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Abstract

Multiple scattering is an important and interesting topic, of relevance in a wide variety of
physical contexts. In this short paper, we attempt to review some of the theory and applications
with the aim of encouraging further investigations. For simplicity, we consider the scattering of
two-dimensional time-harmonic acoustic waves by hard parallel cylinders. Methods described
include separation of variables, T -matrix methods and integral-equation methods. Our point
of view is that the theory of multiple scattering has a rich literature which can be profitably
studied to the benefit of current computational goals.

1 Introduction: What is Multiple Scattering?

‘The mathematics of the full treatment may be altogether beyond human power in a
reasonable time; nevertheless. . . ’ (Heaviside, 1893, p. 324)

When a wave meets an obstacle, it is scattered. The scattered field can be calculated in various well-
known ways, such as by separation of variables, T -matrix methods or integral-equation methods.

If there are several obstacles, the field scattered from one obstacle will induce further scattered
fields from all the other obstacles, which will induce further scattered fields from all the other
obstacles, and so on. This recursive way of thinking about how to calculate the total field leads to
the notion of multiple scattering; it can be used to actually compute the total scattered field – each
step is called an order of scattering. Heaviside [11, p. 323] gives a clear qualitative description of
this process.

The simplest approximation, called single scattering, is to ignore multiple scattering completely:
‘the total scattered field is just the sum of the fields scattered by the individual [obstacles], each
of which is acted on by the [incident] field in isolation from the other [obstacles]’ [4, p. 9]. This
approximation is used widely; it is only expected to be valid when the spacing is large compared to
both the size of the obstacles and the length of the incident waves. Indeed, with these assumptions,
higher-order approximations can be derived [38]. However, there are many instances where multiple
scattering is important; for some natural examples, see Bohren’s fascinating book [3].

The exact multiple-scattering problem is easily formulated: it is an exterior boundary-value
problem (with a radiation condition at infinity) where the boundary is not simply-connected. Sup-
pose that the boundary has N components Sj , j = 1, 2, . . . , N and set

S =
N⋃
j=1

Sj .
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Then, it is straightforward to reduce the boundary-value problem to a boundary integral equation
over S; see § 4.2.1. Computationally, this direct approach can be expensive, especially for prob-
lems involving many three-dimensional obstacles. Thus, in the context of hydrodynamics (where
water waves interact with immersed structures, such as neighbouring ships, wave-power devices or
elements of a single larger structure), Ohkusu [19] wrote: ‘For the purpose of calculating hydrody-
namic forces. . . , it is essential that only the hydrodynamic properties of each element be given. A
method having such a merit will facilitate the calculation for a body having many elements and
may be applied to the design arrangement of the elements’. In other words, assuming that we know
everything about scattering by each obstacle in isolation, how can we use this knowledge to solve
the multi-obstacle problem?

For simple geometries, such as circular cylinders or spheres, one way is to combine separated
solutions of the Helmholtz equation (multipoles); a necessary ingredient is an addition theorem for
expanding multipoles centred at one origin in terms of similar multipoles centred on a different
origin. This old but useful method is discussed in § 2.

A more powerful method, which can be viewed as a generalization of the method of separation
of variables to non-separable geometries, involves the so-called T -matrix. This method is described
briefly in § 3.

Finally, we discuss integral-equation methods. In order to incorporate knowledge about scat-
tering by one obstacle in isolation, we introduce the exact Green’s function for that obstacle; this
can be constructed by solving an integral equation, and can be used as a fundamental solution for
the multi-body problem. Aspects of this approach are described in § 4.

Multiple scattering is a huge subject with a huge literature. We limit ourselves here to scattering
of two-dimensional acoustic waves by sound-hard cylinders with bounded cross-sections. For an
extensive review up to 1964, see [28], [7].

2 Methods Based on Separation of Variables

‘Today, the separation of variables derivations . . . are only of academic interest.’
(Burke & Twersky, 1964, p. 501)

Separation of variables can be used to study acoustic scattering by a single obstacle, provided its
surface coincides with a coordinate surface. In fact, the Helmholtz equation,

(∇2 + k2)u = 0, (1)

separates in eleven three-dimensional coordinate systems [1]. Of these eleven, only six are useful
for bounded obstacles: circular and elliptic cylinders in two dimensions; spheres, prolate spheroids,
oblate spheroids and ellipsoids in three dimensions.

