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Inverse scattering for geophysical problems.
II1. On the velocity-inversion problems of acousticst

By P. A. MARTIN AND A. G. Rammi
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A bounded inhomogeneity & is immersed in an acoustic medium; the
speed of sound is a function of position in 2, and is constant outside. A
time-harmonic source is placed at a point y and the pressure at a point
x is measured. Given such measurements at all ze€ P for all y € P, where
P is a plane that does not intersect &2, can the speed of sound (in the
unknown region &) be recovered ? This is a velocity-inversion problem.
The three-dimensional problem has been solved analytically by Ramm
(Phys. Lett. 99A, 258-260 (1983)). In the present paper, analogous
one-dimensional and two-dimensional problems are solved, as well as the
problem where the plane P is the interface between two different acoustic
media.

1. INTRODUCTION

Consider a bounded three-dimensional inhomogeneity 2 immersed in an acoustic
medium ; the speed of sound is a function of position in 2, and is constant outside.
A time-harmonic source is placed at y¢ 2 and the pressure at x ¢ 9 is measured.
Given such measurements at all positions 2 € P, for all source positions y € P, where
P is a plane that does not intersect 2, we would like to recover the speed of sound
(in 9).

More precisely, take cartesian coordinates (z,, x,, ;) so that x; = 0 is the plane
P and & lies in the lower half-space (z, < 0). We have

Viu+E2(1+o(x) u = —d(x—y), (1.1)

where x = (x,, %y, %3), ¥ = (Y1, Ya Y3), k& is the (constant) wavenumber outside 9,
and v(x) = 0 outside 2. We suppose that the solution of (1.1) is known on the plane
x, = 0 for all positions of the source on y, = 0 and for small values of k, and are
required to find v(x). Of course, we do not know the location of 2, but assume
merely that, for example, v(x) = 0 for || > R, where R is an arbitrary (large)
fixed positive number. This inverse problem was solved analytically by Ramm
(1983 a); his method is described in §2. Problems of this type (‘velocity-inversion’
problems) have been discussed previously; for reviews in a geophysical context,
see Bleistein & Cohen (1982) and Weglein (1982).

t Part II appeared in J. math Phys. 25, 3231-3234 (1984).
1 Permanent address: Department of Mathematics, Cardwell Hall, Kansas State University,
Manhattan, Kansas 66506, USA.
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Ramm (1983 a) lists some possible applications of the model problem to various
geophysical situations, for example, the plane P could be a lode of metallic ore,
or a pipeline. To improve the model, one could take P to be the interface between
two different acoustic media. In §3, we show that this problem can also be solved
analytically.

When £ corresponds to a pipeline, it is natural to seek a two-dimensional
analogue of the three-dimensional theory given by Ramm (1983a). It turns out
that this analogue is quite different, for example, it is no longer possible to pass
to the limit £—0 in the scheme of §2, and this leads to new features that are not
present for three dimensions. This problem is discussed in §4. For completeness,
we also discuss one-dimensional problems (in §5); again, new features arise.

Henceforth, we assume, as is customary, that v(z) is compactly supported.
However, most of our results hold for inhomogeneities that satisfy

lo(@)| < O+ [y [P+, )7 (L +] 24 ) 7%,

where C and a are constants (@ > 1).
Finally, we remark that Ramm & Weglein (1984) have treated a related
two-parameter (density and bulk modulus) inversion problem.

2. THE BASIC SCHEME IN THREE DIMENSIONS

The differential equation (1.1) can be recast as the integral equation

u(@,y) = g(@, y)+&* fg(x, 2)v(z) u(z, y) dz, (2.1)

where 9(x,y) = exp (ik|x—y|)/4n|z—y| (2.2)

is the solution of (1.1) with v = 0, and the integration in (2.1) is over the support
of v (i.e. 2); since we assumed that 2 lies in the lower half-space, we can suppose
for definiteness that the integration is over this entire half-space (z, < 0). We
assume that v(z) is independent of k; if v = v(2, k) and is continuous in k near k = 0,
then our method is still valid but will only yield v(z, 0).

Set w = u—g, whence (2.1) becomes

w—Tw = h, (2.3)
where Tw = k* fg(x, z)v(z) w(z,y)dz

and b = Tg. Equation (2.3) can be considered in the space of continuous functions
defined in the lower half-space, with the usual norm. The operator 7' is bounded
in this space, whence (2.3) is solvable by iteration whenever |7 < 1, i.e. for
sufficiently small k. Thus, we can write

w(x,y; k) = § k™w,(x,y). (2.4)

n=0
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Substituting into (2.3), we see that w, = w, = 0 and
wy(@, y) = fg,o(x: 2)v(2) §(2,y) dz,

where 9@ 9) = 3 kg, 1); (2.5)

n=0
hence, v(z) satisfies
dz = 1672 lim {w—y—)} x, 2.6
=i AT pid B St L @.9)

say. Note that, in principle, f(x, y) can be measured. Thus, given f, we can consider
(2.6) as an integral equation for v.

