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Diffraction of elastic waves by a penny-shaped crack

By P. A. MARTIN
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Manchester M13 9PL, UK.

(Communicated by F. Ursell, F.R.S. — Received 22 December 1980)

Consider an infinite elastic solid containing a penny-shaped crack. We
suppose that time-harmonic elastic waves are incident on the crack and are
required to determine the scattered displacement field u,. In this paper,we
describe a new method for solving the corresponding linear boundary-value
problem for w,;, which we denote by S. We begin by defining an ‘elastic
double layer’; we prove that any solution of S can be represented by an
elastic double layer whose ‘density’ satisfies certain conditions. We then
introduce various Green functions and define a new crack Green function,
G,;, that is discontinuous across the crack. Next, we use G;; to derive a
Fredholm integral equation of the second kind for the discontinuity in u,
across the crack. We prove that this equation always has a unique solution.
Hence, we are able to prove that the original boundary-value problem S
always possesses a unique solution, and that this solution has an integral
representation as an elastic double layer whose density solves an integral
equation of the second kind.

1. INTRODUCTION

Consider a three-dimensional elastic solid of unbounded extent, containing a finite
crack that occupies a surface y; the two faces of the crack are labelled y+ and
y~. Suppose that time-harmonic stress waves, of frequency w, are incident on the
crack. We are required to determine the scattered waves when the faces of the
crack are free from applied tractions. Let us denote the scattered displacements and
stresses by u; and 7,;, respectively, where a harmonic time-dependent of e=1* will
be suppressed throughout. We can formulate the following boundary-value problem
for u;.

Boundary-'ualde problem S(u{). Determine u,(P), Pe D, the region exterior to vy,
satisfying

(S1) elastodynamic equations of motion in the solid,

0r44(P) [0x; 4 py0?*u,(P) = 0, PeD;
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264 P. A. Martin

(S2) boundary conditions on the crack faces,

nj( ) 27(q - ](q 7{;)((1) qie')’i,
where u{ and 7{) denote the incident displacements and stresses, respectively;+t
(S3) radiation conditions (we shall specify these later); and

(S4) edge conditions,
u;(P) =0(1) as s—>0,
where s is the shortest distance between the point P and the crack edge.

We use the following notation: capital letters P, Q denote points of D; small
letters p, q denote points of v; q*, g~ and q° denote points on y*, y~ and 0y, respect-
ively, where 0y is the crack edge; the origin of Cartesian coordinates O is taken at a
point of y; an arbitrary point P e D has coordinates (z,, %5, %3) = (2, ¥y,2); and rp is
the length OP.

The stress tensor 7;; is related to u; by

745 (P) = €424 0w, (P) /0y, (1.1)

Cij1 are the material moduli, p, is the mass density of the solid, and n is the unit
normal vector, which is assumed to point into D. Note that w»{(P) must satisfy
(S1) in D U 7. Also, the total displacement at a point of D is u,(P) +«{ (P). Hence-
forth, we shall always consider the elastic solid to be homogeneous and isotropic,
whence the material moduli are given by

Cijia = A0+ pu(8;5. 0+ 03y 05.)
and (S1) becomes

k2graddive — K—2curlcurlu+u = 0, (1.2)
where the wavenumbers k£ and K are defined by
po® = (\+2p)k? = uK?,
and A and p are the Lamé constants, related to Poisson’s ratio v by
2v = A/(A+p) = (K2—2k%) /(K2 —k?).

To give a precise statement of the radiation conditions, we follow Kupradze (1963)
and decompose u, by writing

u;(P) = uf(P) +u(P),
where u% and u§ are determined uniquely frem (1.2) as
1 9%u,(P)
k?* Ox;0x; ’
1 Inlinear elastodynamics, these boundary conditions are applied to the reference state of
the solid. Therefore, it is not possible in this formulation to ensure that the crack faces do not
intersect during the motion, unless the crack can be opened sufficiently by superposing a

suitable static loading at infinity; for a flat crack, a simple tension perpendicular to the
crack plane is adequate.

wi(P) = u(P) = u,(P)—u¥(P), (1.3)
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and satisfy
(V24+ k%) un(P) =0, (V2+K2)uy(P)=0. (1.4)

We take the radiation conditions to be (Eringen & Suhubi 1975, §5.13)

rp{0ul(P)/0rp —ikuy(P)} >0, uy(P)—0, .
rp{0uf(P)/or, —iKu§(P)} >0, u§(P)— 0,} (1.8)
as rp—00. Kupradze has shown that these are sufficient to ensure that S has at
most one solution when vy is a (closed) Lyapunov surface. The corresponding
uniqueness theorem for regular surfaces (in the sense of Kellogg (1929)) has recently
been proved by Wickham (1981). In particular, Wickham’s uniqueness theorem
holds for open, smooth surfaces, across which the displacement may be discon-
tinuous, provided that the edge conditions (S4) are satisfied.

In what follows, we shall be concerned solely with flat, circular cracks (‘penny-
shaped’ cracks); for this particular geometry, we define cylindrical polar coordinates
(r,0,2), where the region yisz2 = 0,r < 1, 0 < 6 < 2w, and an arbitrary point qey
will always be assigned plane polar coordinates (r, ¢). However, parts of the sequel
may be generalized to arbitrary (smooth) cracks without difficulty.

