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Talk Abstract
Three-dimensional time-harmonic internal gravity

waves are generated by oscillating a bounded object in
an unbounded stratified fluid. Energy is found in conical
wave beams. The problem is to calculate the wave fields
for an object of arbitrary shape. It can be formulated as
a hyperbolic boundary-value problem. The following as-
pects are discussed: reduction to boundary integral equa-
tions; single-layer and double-layer potentials; estimation
of far fields and radiation conditions. The problem is
complicated because the group and phase velocities are
orthogonal. In addition, singular boundary integrals arise:
their integrands are infinite along a certain curve (not just
at a point) on the boundary, and this happens even when
the field point is off the boundary (but within one of the
conical wave beams).

Introduction
Boundary-value problems (BVPs) for hyperbolic par-

tial differential equations (PDEs) are unfamiliar to most
mathematicians. However, they do arise in applications,
as we shall see later. To see that they do differ from el-
liptic BVPs, start with interior Dirichlet problems for a
function u in a disc, r < a, with u = 0 at r = a. For
Laplace’s equation, uxx + uyy = 0, the only solution is
u ≡ 0, whereas for the “wave” equation, uxx − uyy = 0,
there is a simple non-trivial solution, namely u = a2−r2;
this example was noted by Bateman [1, p. 611] in 1929.
Studies of uxx = uyy in rectangles were made by Bour-
gin and Duffin [2] in 1939 and John [3] in 1941. Since
then, the pure mathematical literature is sparse.

In applications, interior hyperbolic BVPs arise with
certain models of granular flow [4] and with internal
waves [5]. We shall also consider internal waves, but our
interest is with exterior problems.

Governing equations
Consider an inviscid unbounded fluid with a uniform

density stratification, under gravity. There is a bounded
3D object (with boundary S) in the fluid. Time-harmonic
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Figure 1: The oscillating body S is located inside the
sphere, Sa. Regions III and V are the conical wave
beams bounded by characteristic cones. The angle
between the conical surfaces and the z-axis is θc.

internal waves are generated by oscillating S. It is found
that the significant wave motion is confined to beams
forming a “Saint Andrew’s cross” (in 2D), as shown in
famous images obtained by Mowbray and Rarity [6]; in
3D, the beams are conical (see Figure 1).

Under the Boussinesq approximation, the wave mot-
ion can be found by calculating the pressure Re{p e−iωt};
p(x, y, z) solves

∂2p

∂x2
+
∂2p

∂y2
+ Υ

∂2p

∂z2
= 0, where Υ =

ω2

ω2 −N2
(1)

is a constant, z is the vertical coordinate and N is the
constant Brunt–Väisälä frequency. The two frequencies,
ω and N , satisfy 0 < ω < N , so that Υ < 0 and the PDE
(1) is hyperbolic. It is to be solved subject to boundary
and far-field conditions. The boundary condition is natu-
ral: v ·n is prescribed on S, where n is a normal to S and
the velocity v = (u, v, w) is given in terms of p by

u = − i
ω

∂p

∂x
, v = − i

ω

∂p

∂y
, w = − iΥ

ω

∂p

∂z
. (2)

The far-field conditions are discussed next.



Far-field conditions
For comparison purposes, start with linear acoustics,

governed by the Helmholtz equation, (∇2 +k2)u = 0. In
this context, the Sommerfeld radiation condition (SRC) is
imposed: r(ur − iku) → 0 as r → ∞. Physically, the
SRC ensures that radiated waves go away from S. Math-
ematically, the SRC ensures that we have a well-posed
BVP. The SRC is linear. Thus, we can use superposition:
as G = eik|P−q|/|P − q| satisfies the SRC, so does

u(P ) = (Sµ)(P ) ≡
∫
S
µ(q)G(P, q) dSq, (3)

for any reasonable µ; Sµ is a single-layer potential.
What are appropriate far-field conditions for internal

waves? Of course, we want to capture the expected
physical behaviour, so we begin by summarising what is
known. Let r be the distance from the point P to an origin
inside S. Referring to Figure 1, we expect p = O(r−1)
as r → ∞ when P is in Regions II, IV or VI; in these
regions, p behaves like a solution of Laplace’s equation,
and there is no energy transport. All energy transport oc-
curs in the conical wave beams, Regions III and V. In
these beams, p is larger, O(r−1/2) as r →∞ [7, p. 467].
Specifically,

