We have described a systematic method for obtaining
approximations to th&-matrix, valid for small scatterers
of any shape. (The only other related results known to
us are for spheroids in [6].) The method generalises to
penetrable scatterers, to two dimensions (for which the
low-frequency asymptotics are more complicated [7]) and
to other physical situations.
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