In this paper, we shall present a new method for solving S(u{?), rigorously. This is
an extension to three-dimensional elastodynamics of the work of Cole (1977), who
constructed a Green function for solving the two-dimensional exterior Neumann
problem of acoustics for an open arc. We begin,’in the next section, by describing the
properties of an ‘elastic double layer’, which is the elastodynamic analogue of
the well known harmonic double-layer potential. In particular, we prove that the
solution of S(u{), if it exists, can be represented as an elastic double layer whose
‘density’ vanishes on Oy, is suitably differentiable on y, and satisfies a certain
integro-differential equation. In § 3, we introduce various Green functions, including
the exact static Green function which is described, briefly, in Appendix A. We then
use plausible, physical arguments and define a new Green function, G;. Next, we
demonstrate, rigorously, that G;; has properties that allow us to derive a Fredholm
integral equation of the second kind for the discontinuity of u, across the crack.
This equation, which is derived in §4, has a continuous kernel and a continuous
free term. Expressions for the kernel are given in Appendix B. In §5, we show that
our integral equation always has a unique solution, and hence prove an existence
theorem for the original boundary-value problem S(u{); the solution of S has an
integral representation as an elastic double layer whose density is the solution of our
integral equation. Finally, we mention two recent review articles by Kraut (1976)
and Datta (1978). These contain brief surveys of the existing literature on the
diffraction of elastic waves by a penny-shaped crack.
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2. INTEGRAL REPRESENTATIONS

Consider a (closed) Lyapunov surface B, and denote the corresponding boundary-
value problem to S by Sz. (Sg corresponds to the scattering of elastic waves by a
cavity with a smooth boundary.) Kupradze (1963) has shown that the displacement
exterior to B may be written as

ua(P) = fBui(q)zg,-k(q;P)njdsq— fBazk(q;me(q)n,-dsq, (2.1)
where

1 o2
f.. . = -1 .s —_— -_—
@,(P;Q) = {a,,'{f+ Tidmam, ¥ qb)},

@ = o*E /4R, V¥ = elKE/4nR,

R = |rp—rg| and XY, is the stress tensor corresponding to G%,,. G%;(P; Q) is called
the fundamental Green function; it represents the ith component of the displace-
ment at P, due to an oscillating point force (with time dependence e—1¢t), acting at Q,
in the jth direction. The corresponding stress tensor is given by

Zgjm(P’ Q) = cijklaagm(P; Q)/axk

2 o K:-2k2 QD oY v

(2.2)
Kupradze (1963), drawing an analogy with classical potential theory, calls the first
term on the right-hand side of (2.1) a ‘potential of a double layer of the first kind
with density «;’, and the second term a ‘potential of a single layer with density
7;;7; ; we shall call them ‘elastic double layer’ and ‘elastic single layer’, respect-
ively. Kupradze has shown that these potentials have the same properties as the
classical single and double layers, when P approaches the boundary B. If we make
use of these properties in (2.1), we obtain

Yy (p) — f (a) Zijua p)nydsq = f Gt p) (a) g, (2.3)

where we have used the boundary condition (S2). This is an integral equation of the
second kind for the unknown boundary values of ;. Equations of this type have
been considered by Tan (1975); see also the modified integral equation derived by
Ahner & Hsiao (1975).

A second method for obtaining a solution to S has been used by Kupradze (1963).
He represents the displacement as an elastic single layer,

ua(P) = f pia) Giu(a P)dag (2.4)
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where p,(q) is an unknown density. If we apply the stress operator to (2.4) and then
use the property of the elastic single layer as P approaches B, we obtain

1pu(p) ijAqwz,-k(p;q)nfdsq = —n;7(p), (2.5)

where we have again used (S2). This is an integral equation of the second kind for
the boundary values of p;. Once p,(q) has been found, the displacement at any point
in D is given by (2.4). Kupradze (1963, p. 166) has shown that (2.5) always has a
unique solution, except at a discrete set of frequencies (these are called irregular
frequencies in the corresponding exterior problem of acoustics). Since the kernel of
(2.3) is the transpose of the kernel in (2.5), it follows that (2.3) also has a unique
solution except at the same irregular frequencies.

Let us now return to the boundary-value problem S, for a crack y. Since Tijs
G%; and X%, are all continuous across 7y, (2.1) reduces to

us(P) = [ )] Tl Py do (2.6)
Y
where we use square brackets to denote the discontinuity across v, i.e.

[u:(9)] = us(q¥) —ui(q). (2.7)

Equation (2.6) suggests that the solution of S may be represented as an elastic
double layer. So, we look for a solution

u(P) = J;Pi(Q) 21ik(q; P)nydsq, (2.8)

for PeD. In the remainder of this section, we shall investigate the properties of
(2.8) when the (unknown) vector density function p,(q) possesses

Properties Z(q). For ¢ = 1, 2, and 3,

(i) p;(q®) = 0 for all q°€0y; and

(ii) #;0p,(q)/0x; exist and are Holder continuous for all qevy(q¢dy), where ¢ is
an arbitrary vector in the tangent plane to y at the point q.

It is easily shown that the integrals obtained by repeated differentiation with
respect to x; under the integral sign in (2.8) are absolutely convergent for all Pe D.

Let us introduce the auxiliary function ¢, and y;, defined by

8:®) = [ p(@ 0@ P)dse, ¥iP) = [ o) PaiPidsn (29,0
Y
Then, (2.8) gives
. Koo, o W

“P) = 15 oo, Vi) T TR %%, o
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where we note that &(P;Q) and ¥(P;Q) are functions of |rp—rgy|. From (1.3),
we have
2 03¢, K*—2k*0g,

viP) = Bigmozom, KT 0w,

(2.11a)

2 63¢~ f‘)lﬁ~ al//‘.
SP)= ——2 Vi 5 ¥ YVi 2.11
ui(P) K?0x,;020x; Sz ox; 0z° (2:118)
Since

(V24 k) $y(P) = f ) (V2+42) D(a; P)dsg = 0,

and (V24 K2)y,(P) = 0, for Pe D, it follows that (2.11) satisfy (1.4) and hence
(2.8) satisfies the equations of motion, (S1), in D.

Let us now determine the behaviour of (2.8) at large distances from the crack.
We introduce spherical polar coordinates to locate points P e D, and write

x = rpsingpcoslp, y =rpsingpsind, and 2z =rpcosdy.