For two, or more, obstacles, we can proceed by combining separable solutions appropriate to
each obstacle with an appropriate addition theorem. This method was used by Závǐska in 1913 for
two-dimensional scattering by circular cylinders [37]. It is exact, and leads to an infinite system of
simultaneous algebraic equations.

Despite the opening quotation, the method is widely used, probably because it is both con-
ceptually simple and numerically effective. Consequently, we give a brief derivation for acoustic
scattering by several circular cylinders, and then mention various extensions.
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2.1 Separation of Variables for One Circular Cylinder

Consider a circular cylinder of radius a. Choose Cartesian coordinates (x, y), with the origin O at
the centre of a typical cross-section, S, and plane polar coordinates (r, θ), so that x = r cos θ and
y = r sin θ.

We suppose that a plane wave is incident upon the cylinder, so that

uinc = eik(x cosα+y sinα) = eikr cos (θ−α),

where α is the angle of incidence. Using the Jacobi expansion [33, p. 22], we obtain

uinc =
∞∑

n=−∞
inJn(kr) ein(θ−α). (2)

Now, in plane polar coordinates, the Helmholtz equation has separated solutions

Jn(kr) e±inθ and Yn(kr) e±inθ.

In order to satisfy the radiation condition at infinity, we take the combination

{Jn(kr) + iYn(kr)}e±inθ ≡ H(1)
n (kr) e±inθ,

giving rise to a cylindrical wave that propagates outwards (this is where we take note of the assumed
time dependence, e−iωt). Furthermore, in order to have the same symmetries as the incident wave,
we take the combination

usc =
∞∑

n=−∞
AnHn(kr) ein(θ−α), (3)

where, from now on, we write Hn for H(1)
n . So, for any reasonable choice of the coefficients An,

the expression on the right-hand side of (3) satisfies the Helmholtz equation and the radiation
condition.

To complete the problem, we use the sound-hard boundary condition on the cylinder:

∂u/∂n = 0 on S, (4)

where u = uinc + usc is the total field and ∂/∂n denotes normal differentiation from S into the
exterior; here, ∂/∂n = ∂/∂r. Differentiating (2) and (3), and setting r equal to a gives

∞∑
n=−∞

k
{
inJ ′n(ka) +AnH

′
n(ka)

}
ein(θ−α) = 0,

for 0 ≤ θ < 2π. Then, orthogonality of {einθ} implies that the expression inside the braces must
be zero for each n, whence

An =
−inJ ′n(ka)
H ′n(ka)

and then the scattered field is given everywhere in r ≥ a by (3).
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2.2 Notation

For multiple-scattering problems, good notation is important. Thus, it is convenient to make the
following definitions:

ψn(r) = Hn(kr) einθ, ψ̂n(r) = Jn(kr) einθ, n = 0,±1,±2, . . . .

Here, r is the position vector of the point at (x, y) with respect to the origin. The functions ψn(r)
and ψ̂n(r) are separated solutions of the Helmholtz equation in plane polar coordinates. ψn(r)
satisfies the radiation condition at infinity and is singular at r = |r| = 0: we call ψn a radiating
partial wave. ψ̂n(r) is regular at r = 0: we call ψ̂n a regular partial wave. Note that

ψ−n(r) = (−1)nψn(r) = ψn(−r) and ψ̂−n(r) = (−1)nψ̂n(r) = ψ̂n(−r).

With the above notation, we can reconsider the problem of scattering by one circular cylinder.
Thus, the incident wave can be expanded as

uinc =
∑
m

dmψ̂m(r), (5)

where the notation implies that the summation is from m = −∞ to m =∞, and

dm = ime−imα.

Similarly, the scattered field can be expanded as

usc =
∑
m

cmψm(r). (6)

Application of the boundary condition (4) on r = a shows that cm and dm are related by

cmH
′
m(ka) + dmJ

′
m(ka) = 0, m = 0,±1,±2, . . . ;

this relation determines the coefficients cm in terms of the known coefficients dm:

cm =
∑
n

Tmndn (7)

where
Tmn = −

[
J ′m(ka)/H ′m(ka)

]
δmn (8)

and δij is the Kronecker delta (δij = 0 if i 6= j and δij = 1 if i = j). Although the matrix T used to
be called the transition matrix , it is now invariably called the T-matrix ! Note that, for this simple
example, T is a diagonal matrix. In general, if the cylinder is not circular, T will be a full matrix;
see § 3.