p ∼ r−1/2F (σ) as r →∞ in Regions III and V, (4)

where F is a complex-valued function of the lateral co-
ordinate σ, across the beam. F may be thought of as the
far-field pattern; it does not depend on r. Notice that we
do not see wavelike behaviour in (4), as a function of r.
That is because the waves travel across the beam whereas
the energy propagates along the beam: the group velocity
is parallel to the beam and it is perpendicular to the phase
velocity [7, p. 445]. This is very different to linear acous-
tics, where the phase and group velocities are in the same
direction: we can ensure that energy travels away by en-
suring that the waves travel away, which explains why the
SRC is physically correct.

For internal waves, we can examine energy directly,
and then require that energy travels away. Physically, this
condition is attractive but, mathematically, it is awkward
because energy is a quadratic quantity. In detail, for P
in Region III, let e be a unit vector that is parallel to the
beam, pointing from S towards P . Apart from inessen-
tial positive factors, the time-averaged energy transport
is given by the vector Re (pv) ∼ r−1I(σ)e, where the
overbar denotes complex conjugation and

I(σ) = Im (FF ′). (5)

A plausible far-field condition is to require I(σ) > 0
for |σ| < a, where σ varies from−a to a across the beam.
This pointwise condition turns out to be too restrictive.
We should require that

∫
I > 0, where the integration

is over the beam cross-section, but it is unclear if this is
sufficient to define the physically-meaningful solution.

A fundamental solution and layer potentials
One way to construct outgoing solutions proceeds as

follows. Solve (1) when ω > N (Υ > 1, so (1) is elliptic).
Then use analytic continuation in the complex ω-plane to
determine the solution for 0 < ω < N (Υ < 0). This
approach was pioneered by Pierce [8] and Hurley [9]. It
is more fundamental than looking at energy flow because
it is based on causality in the time domain, which means
there should be no motion before a disturbance is excited.
As we have used a time-dependence of e−iωt, causality
implies that there should be no singularities or branch cuts
in the upper half of the ω-plane.

For ω > N (Υ > 1), it is easy to see that

G(P,Q) ≡ G(x0, y0, z0; x, y, z)

= {(x− x0)2 + (y − y0)2 + Υ−1(z − z0)2}−1/2 (6)

solves (1), where P is a fixed point. Evidently,G is a fun-
damental solution for Laplace’s equation with a rescaling
of the z coordinate, and G(P,Q) is singular at P = Q.
We can then use G to construct single-layer and double-
layer potentials (such as (3)), just as we would for the
Helmholtz equation [10]. Integral representations for p in
terms of the boundary values of p and v · n can also be
developed, using an appropriate reciprocal theorem [11].

Next, we effect the analytic continuation to obtain for-
mulas valid for 0 < ω < N . Define an angle θc by

ω = N cos θc with 0 < θc < π/2.

Define spherical polar coordinates (R,Θ,Φ) by x0−x =
R sin Θ cos Φ, y0−y = R sin Θ sin Φ, z0−z = R cos Θ.
Then, for P in the fluid, we obtain the representation [11]

p(P ) = Dp− S(v · n), (7)

where Dµ is a double-layer potential. We define Sµ by

(Sµ)(P ) = i(ω2 −N2)1/2
∫
S
µ(q)G(P, q)

dSq
4π

=

∫
S
µ(x, y, z)M(Θ)

dS(x, y, z)

4πR
, (8)
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where the first (second) line defines Sµ before (after) an-
alytic continuation and

M(Θ) =


−N cos θc sin θc√
cos2 θc − cos2 Θ

, |cos Θ| < cos θc,

iN cos θc sin θc√
cos2 Θ− cos2 θc

, cos θc < |cos Θ|,
(9)

so that M(Θ) is weakly singular at Θ = θc and at
Θ = π − θc. Dµ is defined similarly [11], except that
the singularities are stronger. Then, given v · n on S, we
can obtain a boundary integral equation (BIE) for p on S
from (7). Alternatively, instead of using (7), we could try
using p(P ) = (Sµ)(P ); the boundary condition would
then give a BIE for µ.