In addition, we have
R =|rp—rq| =rp—recosyy +0(r;7),

as rp—> 00, where ¥ is the angle between r, and rq, i.e. cosy = sin ¢ cos (6 —0).
Then, from (2.9) and (2.11), we have

un(P) = % f pi(Q) (2K2R; R, — (2% — K?) 8,,) R, &(q; P)dsq
v

—ik

4n K?

o _ ikr,
(2UR, R,y 008 by + (24— K) By, 5 K) S+ 05,

as rp—> 00, where

p:(A) = f py(r, 0) e=1Arcos ¥ r drdp,
Y

R(q) = 3R/0x; = R;+O(r;') and R; = —a,/rp. Similarly,

usn(P) = ;:_k&(zRiRmcos ¢D+Ri8mz_aim cos ¢D)pz(K) r
p

eiKm

+0(ry?),

as rp—>00. It is now straightforward to show that radiation conditions (1.5) are
satisfied.

It remains to investigate the properties of the elastic double layer (2.8) near to
and on the crack. Consider first the auxiliary functions ¢, and r,; using the power
series expansion for @, we find

dy(P) = %tf pi(qQ){B1+ik— }k2R + 4nD*(k; R)}dsq, (2.12)
where 7
4nd*(k; R) = (e'*E—1)/R —ik + }k*R = — }ik®R?+O(R®) as R—0.
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To obtain the corresponding expressions for y,(P), we simply replace k by K in
(2.12). We may now calculate the displacement components from (2.10); after some
simple manipulations, we obtain the following expressions

— —10 pm(q) 0 o'z(q’ P) .
w®) =3 5 [ las—g [ H2ases | oo Udai P, (213)

_ 10 (a2 [ %aP)
w®) = 325 [ Pas—g [ Z0Das+ | pl@)Uyta Prdse, (219

u(P)= 22 [ 24D gq 4 f () U(q, P)dsq

4n 0z ), R
_9 m(q,
f)x o= a
where

4nK20,(q, P) = p,(q) {(K2—k?) cos? O + k2 — }p,(q) (K?— k?) sin 26 cos Q,
4nK?0,(q, P) = p,(q) {(K%—k?) cos? O + k?} — }p,(q) (K2 — k?) sin 20 sin Q,
4nK%,(q, P) = p,(q) {(K?~ k?) cos? O — k)

+ $(K2— k%) {p,(q) cos Q + p,(q) sin Q} sin 26,

P) 4s se  (2.15)

o d k2R
277.. - * . — D*(] — 2 __ — * —_———
KUy, P) = =2 (OH(K: B) = 0% (ki B)} = (K* — 20) 0, 5 {qs (k; B) Sn}
., 2 KR
—K2\(6,, — I *K;R)———
K (az, az”’zaxi) {qs (K R)— = }

OR/0x = sin @ cos 2, OR/dy = sin @sin 2 and 0R/0z = cos O. The first and second
terms in (2.13) are normal and tangential derivatives, respectively, of a harmonic
single-layer potential. The general properties of such potentials are well known and
are described by, for example, Kellogg (1929, ch. 6). In particular, since p,(q)
possesses properties 2(q), it is known that the first derivatives of single layers are
continuous and bounded in any finite neighbourhood of vy, that the tangential
derivative is continuous across y, and that the normal derivative is discontinuous

across v, i.e. if we write
V(P) = f P 4.
y B
then (Kellogg 1929, p. 164)

0
D) D~ amo(p). (2.16)

The third term in (2.13) is clearly continuous and bounded everywhere. Similar
remarks apply to (2.14) and (2.15). Consequently, we see that the displacement
vector given by (2.8) is continuous from both sides of the crack and satisfies the edge
condition (S4). Moreover, using (2.7) and (2.16), we find that

[ui(q)] = pi(9)- (2.17)
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We can now go on to examine the stress components in D, using (1.1) and (2.8).
Using the same methods as before, we can show that the stresses are continuous
everywhere in D, except possibly at the edge of y. In particular, the traction vector
on yt, say, is given by

0
1a(B*) TulB) = 1y uamn o |10 Ty Py (2.18)
md Y P=D"
(We remark that if p;(q) has properties £(q), then this is sufficient to ensure the
existence (and continuity) of the right-hand side of (2.18); cf. Giinter 1967, pp. 71—
76.) We have thus proved the following theorem.

THEOREM 1. Ifthevector p;(q) possesses properties P(q), then (2.8) solves theboundary-
value problem S(u{) provided also that p,(q) is a solution of the integro-differential
equation

. 0
~mTHB) = Mt 5 [ A Zhplas P (2.19)

As an immediate consequence, we can prove the following theorem.

THEOREM 2. If there exists a vector p,(q) that has properties P(q) and satisfies the
integro-differential equation (2.19), then it is unique.

Proof. Suppose that the homogeneous form of (2.19) has a non-trivial solution,
i.e. there exists a function v,(q) that satisfies

0 = tyum g | 9(a) Tl Py (2.20)
mJ Yy P=D
for all pey. We can also use v,(q) as the density in the integral representation (2.8)
to define an elastodynamic displacement vector «;(P) which, by virtue of theorem 1
and (2.20), solves S(0). However, we know from Wickham’s uniqueness theorem
(1981) that the only solution of S(0) is identically zero; in particular, [u;(q)] = 0.
It follows from (2.17) that v,(q) = 0, which is contrary to hypothesis.

We have now shown that there is at most one vector p,(q) with properties Z(q),
which solves the integro-differential equation (2.19); in the sequel, we shall prove
that such a vector exists.