2.3 Multipole Method for Two Circular Cylinders

Consider two circular cylinders, Sj , j = 1, 2. The circle Sj has radius aj and centre Oj at (x, y) =
(ξj , ηj). Define plane polar coordinates (rj , θj) at Oj , so that x = ξj+rj cos θj and y = ηj+rj sin θj .

The given incident field uinc is scattered by the cylinders. We assume that, in the neighbourhood
of each cylinder (including the interior of each cylinder), uinc is a regular solution of the Helmholtz
equation, so that

uinc =
∑
m

djmψ̂m(rj), j = 1, 2. (9)
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The coefficients djm are known in terms of uinc.
Generalizing (6), we express the scattered field as an infinite sum of multipoles at the centre of

each circle,
usc =

∑
m

c1mψm(r1) +
∑
m

c2mψm(r2). (10)

This representation can be justified; clearly it provides a radiating solution of the Helmholtz equa-
tion for any reasonable choice of the coefficients c1m and c2m. These coefficients will now be deter-
mined by applying the boundary condition on each cylinder.

Consider the cylinder S1. In order to use the boundary condition on r1 = a1, we must express
each term as a function of θ1. Thus, we must express ψm(r2) in terms of functions of r1. Now, in
the neighbourhood of O1, ψm(r2) is a regular solution of the Helmholtz equation; hence, it can be
expanded in terms of ψ̂n(r1). Let r2 = r1 + b, where b is the position vector of O1 with respect
to O2. Then, we have

ψm(r2) =
∑
n

Smn(b) ψ̂n(r1) for r1 < b, (11)

this inequality coming from the fact that the left-hand side of (11) is singular when r1 = −b.
The matrix S(b) is known explicitly; its entries are given by

Smn(b) = ψm−n(b) = Hm−n(kb) ei(m−n)β,

where b = (b cosβ, b sinβ). The formula (11) is Graf’s addition theorem in disguise [33, §11.3].
Note that S has the property

Smn(b) = Snm(−b) for all m and n.

Returning to (10), we use the addition theorem (11) to expand the scattered field near S1.
When combined with (9), we obtain

u =
∑
m

{
d1
mψ̂m(r1) + c1mψm(r1)

}
+
∑
m

c2m
∑
n

Smn(b) ψ̂n(r1)

=
∑
m

{
d1
mψ̂m(r1) + c1mψm(r1) + ψ̂m(r1)

∑
n

Snm(b) c2n

}
for r1 < b.

Next, we apply the sound-hard boundary condition on S1: differentiate with respect to r1, set r1
equal to a1 and use orthogonality of {eimθ1} to give

c1mH
′
m(ka1) + J ′m(ka1)

∑
n

Snm(b) c2n = −d1
mJ
′
m(ka1), m = 0,±1,±2, . . . . (12)

Given that the other cylinder, S2, is also sound-hard, a similar argument gives

c2mH
′
m(ka2) + J ′m(ka2)

∑
n

Snm(−b) c1n = −d2
mJ
′
m(ka2), m = 0,±1,±2, . . . . (13)

Equations (12) and (13) form a coupled infinite system of simultaneous linear algebraic equations
for the coefficients c1m and c2m, m = 0,±1,±2, . . ..
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2.4 Multipole Method for N Circular Cylinders

The method described in § 2.3 extends easily to N circular cylinders, Sj , j = 1, 2, . . . , N . The circle
Sj has radius aj and centre Oj at (x, y) = (ξj , ηj). As before, plane polar coordinates (rj , θj) are
defined at Oj , with θj = 0 being in the x-direction.

The scattered field is expressed as

usc =
N∑
j=1

∑
m

cjmψm(rj), (14)

which is an infinite number of radiating partial waves at the centre of each circle, with unknown
coefficients cjm.

Using (11), we find that the total field in the vicinity of Sl is given by

u =
∑
m

dlmψ̂m(rl) + clmψm(rl) + ψ̂m(rl)
N∑
j=1
j 6=l

∑
n

Snm(blj) cjn

 (15)

for rl < bl, where blj is the position vector of Ol relative to Oj (so that bjl = −blj) and

bl = min
1≤j≤N
j 6=l

|blj |.