2.1. Solution of the integral equation (2.6)

Suppose that we know f(x, y) for x = (x,, ,, 0)€ P and y = (y,, ¥,, 0) € P. Take
Fourier transforms in z,, x,, y, and y,, with transform variables A,, A,, #, and u,,
respectively, to give

f v(z) exp {i(A, +/‘1)z1+1(/\ +pg)2a— (| A+ p]) ] 25|} dz
=4 | A || p| F(Ay, Ag, iy, ), (2.7)

where F is the corresponding Fourier transform of f, |A|2 = A2+ A2, | u|? = p2+ul,
and we define the Fourier transform (in one variable) by

__1_ ® irx
=on J-_oo [flx) e'** da.

We begin by proving that the homogeneous form of (2.7) has only the trivial
solution v = 0. Introduce new variables

Pr=A+Hpy, Pa=Aytp,, py=|A| and p,=|pl, (2.8)
whence (2.7) becomes (with F' = 0)

fv(Z) exp{ip, 2, +ip, 2, — (p3 +py) | 25|} dz = 0. (2.9)

Consider the left side of (2.9) as a function of four independent complex variables
p, (n =1, 2,3, 4). This function is entire in each of these variables, since v(z) has
compact support. In particular, (2.9) holds for

—0<p, <0, —w<pP,<o0, 0<p;<oo and 0<p, < c0o.

Since v(z) is a function of only three variables, set ¢ = p,+p,, 0 < ¢ < 0. Then
the left side of (2.9) is just the double Fourier transform (in z, and z,) of the Laplace
transform (in —z,) of v(2,, 2,, 2,). These transforms can be inverted uniquely to
prove that v = 0.

When this approach is adopted for the inhomogeneous equation (2.7), a difficulty
arises, namely, the transformation (2.8) is not always (uniquely) invertible (the
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corresponding Jacobian vanishes whenever p, A, = , A;). When it is not, we may
not be able to write
F(Ay, Ay, por, p3) = F (1, Pas Pys Pa)5 (2.10)

say, for an arbitrary F. However, we know from (2.7) that (2.10) indeed holds if
the data f is known exactly. In this case, we can proceed as for the homogeneous
equation: set p, = p, = 3¢, whence v(z) satisfies

f”(z)exf) (ip, 2, +ipy 2, —q| 25 |) dz = W2 F (py, Py, 39, 39); (2.11)

the integral transforms can be inverted, in principle, to obtain v(z) from % .
We conclude by noting that the above analysis has some similarities with that
given by Lavrentiev et al. (1970, ch. 5) for a different class of problems.

2.2. Practical considerations

We can compute F(A,, A,, u,, u,) for arbitrary real values of A, A,, #, and p,.
Since we have set p, = p, = 1g, let us write

(Ay, Ag, g, fo) = Lq(cos @, sin @, cos B, sin 6), (2.12)
where 0 < ¢ < 0,0 < ¢ < 2r and 0 < 6 < 2rn. Hence

p,=qcosacosf and p,=gqcosasinp, (2.13)
where 20 =¢—0 and 2F=d¢+0. (2.14)

Thus (2.13) shows that the point Q with Cartesian coordinates (p,, p,, ) lies inside
a circle of radius ¢, centred at (0, 0, ), i.e. Q lies inside a right circular cone with
a vertex angle of in. We denote this semi-infinite conical region by £ (see figure 1).

Q 0
Q 0 0000‘

’0

Fiaure 1. The region £ is shown hatched. The region #, = 2 is shown cross-hatched.
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The Jacobian of the transformation (2.8) vanishes when 2a = nr, n =0,
+1, +2,..., whence it is convenient to take

O<a<in and —-rn<pg<m.

It is a simple matter to obtain « and B within these ranges, given p,, p, and g,
and then to recover A,, A,, 4, and g, from (2.12) and (2.14). Hence, for Q€ 2, we
can compute & in (2.11).

If we invert the Laplace transform in (2.11), using the Mellin contour Re(g) = ¢,
then we obtain the function

Jv(g’ za) eip‘zdg = G(p,za)’ (215)

say, for z; <0 and |p| < ¢, where p = (p,, p,) and Z = (z,, z,). Thus, given any
particular p, we can always choose ¢ in order to compute G(p, z,). Therefore, G can
be calculated for all p, whence the double Fourier transform in (2.15) can be
inverted to obtain v(z).