This section is closed with some remarks on the solution of the integro-differential
equation (2.19). We cannot immediately rewrite (2.19) as an integral equation by
applying the differential operator and then letting P approach the crack, because
the resulting integrals do not exist in the limit, owing to the highly singular kernel.
However, we can integrate by parts first and then let P approach y. This procedure
has been followed by Budiansky & Rice (1979) for an arbitrary flat crack. They
obtained a system of equations involving [u;] and tangential derivatives of [u,].
However, they did not attempt to solve their equations for any particular crack
geometry.
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3. GREEN FUNCTIONS FOR DIFFRACTION BY A CRACK

At the beginning of §2, we introduced the fundamental Green function, G i(P;Q),
which can be used to solve Sy(u,”) by deriving an integral equation of the second
kind for u,(q), namely (2.3), and then using the integral representation (2. 1). For
S(u), (2.1) reduces to (2.6), and so we need an integral equation for [u;(q)]; this
cannot be derived directly by using G}, since this function is continuous across the
crack. However, G; can be replaced by any other function that satisfies (S1) every-
where in D except at P = Q, where it has a suitable singularity, and satisfies the
radiation and edge conditions. There is an infinite number of these fundamental
solutions, the simplest of which is ;.

Let us now consider a second fundamental solutlon GF(P; P,), defined by

ij(P;Po) = ng(P; P,) ‘FG%'(P; Py),

where G,(P;P,) is the solution of S(G%,(P;P,)), i.e. the ith component of the
scattered field at P when the incident waves are produced by an oscillatory point
force at P, acting in the jth direction. We shall call G%, the exact Green function for
S, because it can be used in an explicit formula for the solution of our scattering
boundary-value problem. This formula is given in the next theorem, which has
been proved by Wickham (1981).

THEOREM 3. If GY; exists and ul is any incident field giving rise to bounded stresses
on the crack faces, then the solution of S(u{) is given by the formula

w(Py) f [G%(q; Po)] 78(q)my dsq. (3.1)

Of course, G%; is not known explicitly, and the problem of ﬁndlng this function is
essentially the same as solving the original boundary-value problem. However, let
us proceed as if we know G;; from theorem 1, we know that if p,(q) = [u,(q)] is
given, then the solution of S(u{) is (2.8), whence (3.1) gives

pu(Do) = f [Hia(; Po)] 78(q) m; dsq, (3.2)
where Y

Hi(Q;po) = G3(Q5p8) — G4(Q; o).

In addition, theorem 1 asserts that, if it exists, G%; satisfies

G3(P; Py) f [6%(; Po)] Zhya(a; P)my dsq

and hence, on taking the appropriate limits,

Hy(P;py) = f LH(; Po)] Z4(t; P)mydsa, (3.3)
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where it is assumed that [H;;(q;p,)] has properties 2(q), except possibly near
q = P,- Moreover, from (2.19), it follows that [H,;] satisfies the following integro-
differential equation on v,
— 0 0(P— Do) = '"'kcklmn‘a_ f [H;(q5 Po)] Z7ja(q; P)nydsq (3.4)
o, J, p=p-

Thus, p;(p,) is given by (3.2) in terms of the displacement discontinuity main-
tained by equal and opposite oscillatory point forces acting at pg and pjy; this
quantity, which we have denoted by [H,;(q; p,)], satisfies the integro-differential
equation (3.4). Solving this equation for [H;;] is certainly not easier than solving
(2.19) for arbitrary incident waves. However, we may be able to use physical
arguments to infer something about the analytical properties of this particular
solution. For any fixed value of the wavenumber K, we expect that there is a
neighbourhood of the points pg” and p, where the motion of the elastic solid may be
regarded as quasistatic, i.e., apart from the time factor e—i¢’, the stresses and
displacements are dominated by those produced by static point forces at pg and pj.

So we introduce the exact static Green function, which we denote by Gij. In
particular, we shall require [@,;(p; po)], which represents the discontinuity in the ith
component of the elastostatic displacement vector at p, when the crack is opened
by equal and opposite point forces at py and pjy, acting in the jth direction. The
explicit construction of [@,;] for a penny-shaped crack has been given by Martin
(1979, 1981); in Appendix A, we describe this Green function and some of its
properties.

Suppose now that we replace the unknown function [H,] in (3.3) by the known
function [G;;]. We expect, from the preceding physical arguments, that this will
define a new fundamental solution; the mathematical properties of this function
are contained in the next theorem.

THEOREM 4. Define a function G; by
(P20 = | [0in(a 0] Zhl45 D)y, (3.5)
with corresponding stress components given by
Ziim(P3 Do) = Cij %sz (P; po)- (3.6)

Then G; is a fundamental solution that has the following properties.
(i) For any fixed p,e7y, and for j = 1, 2, and 3, G,;(P; p,) satisfies the equations
of motion in D, the radiation conditions and the edge conditions;

(ii) * [Gyi(p; po)] = [Gij(p;5P0)]; (3.7)
(iii) HH; ot Qs Po)nydsq = F Oy, (3.8)

where H}and H are small hemispherical surfaces of radiuse, centred on pg and py,
respectively; and
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(iv) Zy(q; Po)ny is continuous for all q # p,.

Proof. From (A 13), we see that [G,(q;p,)] has a singularity at q = p,, i.e.
[G"i,.(q;po)] does not have properties 2(q) x Z(p,). (If it did, the proofs of (i), (ii)
and (iv) would simply repeat most of the arguments leading to theorem 1.) However,
[G.;(q; Po)] is absolutely integrable over y and so it follows that G (P;p,) satisfies
the equations of motion and the radiation conditions. To prove that G;; also
satisfies the edge condition, we note first that the exact static Green function,
@i,-, satisfies an equation similar to (3.5), namely (A 3). Subtracting this equation
from (3.5), we obtain

G(P; o) — gkl(P; Po) = fy [Gil(q; Po)] {Zgjk(q; P)—- fgjk(% P)}n;dsq, (3.9)

where £, is given by (A 5). The expression inside the braces is easily seen to be a
continuous function of q and P, and so the right-hand side of (3.9) is continuous and
bounded. Therefore, since G.;(P; p,) satisfies the edge condition (see Appendix A),
it follows that @;; must also satisfy the same edge condition. Moreover, if we let P
approach each side of y in turn, and then subtract the two results, we obtain (3.7).
Again from (3.9), we see that

i1 P;Po) — Ziia(P; Do) = Z4a(P; Do) (3.10)

say, is a continuous function of P and p,; this may be shown by using arguments
similar to those used in Appendix A. In particular, 2;;;(P;p,) has the same singu-
larity at P = p, as 2;,(P; p,), and so (3.8) is a consequence of (A 14) and (A 15).
Since, by definition, X;,(q; po)n; vanishes everywhere on y except at q = p,, it
follows that Z;;,(q; Po)n; is continuous except at q = p,. This completes the proof
of theorem 4.