Application of the sound-hard boundary condition on Sl gives

clmH
′
m(kal) + J ′m(kal)

N∑
j=1
j 6=l

∑
n

Snm(blj) cjn = −dlmJ ′m(kal),
m = 0,±1,±2, . . . ,
l = 1, 2, . . . , N.

(16)

This is an algebraic system of equations for the coefficients clm. It reduces to (12) and (13) whenN =
2. If the system (16) can be solved, its solution will yield an exact solution for multiple scattering
by N circular cylinders — no approximations have been made.

Similar systems can be derived for sound-soft cylinders (u = 0 on Sl), and for any combination of
soft and hard cylinders. Indeed, the method works for impedance boundary conditions and also for
penetrable cylinders. The latter situation leads to a transmission problem, in which acoustic fields
also exist inside each cylinder and are coupled to the exterior field through appropriate transmission
conditions on the surfaces of each cylinder.

2.4.1 History of the System (16).

The multipole method, leading to the algebraic system (16), was apparently devised by Závǐska [37].
In fact, Závǐska treated the corresponding transmission problem. Row [21] derived the system (16)
(for sound-soft cylinders) by specialising an integral equation for cylinders of arbitrary cross-section
to circular cylinders.

Závǐska’s method has been rediscovered by many subsequent authors; see, for example, [26]
and [36].
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2.4.2 Properties of the System (16).

From (16), we see that clm must be proportional to J ′m(kal); in particular, clm and cl−m both vanish
whenever kal is such that J ′m(kal) = 0. This suggests defining modified coefficients c̃lm by

clm = c̃lmJ
′
m(kal),

whence (16) becomes

c̃lmH
′
m(kal) +

N∑
j=1
j 6=l

∑
n

Snm(blj) J ′n(kaj) c̃jn = −dlm,
m = 0,±1,±2, . . . ,
l = 1, 2, . . . , N.

(17)

Similarly, from (15), the total field in the vicinity of Sl is given by

u =
∑
m

dlmψ̂m(rl) + c̃lmJ
′
m(kal)ψm(rl) + ψ̂m(rl)

N∑
j=1
j 6=l

∑
n

Snm(blj) J ′n(kaj) cjn

 (18)

for rl < bl. It was observed by Linton and Evans [15] that the double sum inside the braces in (18)
can be eliminated, using the system (17); the result is

u =
∑
m

c̃lm

{
J ′m(kal)ψm(rl)−H ′m(kal) ψ̂m(rl)

}
(19)

for rl < bl. This formula makes it much simpler to evaluate the field near Sl, once the coefficients c̃lm
have been found. In particular, when rl = al, we have

u(al, θl) =
−2i
πkal

∑
m

c̃lm eimθl

for 0 ≤ θl < 2π, after using the Wronskian relation for Bessel functions.

2.4.3 Numerical Solution of the System (16).

‘Without the use of large-scale automatic computing machinery, it would be impractical
to compute the solutions to the system (16) [for two cylinders] for any appreciable range
of radii and spacings.’ (Row, 1955, p. 674)

Despite this pessimistic quotation, it turns out that Závǐska’s method is very efficient for numerical
calculations. Of course, the infinite system (16), or (17), must be truncated: for example, (17)
should be truncated to the system

c̃lmH
′
m(kal) +

N∑
j=1
j 6=l

M∑
n=−M

Snm(blj) J ′n(kaj) c̃jn = −dlm,
m = 0,±1,±2, . . . ,±M,
l = 1, 2, . . . , N.

This is a system of N(2M + 1) equations in N(2M + 1) unknowns. However, simplifications are
possible if symmetry can be exploited.

Row [21] was the first to solve (16) numerically. He considered two identical cylinders, of
radius a, centred at (x, y) = (0,±1

2b); the incident field was generated by a line-source at (x, y) =
(x0, 0). For this symmetric configuration, we have

c1n = c2−n.
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Thus, the truncated form of (12) appropriate to sound-soft cylinders reduces to

c1mHm(ka) + Jm(ka)
M∑

n=−M
Snm(b) c1−n = −d1

mJm(ka), m = 0,±1,±2, . . . ,±M. (20)

This is a system of (2M + 1) equations in (2M + 1) unknowns. Row [21] solved it for ka = 2
and b/a = π with M = 6 (his Fig. 6). As the quotation above suggests, this was a formidable
calculation (using desk calculators and three assistants) in 1953. Moreover, the results were shown
to be in excellent agreement with experiments.