Discussion, questions and anxieties
The strategy outlined above (which is familiar in clas-

sical potential theory and in linear acoustics) would seem
to offer a way to calculate the pressure field in a strati-
fied fluid due to the oscillations of a body S of arbitrary
shape. Indeed, Sturova [12], working in 2D, starts with
p = Sµ and an appropriate choice for G. Similar repre-
sentations were first used for internal waves by Robinson
[13]. He considered a thin vertical barrier in a finite-depth
ocean, and he constructed G so as to satisfy boundary
conditions at z = 0 and z = H . Similar methods have
been used for barriers [14], [15] and for other 2D bot-
tom topographies [16], [17], [18]. All these papers start
with ψ = Sµ, where ψ is a stream function, leading to a
first-kind BIE. Implicitly, it is assumed that, since G has
been constructed so as to satisfy the far-field conditions
[7], then so will Sµ, once µ has been found from a BIE.

Singularities along curves
In order to check, we need a method for estimating the

far-field behaviour of Sµ, i.e., for calculating F (σ) in (4).
Such a method has been developed [11] but it is quite
complicated. To see the difficulties, suppose that P =
(x0, y0, z0) is in Region III and q = (x, y, z) is on S.
The singularity in (9) occurs at Θ = θc: for fixed P , we
have to integrate over q, so we must identify where the
singularities are on S. We have

{(x− x0)2 + (y − y0)2} cos2 θc − (z − z0)2 sin2 θc

= R2(cos2 θc − cos2 Θ).

Thus, the singularities in (9) occur when

(z − z0)2 = {(x− x0)2 + (y − y0)2} cot2 θc. (10)

This defines a double cone in xyz-space with apex at P .
If P were in Region II, IV or VI, the double cone would

not intersect S, and there would be no singularities in the
integrations over S in (8). Conventional methods then
give the far-field behaviour.

The situation is different when P is in Region III. Then,
the lower half of the double cone (10),

z − z0 = −
√

(x− x0)2 + (y − y0)2 cot θc,

intersects S in a curve C. Thus, as q is at (x, y, z), we see
that the singularities in the integration over S in (8) occur
at all points q on the curve C. This curve is characterised
as being where Θ = θc. (A similar construction can be
made when P is in Region V.)

We emphasise that there are singularities in the bound-
ary integrals over S defining Sµ and Dµ even when P is
not on S (but is in Region III or V). This is very different
from classical potential theory, for example, where typi-
cal boundary integrals only contain singularities when the
field point P is on the boundary, and then the singularity
is at P , not along a curve on S. All this is a consequence
of the hyperbolic nature of the governing PDE.

Far-field behaviour within the wave beams
Having identified where the singularities are on S, the

next step is to estimate the integrals when P is far from
S but within Region III. As the singularities are charac-
terised by being where Θ = θc, it is natural to make a
change of variables in the boundary integrals, expressing
them as double integrals over a region E in the ΘΦ-plane.
This change puts the singularities along the straight line
Θ = θc (which passes through E) and so they can be han-
dled by one-dimensional calculations; the Φ integrations
are benign. Strongly singular integrals can also be han-
dled by moving into the complex Θ-plane. In addition, as
the observation point recedes to infinity within the wave
beams, the domain E shrinks so that approximations can
be made.

The result of the computations are formulas for F (σ) in
(4) corresponding to Sµ and Dµ. These have been verified
by comparing with known solutions for spherical objects.

The main idea of changing variables so that singulari-
ties on a curve are moved to singularities on a coordinate
line goes back to work by I.M. Lifshitz in the 1940s on
the Green’s function for waves in a regular lattice; see
[19] for details and references.

Some consequences
As we now have a way of calculating F , we can cal-

culate I , defined by (5). It turns out that simple choices

377



for µ (such as linear functions of z when S is a sphere) in
Sµ lead to functions I(σ) that are negative in part of the
wave beams. This is consistent with known solutions for
spheres and with our recent work for oscillating horizon-
tal discs.

Instead of writing p = Sµ, we could use (7), involv-
ing boundary integrals of p and v · n. This has two ad-
vantages: the representation is known to be valid (in the
sense that if the BVP has a solution, then the solution can
be represented as claimed) and it involves physical quan-
tities (as opposed to µ). Again, we can estimate far-field
quantities.

Computationally, the treatment of the BIEs is not stan-
dard, mainly due to the singularity structure. Mathemati-
cally, we do not have a rigorous theory for the solvability
of the hyperbolic BVP. Evidently, there is much that re-
mains to be done.
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