From the preceding analysis, it is clear that we can generalize theorem 4 to
describe the properties of any function @i,-, defined by

G320 = [ pin(:00) 210 Pl
where
Pij = [éij] +p%
and p7(q; po) has properties 2(q) x Z(p,). Thus we may write

G:1(P; Do) = G4(P; po) + GH(P; Do),
where ‘

(P p) = f Pl o) (s P)nydsq
b4

is an elastodynamic displacement vector that satisfies the radiation and edge
conditions.

We shall call G;;(P;p,) and @ij(P;po) crack Green functions. These functions
satisfy the equation of motion in D, and the radiation and edge conditions. The
fundamental Green function, G%;, also has these properties. However, unlike &,
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the crack Green functions are discontinuous across the crack and have a singularity
at P = p,, which enables us to derive an integral equation of the second kind for
[%;(q)]. In the next section, we shall use G; to derive our integral equation,

Ficure 1. The region D’.

4, AN INTEGRAL EQUATION OF THE SECOND KIND

Let u, and v; be two elastodynamic displacement vectors, defined in a closed
region bounded by a regular surface S. If 7;; and o,; are the stress tensors corre-
sponding to u, and v,, respectively, then, in the absence of the body forces,

f (@ 4(0) — @ Ti@) mydsg = 0 (4.1)

this is called the reciprocal theorem (see, for example, Eringen & Suhubi 1975, p. 432).

Let us apply the reciprocal theorem to u,(P) and the crack Green function
G;(P; po); these are both elastodynamic displacement vectors defined in the region
D’ (see figure 1), with boundary S defined by

S=y*uy-UCrUC,UH}fUH.

Here, C, is a torus-like surface enclosing the edge of y, and Cf, is a large sphere of
radius R. Since ; and G;; both satisfy the radiation conditions, there is no contri-
bution from integrating over C', as R— co. Similarly, let us assume for now that u;
and G;; behave near the crack edge in such a way that there is no contribution from
integrating over C, as this surface shrinks to the edge.
Write B
ik = Zijic+ Lo
where 27, is defined by (3.10); X,,(q; po)»; is continuous everywhere on y while

Zi1(q5 Po) n; vanishes except when q = p,. Thus if u; and 7,;n, are continuous, say,
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then all the contributions from integrating over the small hemispheres, HZ, are zero
as €0, except those arising from £, and these are given by (A 17). Combining
all these results, we obtain

plua(po)] - f JRCIRMD SERTE f 7@ Galas Pl

since X7;; and 7,; are both continuous across the crack. The right-hand side of this
equation can be simplified, by using the boundary condition (S2) and the relation
(3.7), and so we have proved the following theorem.

THEOREM 5. If the boundary-value problem S(u) possesses a solution w,(P), then
[u;(q)] satisfies

[1(Po)] - f ()] K5 o) oo = (o), (4.2)

where the kernel and free term are given by

K(p;po) = (1/p) {Zijk(P;po)nj_Zijk(P;Po)nj} o (4.3)

and
[(po)] = (1/4) f 78(q) [F(t; Po)] 7, 50, (4.4)

Y
respectively.

Equation (4.2) is a system of three coupled two-dimensional Fredholm integral
equations of the second kind for [u,(q)], the discontinuity in the displacement
vector across the crack. For a crack lying in the plane z = 0, these equations partially
decouple: in cylindrical polar coordinates, we have the following two problems.

Normal problem (symmetric about z = 0).

[%.(Po)] —f, [u(@)] K(q; Po) dsq = [@,(Po)], (4.5)

Shear problem (antisymmetric about z = 0).

[u4(po)] —fyv[ua(q)] K .p(q; Po) dsq = [@4(po)]; (4.6)

this is a pair of coupled equations: «, # = r or 0 and, as usual, the summation con-
vention has been used.

Let us now examine the properties of the integral equation (4.2). From theorem 4,
we see that the kernel K;;(q;p,) is continuous everywhere on y, and that K,(q; p®)
= 0.If we seek a continuous solution of the integral equation, then it follows that
the quantity

f o)) Ko o)
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has properties Z(p,). (Note that the kernel itself is not differentiable at q = p,:
terms such as rIn {max (r, )} occur; see Martin (1979) for further details.) The free
term in (4.2), [@,;(p,)], is precisely the displacement discontinuity that would be
maintained by static stresses — 7 on the crack faces; for quite general loads, [i,]
may be calculated by using the formulae given by Martin (1981). Clearly, [4,(p°®)]
= 0, and so we see that [i,(p,)] has properties Z(p,) if we assume that 7{J(q) is
Hélder continuous, say (Kellogg 1929). Combining all these results, we obtain

THEOREM 6. Suppose that there exists a continuous function v,(q) that solves the
integral equation (4.2). Then v,(q) has properties 2(q).

In Appendix B, we give some expressions for the kernel K ;. It can be shown from
these that K,; may be expanded as a power series in the wavenumber K and that
K;; = O(K?) as K->0; these expansions will be given elsewhere. This implies,
together with the interpretation given for [#;], that the integral equation (4.2) may
be solved by iteration for sufficiently small K. In other words, the solution of (4.2)
may be obtained, rigorously, for K < K, say, by constructing its Liouville-
Neumann series (see, for example, Smithies 1958, p. 29).