Linton and Evans [15] found that taking M = 6 gave results accurate to four significant figures,
except when the cylinders were very close together.

2.4.4 Extensions of the Method.

The general idea of combining multipole expansions with appropriate addition theorems has been
used in many physical contexts, involving configurations of cylinders and spheres. To give some
flavour of this work, we mention the paper by Levine and Olaofe [14], correcting the earlier work
of Trinks [27] on electromagnetic scattering by two dielectric spheres, and papers on the acoustics
of bubbly liquids [23], interactions in a thermoviscous fluid [10], and gas bubbles in a solid [35].

3 Methods based on the T -matrix

Consider one cylinder with non-circular cross-section Ω; let S be the boundary of Ω. Choose an
origin O in Ω, and let C+ and C− be the escribed and inscribed circles, respectively, to S, centred
on O. Outside C+, the expansion (6) for usc is valid, whereas the expansion (5) for uinc is certainly
valid inside C−. Then, the T -matrix for the scatterer is defined by (7): it maps the (known)
coefficients {dn} into the (unknown) coefficients {cm}.

The T -matrix has certain properties (such as symmetry) which can be either used as a check on
any numerical scheme for its computation or incorporated into the numerical scheme itself [31] [32].

The T -matrix depends on the shape of S and on the frequency, but it is independent of the
incident field. It is this property that makes it useful as a ‘building block’ for multiple-scattering
problems; the other ingredient is the matrix S occurring in the addition theorem (11). The basic
reference is [20]. Many subsequent applications are listed in [29]. We also mention some applications
in hydrodynamics [16], [12] and geophysics [6]. There is no doubt that T -matrix methods are very
effective for multiple-scattering problems, even when there are many scatterers; for example, Wang
and Chew [30] have used an iterative variant for electromagnetic scattering by 6859 dielectric
spheres.

4 Methods based on Integral Equations

Integral-equation methods for scattering by a single obstacle are well known [8]. Here, we outline
such methods for two obstacles, using either the free-space Green’s function or an exact Green’s
function.

4.1 One Non-Circular Cylinder, Two Approaches

We consider one cylinder with non-circular cross-sectional boundary S. Thus, the problem is to
solve (1) in D, the unbounded region exterior to S, subject to a radiation condition at infinity and
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the sound-hard boundary condition on S (4); we write the latter as

∂usc/∂n = f on S, (21)

where f = −∂uinc/∂n is known.

4.1.1 Standard Boundary Integral Equation.

We start with a fundamental solution for (1). The simplest is the free-space Green’s function,

G(P,Q) = G(Q,P ) = −1
2 iH(1)

0 (kR),

where R is the distance between the two points P and Q. Then, an application of Green’s theorem
to usc(Q) and G(Q,P ), for fixed P , gives

2usc(P ) =
∫
S

(
f(q)G(q, P )− usc(q)

∂

∂nq
G(q, P )

)
dsq. (22)

This is an integral representation for usc(P ), with P ∈ D, in terms of the boundary values of usc.
To determine usc(q) for q ∈ S, let P go to p on S giving the familiar integral equation,

usc(p) +
∫
S
usc(q)

∂

∂nq
G(q, p) dsq =

∫
S
f(q)G(q, p) dsq.

This is a Fredholm integral equation of the second kind with a continuous kernel; we write it
concisely as

Ausc = S0f, (23)

where A and S0 are integral operators. One can also obtain a similar equation for the total field
on S, namely

Au = 2uinc. (24)

It is known that (23) and (24) are uniquely solvable, except at certain irregular values of k2 [8]. We
disregard these here (several methods for their elimination, leading to different integral equations
are available [8]). Thus, formally, we can solve (23):

usc = A−1S0f. (25)

In practice, we cannot find A−1 analytically. However, we can solve (23) numerically using a
boundary-element method. This gives a discrete approximation to A−1.

