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Abstract

The title problems are treated using Laplace
transforms and separation of variables. This
approach has been used for spheres since the
1950s. When applied to spheroids, we encounter
new questions, such as how do spheroidal wave-
functions behave for complex parameters? We
describe our recent work in this direction.
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1 Introduction

We consider acoustic scattering of a sound pulse
by a bounded three-dimensional obstacle with
smooth boundary S. The scattered field u(r, t)
solves an initial-boundary value problem (IBVP)
for the wave equation

∇2u = c−2 ∂2u/∂t2 in B for t > 0,

where B is the unbounded exterior of S and c is
the constant speed of sound. In addition, there
are zero initial conditions

u = 0 and ∂u/∂t = 0 in B at t = 0 (1)

and a boundary condition on S for t > 0.

The word “acoustic” in the title is impor-
tant: we always assume that u is a velocity po-
tential, so that v = gradu is the fluid veloc-
ity and p = −ρ ∂u/∂t is the (excess) pressure,
where ρ is the constant background density.

Problems of physical interest often involve
incident pulses, with moving wavefronts across
which p or normal velocity vn is discontinuous.
However, in most cases, it can be arranged that
u is continuous across wavefronts, even though
p or vn is not. Consequently, it is advantageous
to solve for u, assumed to be continuous and
piecewise-smooth; assuming too much smooth-
ness may exclude interesting physical problems.
Also, seeking weak solutions must be done with
care: such solutions may not respect the proper
jump conditions across wavefronts, conditions
that stem from the underlying continuum me-
chanics. See [4] for details and references.

2 Use of Laplace transforms

The textbook method for solving IBVPs is to
use Laplace transforms. Thus, define

U(r, s) = L{u} =

∫

∞

0
u(r, t) e−st dt.

U satisfies the modified Helmholtz equation,

∇2U − (s/c)2U = 0 in B. (2)

Here, we have used the continuity of u and the
initial conditions (1).

We solve (2) using the Laplace transform
of the boundary condition and a mild growth
condition as |r| → ∞, and then we invert using

u(r, t) =
1

2πi

∫

Br
U(r, t) est ds,

where Br is a Bromwich contour in the s-plane.
For an incident sound pulse, we know that,

for any fixed r, u(r, t) = 0 for sufficiently large t.
Consequently U(r, s) is an analytic function of s
for Re s > 0. When U(r, s) is continued analyt-
ically into the other half-plane, Re s ≤ 0, singu-
larities will be encountered. These singularities
are poles and they occur in complex-conjugate
pairs (unless they are real and negative). The
singularities are known as natural frequencies.
Once they have been located, we can contem-
plate moving the Bromwich contour to the left,
picking up residue contributions.

3 The sphere

For scattering by a sphere of radius a, we use
spherical polar coordinates, r, θ and φ. Separa-
tion of variables leads to

U =

∞
∑

m=0

∞
∑

n=m

kn(sr/c)P
m
n (cos θ)Am

n (φ, s), (3)

Am
n = Am

n (s) cosmφ+Bm
n (s) sinmφ. (4)

Here kn is a modified spherical Bessel function,
Pm
n is an associated Legendre function, and Am

n

and Bm
n are to be determined using the bound-

ary condition. We note two things about the
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form of expansion (3). First, the angular func-
tions Pm

n (cos θ) cossinmφ do not depend on s. Sec-
ond the radial function, kn(sr/c), does not de-
pend on the mode number m. This structure is
lost when we consider scattering by a spheroid.

As an example, suppose we have a Dirich-
let boundary condition, u(a, θ, φ, t) = d(θ, φ, t),
a given function satisfying d(θ, φ, 0) = 0; this
constraint ensures that u is continuous. Sup-
pose that D = L{d} has the expansion

D(θ, φ, s) =
∞
∑

m=0

∞
∑

n=m

Pm
n (cos θ)Dm

n (φ, s), (5)

where Dm
n = Dc

mn(s) cosmφ + Ds
mn(s) sinmφ

and Dc
mn and Ds

mn are coefficients. Then the
boundary condition yields

U =
∞
∑

m=0

∞
∑

n=m

kn(sr/c)

kn(sa/c)
Pm
n (cos θ)Dm

n (φ, s). (6)

This formula shows that the natural frequencies
are those values of s for which kn(sa/c) = 0.
There may be additional singularities arising
from the form of Dc

mn(s) and Ds
mn(s).

All this is well known; the method outlined
above was first used by J. Brillouin in 1950. See
[5] for details and references.

4 The prolate spheroid

We use prolate spheroidal coordinates ξ, η and
φ, defined by x = h

√

(ξ2 − 1)(1− η2) cosφ, y =
h
√

(ξ2 − 1)(1− η2) sinφ, z = hξη, where h is a
positive constant. The foci are at (x, y, z) =
(0, 0,±h). The surface ξ = ξ0 > 1 is a prolate
spheroid with semi-major axis of length a = hξ0
and semi-minor axis of length b = h

√

ξ20 − 1.
The exterior of the spheroid corresponds to ξ >
ξ0, −1 ≤ η ≤ 1 and −π ≤ φ < π.

To solve (2), we write

U =
∞
∑

m=0

∞
∑

n=m

R(3)
mn(ip, ξ)S

m
n (ip, η)Am

n (φ, s) (7)

for ξ > ξ0. Here p = sh/c, Am
n is defined by

(4), R
(3)
mn is an outgoing radial spheroidal wave-

function (SWF) and Sm
n is an angular SWF [1].

Comparing (7) with (3), we see that the radial

part R
(3)
mn(ip, ξ) depends on both m and n, and

the angular part Sm
n (ip, η) depends on s.

For the Dirichlet boundary condition, u = d
on ξ = ξ0, we expand D = L{d} as

D(η, φ, s) =
∞
∑

m=0

∞
∑

n=m

Smn(ip, η)D
m
n (φ, s),

see (5), whence

U =

∞
∑

m=0

∞
∑

n=m

R
(3)
mn(ip, ξ)

R
(3)
mn(ip, ξ0)

Sm
n (ip, η)Dm

n (φ, s).

This formula should be compared with (6).
The natural frequencies are determined by

the zeros of R
(3)
mn(ish/c, ξ0) in the complex s-

plane. It turns out that the relevant properties
of radial SWFs are not in the literature on spe-
cial functions, so we have developed some new
asymptotic approximations that can be used to
estimate the natural frequencies. There is lit-
erature on computing SWFs numerically [2, 3];
comparisons between asymptotics and numerics
are being made.
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