In the next section, we shall prove that the integral equation (4.2) has a unique
solution for all values of K, and that this solution can be used to solve S(u{).
However, let us first consider the crack Green function @i,-(P; p), defined by (3.11).
This may also be used to derive an integral equation for [u;], namely

[l — [ [0e(@)] Rin(as po)dsa = = | 78(a) [Gu(@s po)Inydse,  (47)
y Ky

where

ﬂkik(m Po) = {ﬁijk(P; Po) 7 — Z'ijk(P§ Po)nj}

P=D*

From (3.7), (3.12) and (4.3), we have

[G:(a; Po)] = [G45(a; Po)] + [G(q; Po)]

and
1R (03 Do) = #E (D3 Po) + Zi(P; Po) 1,

whence (4.7) may be written as

[1:(po)] - f [0(a)] Koyl D)t = [7a(Pol] +/u(Po)

where

1fiPo) = f ()] B2+ () [ Py

But, by using the reciprocal theorem (4.1), it quickly follows that f,(p,) = 0 for

all p,, and so the integral equation (4.7) reduces to the original integral equation
(4.2).
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5. AN EXISTENCE THEOREM

Let us assume that there exists a continuous function p;(q) that solves the
integral equation of the second kind (4.2). Then, by theorem 6, p;(q) has properties
2(q). Hence, we can use p,;(q) as the density in an elastic double layer, i.e. we can
define a function u,(P) by

uy(P) = fypi(q)2£jk(q;P>njdsq. (5.1)

By theorem 1, u,(P) satisfies the equations of motion in D, the radiation conditions
and the edge condition, while (2.17) gives
[ui(Q)] = pi(q)- (5.2)
Finally, if p;(q) also solves the integro-differential equation,
M)(p) = 9 £ (-
— T (P) = "k Comn 3 pi(Q) Zij(q; P)n;dsq (6.3)
mdJY P=p>

then (by theorem 1), u,(P) solves the boundary-value problem S(u{").

To show that p,(q) satisfies (5.3), we apply the reciprocal theorem in D’ (see
figure 1) to u,(P) and G4(P; p,), defined by (5.1) and (3.5), respectively. We proceed
ag in §4, except that we know a priori (from the properties of (5.1) and (3.5)) that
the contribution from integrating over C, must vanish as ¢— 0. Hence, we obtain

[t(po)] — f ) Ko )l = — f Gl Pl @ mydso

where 7,,(P) is the stress tensor corresponding to w,(P), and is given by (1.1). By
using (3.7) and (5.2), this reduces to

P1(Po) —jypi(Q) K(q;p0)dsq = — fy [gik(q; Po)]7:;(q) m;dsq.

But, since p,;(q) satisfies (4.2), the left-hand side of this equation is equal to [#,(p,)].
If we now use (1.1), (4.4) and (5.1), we obtain

f [G.u(a3 Po)] Ti(@) dsq = O, (5.4)
for all p,€y, where 7

. d
Ti(p) = Tﬁc‘{(p)nﬁnkcumngx—f pi(q) Zijn(q; P)n;dsq
mJY

P=D-
It remains to prove from (5.4) that 7;(p) = 0; we require the following

LemmA. If Ti(p) is a Hélder continuous function that satisfies (5.4) for all p,, then
T.(p) vanishes identically.
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Proof. Consider the integro-differential equation

0
D) = Muumn 5 | 9(0) Tl )
mJy P=p
which is the elastostatic equivalent of (5.3). The unique solution of this equation is
given by (Martin 1979, 1981)

o4(Po) = —;16 f [ pol] ),

where #,(q) is a given Holder continuous function and G,; is the exact static Green
function. Combining these two equations yields the identity

t(p') = _nl’ccklmna%f DX P')f [Gis(p; )]t:(p) dspn;ds,
. mJy Y P/=p’
When ¢; = T';, the inner integral vanishes for all values of q, by hypothesis, and so
the lemma follows.
Applying the lemma to (5.4), we see that if a solution of the integral equation
(4.2) exists, then it also satisfies the integro-differential equation (5.3). Consequently,
we have proved

THEOREM 7. Suppose that there exists a continuous function p;(q) that satisfies the
integral equation (4.2). Then, the elastic double layer (5.1), with density p,(q), solves
the original boundary-value problem, S(u{).

The existence of a solution to S(u{") is assured by the next theorem.

TurEOREM 8. There exists a (unique) solution to the boundary-value problem S(ud),
Jor a penny-shaped crack situated in an unbounded, homogeneous, isotropic, elastic
solid.

Proof. Suppose that there exists a non-trivial solution of the homogeneous form
of the Fredholm integral equation of the second kind (4.2), i.e. there is a function
v;(q), which is not identically zero, and which satisfies

O4(Do) — f ) Kol po g = 0. (5.5)

By theorem 7, v,(q) also solves the homogeneous form of the integro-differential
equation (5.3), namely (2.20). It then follows, from theorem 2, that (5.5) has only
the trivial solution v,(q) = 0, which is contrary to hypothesis. Hence, by the
Fredholm alternative (see, for example, Smithies 1958, p. 51), the inhomogeneous
integral equation (4.2) always possesses a solution, and this solution is evidently
unique (since the difference between any two solutions of (4.2) must satisfy (5.5)
and is hence zero). Moreover, this solution leads to the unique solution of S(u{V)
when combined with the integral representation (5.1). This completes the proof of
our existence theorem.
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6. CONCLUSION

In this paper, we have constructed a new crack Green function, G;;, for the
diffraction of elastic waves by a penny-shaped crack. We have shown that the
corresponding boundary-value problem always possesses a unique solution. More-
over, this solution can be represented as the elastic double layer whose density
solves a Fredholm integral equation of the second kind, namely (4.2). In principle,
it is straightforward to solve this integral equation. In practice, difficulties arise
because the equation is two-dimensional and the kernel is complicated (see
Appendix B). However, suppose we write

[u,(r, 6)] = 3usi(r) + 3 (wi(r) cos nd + @i (r) sin nf).
n=1

Then, we can replace our two-dimensional equation by an infinite system of one-
dimensional integral equations for the unknown Fourier components of [%,]. These
equations can be considerably simplified by exploiting the structure of the kernel
and introducing new unknown functions. In the future, it is hoped to present these
simpler integral equations, their low-frequency asymptotic solutions and some
numerical results.