4.1.2 The Exact Green’s Function.

Let us introduce a different fundamental solution GE, defined as follows. Fix the point P . Then,
write

GE(Q;P ) = G(Q,P ) + w(Q;P ),

and choose w so that it (i) satisfies (1) for all Q ∈ D, (ii) satisfies the radiation condition, and (iii)
is such that GE satisfies

∂

∂nq
GE(q;P ) = 0 for q ∈ S. (26)

We call GE the exact Green’s function; Bergman and Schiffer [2] call it the Neumann function.
One can find detailed discussions of (exact) Green’s functions in older books on partial differential
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equations, such as those of Kellogg [13, Chpt. 9], Webster [34, §66] or Garabedian [9, Chpt. 7].
Like G, GE is symmetric:

GE(P ;Q) = GE(Q;P ) for all P and Q in D ∪ S, P 6= Q. (27)

Since GE is a fundamental solution, we can use it to derive the integral representation (22),
with G replaced by GE. However, the representation simplifies because of (26), giving

2usc(P ) =
∫
S
f(q)GE(q;P ) dsq. (28)

This is an explicit formula for the solution of the one-obstacle problem. In particular, for p ∈ S, it
gives

usc(p) = 1
2

∫
S
f(q)GE(q; p) dsq = 1

2S
E
0 f,

say. Comparison of this formula with (25) gives

A−1S0f = 1
2S

E
0 f. (29)

As this holds for every f , we deduce that

A−1S0 = 1
2S

E
0 . (30)

Moreover, (29) gives ASE
0 f = 2S0f , which implies that GE solves the integral equation

GE(q; p) +
∫
S
GE(l; p)

∂

∂nl
G(l, q) dsl = 2G(q, p). (31)

In this equation, the point p occurs as a parameter; indeed, the same equation holds when p is
replaced by P ∈ D. The idea of constructing GE by solving a boundary integral equation can be
found in a paper by Boley [5].

In summary, if we want to find GE for a particular geometry, we typically have to solve a
boundary integral equation such as (31): we have shown above that this is equivalent to calculating
A−1.

4.2 Multiple Scattering by Two Obstacles

In this section, we consider the same scattering problem as in the preceding section but with two
cylinders. Thus, the problem is to solve (1) in D, the unbounded region exterior to S1 and S2,
subject to a radiation condition and the boundary conditions

∂usc/∂n = fj on Sj , j = 1, 2, (32)

where fj = −∂uinc/∂n on Sj .
We describe two methods for solving this problem. First, we derive a pair of coupled boundary

integral equations using G, in a standard way; these equations are weighted equally between S1

and S2. In practice, we may already have information on how to scatter by one of the cylinders
(S2, say) in isolation, such as A−1, GE or one of their discrete approximations. One way to use
this information is to ‘partition’ the pair of integral equations; another is to replace G by GE. We
can prove that these two approaches lead to exactly the same equations. A third approach is to
assume that we have two exact Green’s functions, one for each scatterer; this leads naturally to the
generalized Born series, discussed later.
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4.2.1 Partitioning.

The method used above to derive the boundary integral equation (23) works equally well for two
obstacles: simply replace S by S1∪S2. The resulting equation can be written in the following form:

A11u1 +A12u2 = S11f1 + S12f2, (33)
A21u1 +A22u2 = S21f1 + S22f2. (34)

Here, uj = usc(pj) where pj ∈ Sj for j = 1, 2,

Ajkuk = δjkusc(pk) +
∫
Sk

usc(qk)
∂

∂nq
G(qk, pj) dsq (35)

Sjkfk =
∫
Sk

fk(qk)G(qk, pj) dsq (36)

and δij is the Kronecker delta. We note that Ajj is simply the operator A for Sj (both the field point
pj and the source point (integration point) qj are on Sj), whereas A12 and A21 give the interactions
between S1 and S2 (these integral operators have smooth kernels, as the field and source points are
on different surfaces).

It is known that the pair of integral equations (33) and (34) suffers from irregular frequencies.
Again, we disregard these here; for a discussion on methods for eliminating irregular frequencies
from such equations, and for references to numerical work, see [17].

Now, suppose we already have (a discrete approximation to) A−1
22 ; for example, we may have

solved (23) using an accurate boundary-element method. Then, (34) gives

u2 = A−1
22 {S21f1 + S22f2 −A21u1}. (37)

Eliminating u2 from (33), we obtain

A11u1 = S11f1 + S12f2, (38)

where

A11 = A11 −A12A
−1
22 A21 (39)

S1j = S1j −A12A
−1
22 S2j , j = 1, 2. (40)

Equation (38) is an integral equation to solve for u on S1. We shall return to it later.
We could view partitioning as merely a method for solving systems of linear algebraic equations.

