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Abstract
Acoustic waves around an infinite configuration

of identical circular scatterers are considered. Each
scatterer is close to a node of a regular lattice: the
geometrical configuration is almost periodic. Analyt-
ical estimates for the average field in such a random
medium are obtained.

Introduction
Consider waves in a two-dimensional periodic

structure, defined by a lattice Λ: each cell in the
lattice is a parallelogram, each node in the lattice is
a scatterer location. Let d be the shortest distance
between nodes. For scalar waves governed by the
Helmholtz equation, (∇2 +k2)u = 0, it is known how
to calculate the dispersion relation, connecting the
wavenumber k to the Bloch vector Q: solutions sat-
isfy the Bloch condition u(r+rj) = u(r) exp (iQ · rj),
for every lattice node rj .

The periodic problems outlined above have been
studied extensively. One important application con-
cerns photonic crystals [1]. Fabrication of such struc-
tures inevitably introduces imperfections, leading to
nearly periodic geometries or other forms of disor-
der. What are the effects of the disorder? There are
publications on this question; the main result is that
the band-gap phenomena seen with periodic struc-
tures are robust to small amounts of random disor-
der. Representative publications include [2], [3], [4],
[5], [6]. All these papers include results from nu-
merical simulations. Some [4], [6] use a ‘supercell’
method, which means that a periodic medium is con-
structed in which each period contains the same dis-
ordered arrangement of circular scatterers; evidently,
such a periodic medium is not a random medium, so
it is unclear how to interpret the results. The other
papers [2], [3], [5] use a finite number of circular scat-
terers, 1152 in [2], 38 in [3] and 169 in [5].

1 The periodic problem
We consider identical circular scatterers of radius

a. For simplicity, we suppose that ka � 1 and that
each scatterer is sound soft. This permits the use of

Foldy’s (deterministic) model for the scattering:

u(r) =
∑
rj∈Λ

BjψH0 (r− rj) = BiψH0 (r− ri) + ue
i (r),

where Bj are coefficients, ψHn (r) = H
(1)
n (kr)einθ, r, θ

are polar coordinates and

ue
i (r) = u(r)−BiψH0 (r−ri) =

∑
j 6=i
BjψH0 (r−rj). (1)

The quantity ue
n(r) is the field incident on the nth

scatterer in the presence of all the other scatterers.
Next, suppose that Bn = gue

n(rn), where g is the
scattering coefficient. Thus, the strength of the field
scattered by the nth cylinder is proportional to the
external field acting on that cylinder. All our scat-
terers are identical, so we use the same scattering
coefficient for each. Then, evaluating (1) at r = ri
gives a homogeneous linear system for the numbers
ue
j(rj). Looking for a solution of this system in the

form ue
j(r) = exp (iQ · r) gives just one equation,

1 = gσH0 (k; Q; Λ), (2)

where σH0 is a lattice sum,

σHn = σHn (k; Q; Λ) =
∑′

rj∈Λ

ψHn (rj) exp (iQ · rj) (3)

and the prime on the summation indicates that the
term with r0 = 0 is omitted.

Equation (2) gives a relation between k and Q.
To indicate that we are examining the periodic prob-
lem, we add a subscript p, giving kp and Qp. We
may choose to specify Qp and then (2) determines
kp, or we may choose to do the opposite. We are
interested in how these relations are changed by the
introduction of positional disorder.

2 The almost periodic problem
Let the centre of the nth circle be displaced from

rn to r′n with |rn − r′n| < εd, where 0 < ε� 1: each
small disc, Dn, of radius R = εd and centre rn ∈ Λ,
contains exactly one scatterer, centred at r′n.



Again, for simplicity, we use the Foldy determinis-
tic model. Then, we compute the ensemble average,
〈u〉, using the Lax QCA (see [7, §8.6.4], for example)
and a simple choice for the pair correlation function:
given Λ, the first scatterer can be centred in any disc
Dn with equal probability, the second scatterer can
then be centred in any other disc with equal proba-
bility. We find that

〈u(r)〉 =
g

πR2

∑
rj∈Λ

∫
Dj

v(r′)ψH0 (r− r′) dr′, (4)

where v solves the integral equation

v(r′i) =
g

πR2

∑
j 6=i

∫
Dj

v(r′)ψH0 (r′i − r′) dr′, r′i ∈ Di.

(5)
This equation shows that (∇2 + k2)v = 0 inside
each Di. Equation (4) shows that 〈u〉 can be writ-
ten as an acoustic ‘volume’ potential. This observa-
tion has two consequences. First, an application of
(∇2 + k2) to (4) gives

(∇2+k2)〈u(r)〉 =
{

0, r 6∈ Di,
[4ig/(πR2)]v(r), r ∈ Di,

i ∈ Z.

Thus, 〈u〉 solves a certain problem for a periodic lat-
tice of circular scatterers, each of (small) radius R =
εd. Second, 〈u〉 and its normal (radial) derivative are
both continuous across the boundary of each Di.

To solve (5), we first impose the Bloch condition,

v(r+rj) = v(r) exp (iQ · rj), r ∈ D0, j ∈ Z; (6)

it follows that 〈u〉 satisfies the same condition. Use
of (6) in (5) together with the two-centre expansion
of ψH0 [7, Theorem 2.14] gives

v(r) = g
∑
n

∑
p

(−1)pVnσHn−pψ
J
p (r), r ∈ D0, (7)

where ψJn(r) = Jn(kr)einθ and

Vn =
1

πR2

∫
D0

v(s)ψJ−n(s) ds.

Multiply (7) by ψJ−m(r) and integrate over D0 giving

Vm = gJm(kR)
∑
n

Vnσ
H
n−m(k; Q; Λ), m ∈ Z, (8)

where Jm(kR) = J2
m(kR) − Jm−1(kR)Jm+1(kR).

This is an infinite homogeneous system of linear al-
gebraic equations for Vn. Setting its determinant to
zero yields the dispersion relation connecting k to Q.

For very small disorder (kR � 1), we can ap-
proximate the function Jm(kR) occurring in (8).
As Jm(0) = δ0m, (8) reduces correctly to (2) in
the absence of disorder. At next order, we use
J0 ∼ 1 − (kR)2/4 and J±1 ∼ (kR)2/8, leading to
a 3 × 3 system for V±1 and V0. This produces an
approximate dispersion relation, valid for small dis-
order. This can be related to the periodic problem,
giving estimates for Q −Qp when k = kp or k − kp

when Q = Qp, as desired.
Further work is ongoing, comparing with numerical

simulations (for comparisons in one dimension, see
[8]) and going beyond the Foldy representation.
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