I would like to thank Dr G. R. Wickham for many enjoyable discussions, all
of which have benefitted the present work. My thanks are also due to the Science
Research Council for their financial support; this was in the form of a CASE award,
with the C.E.G.B. as the collaborating body.
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ArPENDIX A. THE EXACT STATIC GREEN FUNCTION
Let q and p, be two points on the surface of a penny-shaped crack with polar
coordinates (r, 8) and (r,, 6,), respectively. The following expressions for [G;;(q; po)]
may be obtained from (Martin 1981):

(0] = 5 3, eala(riro) cosn(0—6y) (A1)
(0] = 5 2 eafi(rire)cosn(0=0p), (0] = T girire)sinn(®—0y),

DO =

(O] = — 5 fariro)sinn(6—00), (Gl =

% €n9n(7370) cOSN(O —6,),
n=0
[(;rz] = [(;Oz] = [(;zr] = [@zo] =0,

% a(r;ro) = (1—v)wrg™(r, 7o), (A2)

22 —v)fi(r;rg) = (1 —v—np)2wntigntl 4 (1 —p +n22)wn-1gn-1
+nv(1—=v—np) (r2+r3)w"1g",

1122 —v) fr (r;7) = (1 +nw) (1 —y —nv)wnrtlgntl — (1 — v + n2p2)wn-1gn-1
+mv{(1 + )12 — (1 —y —n)rZwn-1gn,

132 —v)gn(r;7y) = (1 +npv)2wntlgntly (1 —p 4+ n2p2)wn—lgn-1
_ nv( 14+ ’nv) (7'2 + 7'%) wn—lgn’

ga(r;re) = fa(re;7), w = rry, €, is the Neumann factor, defined by ¢, = 1, €, = 2 for
n > 0, and the function g»(r, r,) is defined by

i) = [ &
B P C e Y e )t

with 7 = max (r,ry); g™(r,7,) may be expressed in terms of incomplete elliptic
integrals and also satisfies an inhomogeneous recurrence relation (Martin 1981).
The exact static Green function is defined in D by

G,(P; po) = f [l Po)] 4l t; P)mydlsg, (A 3)
Y
here
) a (P-Q)————l———{(3—4 )8 +a—R§£} (A 4)
W) = Teru(1—v) R V)T B, oy

is the fundamental static Green function (Kelvin’s point-load solution), ff-jk are
the corresponding stress components given by

fgik(P; Q) = Cijim aﬁ'fnk(P? Q)/0m, (A 5)

and R = |rp—rg|. We see immediately that @f; = O(R-1) and £f;; = O(R-?) as
R—0.
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Let us examine the stress components corresponding to G,;, which we denote by
Z';;x; these are given by
245(P; Do) = Cijim 3G (P; o) /0.

As an example, we shall evaluate £,,; using (A 3), (A 4) and (A 5), we obtain
- 0 a (a: 0% (1
(1 =) £.ulPip0) = 1t (23~ 1) | 1Gulasmol 55 (7) o
Let P have cylindrical polar coordinates (p, ¢, 2). Then, for z > 0,
R = f * Jo(&b) e-tedf
0

= % o[ " IE0) Tuler) -t ag cos mi0 -9, A6)

where we héve used equations from Erdélyi et al. (1953, 7.15(30); 1954, 8.2(18)) and
b% = r24 p%—2rp cos (6 — @).
Substituting for [@,,] and integrating over 6, we find that
4n(1-v) £,.,(P; o)

=~ % e O+ E) G (£ r o cosnOy— ), (AT)
where "

M, ry) = f :fi(r;ro) T (Er)rar.

If we now substitute for f; from (A 2), interchange the order of integration and
integrate over » (Erdélyi et al. 1954, 8.5(33)), we obtain

(g rg) = Ly [ LENS (As8)

v I E—1E)E

where j,(2) = (3n/2) J, 4(x). By using this in (A7), and integrating over the
crack, it is straightforward to show that

1 -
—f Zzzz(q;Po) dSq = -1 (A 9)
nJy

Let us now examine £, (P;p,) for P near p,. For small 2, the most significant

contribution to the integral in (A 7) will come from large £; write

M, = Mt + M, (A 10)
where
4(1—v © 4 (&) dt
M3 1) = 2o ey [ )

ro P (EE— 1)

and M, = M,— M}. We can evaluate M}, explicity as (Erdélyi ef al. 1954, 8.5 (32))
M(E,70) = {2(1 —v)/nE} I (o), (A 11)
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while M, = O(¢(-2) as £—>o00 (integrate by parts). Using (A 10) and an obvious
notation, we can write (A 7) as

.. zzzz = 2£z+2;;z;
2%, is given by

SE(Pipg = 52 [ TEU+E) T e,
where we have used (A 6) and (A 11), and
b = r2+p%—2ryp cos (6,— @).

This is precisely the stress component 7,, due to a unit point force, acting normally
at py, on the otherwise free surface of a semi-infinite elastic solid (this result may be
proved by using Muki’s (1960) solution); the corresponding normal stress com-
ponents for this boundary-value problem are given by

(Zalv)zz’ 215’%: ZzIZZ) = ( - 3,uz2/2nR(5,) (x —Zo, Y —Yos z)»

where R = b3 +22. Furthermore, it is elementary to show that

1
/; IH Zigz(q;Po)nidsq = -1,

where H, is a hemispherical surface, of radius a and centre p,, and n is the unit
normal on H, pointing away from p,. We can also show that X7, is continuous and
bounded in a neighbourhood of the crack, including the crack faces but not the edge.
Thus we see that
Z:(P;pg) = O(R52) as Ry—>0 (A 12)
and

[G.o(p; Po)] = O(bg?) as by—>0, (A 13)

where p has cylindrical polar coordinates (p,¢,0). Moreover, using (A 9) and
(A 12), we have

j; f £40) Sl Do) dsq = —£(Do),

provided that f,(q) is Holder continuous at q = py, since X,,,(q; po) = £,..(q; Po)
= 0; thus, our constructed solution has the required ‘d-function’ property at

q = Po-
Similar results may be obtained for the other components of £;;; the detailed
analysis is more complicated and is given in Martin (1979). In particular, we have
Zije = Zhet+ L (A 14)

where n; X}, is continuous on the crack faces,

1
;JH 25(q5 Po)n;dsq = — Sy (A 15)
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and
! f F(@) Zia(ts o) 1y dsq = —Fi(Do)- (A 16)
HJy

Also, the particular singular behaviour at p,, given by (A 12) and (A 13), is typical
of all the other components.