However, we shall argue later that it is profitable to view partitioning as arising directly from
partitions of the boundary.

4.2.2 Use of the Exact Green’s Function.

Suppose that GE is the exact Green’s function for S2 (in isolation). Proceeding as for the one-
obstacle problem, using GE for our chosen fundamental solution, we obtain the following integral
representation for the two-obstacle problem:

2usc(P ) =
∫
S1

(
f1(q1)GE(q1;P )− usc(q1)

∂

∂nq
GE(q1;P )

)
dsq +

∫
S2

f2(q2)GE(q2;P ) dsq.
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This representation does not involve the unknown boundary values of u on S2. To find u on S1,
we let P → p1 ∈ S1, as usual; the result can be written as

AE
11u1 = SE

11f1 + SE
12f2, (41)

where

AE
11u1 = usc(p1) +

∫
S1

usc(q1)
∂

∂nq
GE(q1, p1) dsq (42)

SE
1jfj =

∫
Sj

fj(qj)GE(qj , p1) dsq, j = 1, 2. (43)

4.2.3 Comparison.

We have two boundary integral equations for u on S1, namely (38) and (41). It turns out that
these equations are identical: Martin and Rizzo [18] give direct proofs that

A11 = AE
11, S11 = SE

11, and S12 = SE
12. (44)

Thus, the two methods are equivalent, although the introduction of exact Green’s functions has
pedagogical advantages, at least.

4.2.4 Generalized Born Series.

The standard integral equations, (33) and (34), can be written as

A11u1 = F1 −A12u2,

A22u2 = F2 −A21u1,

where Fj = Sj1f1 + Sj2f2. The generalized Born series [25], [24] is a method for solving this pair
iteratively in the context of multiple scattering by two obstacles (actually, it can be recognised as the
block Jacobi method for linear algebraic equations): assuming that A11 and A22 are non-singular,
construct u(m)

j according to

u
(m+1)
1 = A−1

11

{
F1 −A12u

(m)
2

}
,

u
(m+1)
2 = A−1

22

{
F2 −A21u

(m)
1

}
,

with u
(0)
1 = u

(0)
2 = 0. Eliminating u(m)

2 , we obtain

u
(m+1)
1 = g1 +B11u

(m−1)
1 (45)

for m = 1, 2, . . ., where

g1 = A−1
11

{
F1 −A12A

−1
22 F2

}
and B11 = A−1

11 A12A
−1
22 A21.

Hence,

u
(2M)
1 =

M−1∑
m=0

(B11)mg1 for M = 1, 2, . . .. (46)
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Also, since u(1)
1 = A−1

11 F1, (45) gives

u
(2M+1)
1 = u

(2M)
1 + (B11)MA−1

11 F1 for M = 1, 2, . . .. (47)

The (geometric) series in (46) and (47) converges if

‖B11‖ < 1, (48)

with any reasonable norm. Under this condition (which will be satisfied if the two scatterers
are sufficiently far apart), the last term in (47) tends to zero and both sequences ({u(2M)

1 } and
{u(2M+1)

1 }) converge to u(∞)
1 , say, where

u
(∞)
1 = (I −B11)−1g1 = A−1

11 A11g1

= A−1
11

{
F1 −A12A

−1
22 F2

}
= A−1

11 {S11f1 + S12f2} ,

which is the solution of the partitioning equation (38). This latter equation is not subject to the
condition (48).

Note that the generalized Born series requires a knowledge of both A−1
11 and A−1

22 ; this is equiv-
alent to knowing two exact Green’s functions, one for each obstacle. Rudgers [22] has used the sum
of these two exact Green’s functions as a fundamental solution, followed by an iterative method.

5 Conclusions

There are no conclusions! We have tried to describe several methods for solving basic multiple-
scattering problems. Of course, there are many problems that we have not touched, such as
scattering by rough surfaces or the determination of effective dynamic properties of composite ma-
terials. We have pointed out that the theory of multiple scattering has a century of literature. It is
our contention that this provides a rich source of information that should be exploited for the the
benefit of current computational goals.
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