We shall now prove a result that is required in §4. Let H} and H; be small
hemispheres of radius ¢, centred on pg and py, respectively. Then, if u,(p) is Holder
continuous, we have

.1 &
lim =1 () 24(95 Po) i dsq = — [u(Po)], (A 17)
e—>0 M JHIVH,
where the discontinuity in u, across the crack, [u;], is defined by (2.7). To prove
this result, we write

f L (@) Zigid; Po) i dsq = w; () in Ziumydsq +in {ui(q) —uy(pE)} Zyjren;dsq.
The second integral vanishes as ¢ 0 if we note the continuity properties of u; and
the singular behaviour of £;;,; by using (A 14), the first integral may be written as

in k(A3 Po)mydsq + JH* Ziir( a3 Po) M dsg.

The second of these also vanishes as ¢ — 0, while the first (which is independent of ¢)
may be evaluated by using (A 15). Collecting together the various terms, we obtain
(A 17).

Finally, let us show that G.(P;p,) satisfies the edge condition (S4). Let p°
denote the point on the crack edge which is nearest to P, i.e. P and p® have cylindrical
polar coordinates (p,¢,z) and (1,¢,0), respectively. Then it can be shown that
(see, for example, Krenk 1979)

éi;’(P? Po) — éij(Pe; Po) = s¥k; +O(s)

as s— 0, where k;; can be determined from [@ﬁ], and s? = (p—1)2+22, i.e. s is the
distance of P from the crack edge. Hence, G,;(P;p,) is bounded if G.i(p°; po) is
bounded. Suppose now that p, does not lie on the crack edge; for if it does, it follows
that G,(P;p,) = 0. Thus we can partition y, such that y = vy, Uy, with p,e7y, and
P EY,, and write

Gu(p®;po) = L+ 1,
where

L(p%po) = | [Gala; Po)l ZF(d; p°) mydsq,

Ym
m = 1,2. On y,, £%,(q; p°) is continuous while [G.(q; Po)] has an integrable singu-
larity at q = p, given by (A 13), and so I, is bounded. On y,, [G;(q; p,)] is continuous
10 Vol. 378. A
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and vanishes when qeay In particular, [G,(p®;p,)] = 0. It follows that I, is
bounded, even though 2%, (p;q) = O(R~2) as R—0. Combining these results, we
see that G,;(p°; p,) is bounded and hence G,;(P; p,) satisfies the edge condition.

APPENDIX B. EXPRESSIONS FOR THE KERNEL

In this Appendix, we shall give expressions for K,;(q;p,) in (4.2). We begin by
obtaining an expansion for @ analogous to (A 6). For z > 0, we have

4nd(q; P) = *E/R
= ¥ en [T e Tulep) Serdgcosmio-g),
m=0 0

where, to satisfy the radiation conditions, y(£) must be interpreted as
Y€)= €~k £>k,
—i(k2-g2Y, 0<E<K,

and we have used equation 8.2 (26) from Erdelyi et al. (1954); a similar expansion
may be found for ¥(q; P), involving B(¢) = (£2— K?)%. Using (A 1), we have

[RCACHYLCRLR
Y
=1 5 e[ T e £ ot cosnip-00),

where M, is defined by (A 8) and we have integrated over 6. If we now use (2.2),
(3.5) and (3.6), we obtain

;Emw p) = f T(E0) M, o) F(Es ) dE cosn(@—0,), (B 1)

where
4K2f(§; 2) = (E/7) {28~ K2 e — 4g2fyere).
As K- 0 (£—>0), we find that
1—v)f (&;2) = — (1 + &) £2e752+ O(K?).
Subtracting X,,(P; p,), as given by (A 7), from (B 1), we find that the singularities

at P = p, cancel and we can then put z = 0, yielding

Kzz(p PO) Z J (gp) 'n(g’ ro)f(g) dgCOS n(¢*00);

where
4K3f(E) = (£/y){(262— K?)* — 4828y} — 28%(k* — K?).
Note that f and M, are independent of r, and K, respectively.
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The analysis for the shear problem is similar, but more lengthy. We shall only
quote the results here (the details may be found in Martin (1979)):

K,o(pi o) = f (b =) TE0) P € 0)

= 5 | A o)+ B Toa(£p)} O cosn(g 0
Kppipo) = = | "4 1a(80) = Bi Ty alp)} A€ sinni—00),
Eoo(piPo) = 5 | {47 Juualfo)+ Bi JoalEp)} dEsinn(@—0),

Ko(pip) = = [ o+ 1) JE0) P (6 70) 06

- 5 [T A7 Tulp) - B T €0} dE cosnip— 1),

where
K?h,(£) = £3(482 — 3K2— 4y )/ B+ E3(K? — 2k?),

ho(8) = —hy(€) + 25(8—§),
AE(E;ry) = by P+ 0 Qf, BE(E;70) = b PE+ R Qi

+ - _ + -\ V’r(’)b+1 ! jn+1(§t)dt
Qi +Q5 = Pt +P) = G [ et

Qi —Qn = (P —Pr)+

+_Pp— _ —vrgtt (1 G (6F) _ f
Pr—-P, = o |, - 2n+1 2nr% dt,
and o = v/(2—v).

A gl Ly,

2—vnz [, @i
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