However, it may be more convenient to fix ¢ initially. So, choose a positive
number ¢, and then consider (2.11) for 0 < |p| < g,, ¢ = g, > 0. We denote this
semi-infinite cylindrical region by 2, 2 (see figure 1). Invert the Laplace
transform in (2.11), by using an inversion contour along Re(g) = ¢ > g, (see
Appendix A for some remarks on the numerical inversion of Laplace transforms).
This gives us Q(p, z,) for |p| < g, and 2z, < 0, i.e.

f~ v(2)e'?2dZ = G(p), |p|< g, (2.16)
l2I<R

where we have suppressed the parametric dependence on z;. Although (2.16) only
gives us the Fourier transform of v(£) for | p| < ¢,, we are compensated by knowing
that v has compact support: v(2) = 0 for | £| > R. We cannot give an exact solution
to (2.16), but we can give good closed-form approximations. To do this we can use
the following theorem, which gives Fourier inversion of incomplete data.

TurorEM 1. Suppose that f(x) solves

f”(Rf(x) el vdr = F(§), |£l<X, (2.17)

where x € RN and £€RYN. Then, given € > 0, there exists ny(€) such that
[nl@) = f ho(E) F(£)e 57 dE (2.18)

lEl<x
satisfies \f—=Ff.ll <€ forall nZmnye), (2.19)
where ho(€) = ﬁ fRN 3,(x)eit *da, (2.20)
o 2\7n N/2
8,(@) = §,(2) (1 —Z;) ( 47:;22) , 2.21)
e g 2n+N

Sl = {l Bx|Jig<x exP( 2n+N> dg} ’ (2.22)

By = {£:|£]| < X} ts the.ball in RY of radius X, and | By | is the volume of By. The
estimate (2.19) holds in C(Bg) (L*(Bg)) if fe C(Bg) (L*(Bg)).
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Proof. Multiply (2.17) by e 6% b, (£), where | y| < R and k,,(§) will be determined,
and integrate over |§| < X to give

f f(x>f hn@)eiﬁ'“‘y’dédx:f h,(E)F(E)e € vdE, |y| <R.
lZI<R 1Bl x

El<x
We choose %,,(£) so that

f hy(£) eV dE = 0,(y—x), |x|<R, |yl<R, (2.23)
H<x

is a ‘delta-sequence’ (in C(Bjg) or L?(Bpg)), i.e. so that

f(x)—ﬁyKRf(y)(?n(x—y)dy‘ >0 as nm—>o00. (2.24)
From (2.23), we have
8(a) =f ha(B)e 64, || < 2R (2.25)
El<Xx

(2.20) follows by inversion if §,,(x) is defined for all x. The construction of a suitable
delta-sequence (it must satisfy (2.24) and be representable as (2.25)) was first given
by Ramm (1970) in a study of apodization theory for linear optical instruments;
see Ramm (1980, pp. 210-215). This book also contains further references and
detailed proofs, and gives error bounds on | f—f,|l, given bounds on ||f| and
lgrad |l

The integral in (2.22) can be evaluated analytically for all N (Ramm 1983b) to
give

Spl@) = (2" T+ 1) J,A|]) A|z|) 7} *N, (2.26)

where N = 2v and 2A = X/(n+v). Hence, it is clear that §,(x) is a function of one
variable, namely |x|.

Returning to our two-dimensional equation (2.16), we obtain the following
approximation to v:

V() = v, (2) = fl @ G, 13 <R, (2.27)
DisQo
1 ip-x 1 (*
where h,(p) = w ) 0, (x)el? Tdx = o 0, (") Jo(|p|r)rdr, (2.28)
0

9 2n+2 2\ n
Op(r) = [76 Jl(/b’)] (lv—m) IR

and 2 = ¢,/(n+1). (Note that »8,,(r) is a delta-sequence in C(0, R) or in L*(0, R).)

This concludes our discussion on the practical inversion of (2.11) : the dependence
of v on z, is recovered by inverting the Laplace transform, with ¢ as the trans-
form variable (the parameter g, is at our disposal); the dependence on 2 = (z,, 2,)
is recovered by approximately inverting the Fourier-type transform, with
p = (p;, p,) as the transform variable.

Finally, we note that Ramm (1983 ) has shown how to deal with random errors
on the right side of (2.7).
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3. THE INTERFACE PROBLEM

Let us now complicate the previous problem by supposing that the plane
P(x, = 0) is an interface between two different acoustic media, with transmission
conditions across this interface. We assume that the upper half-space (x; > 0) has
density p, and wavenumber k,, where

py=pd, Ky =tk (3.1)

p is the density of the lower half-space (x; < 0) and k is the corresponding
wavenumber; § and 7 are constants. As before, the lower half-space contai‘ns a
bounded inhomogeneity. For a point source at y, with y, > 0, we have

Viu, + 12k, = —0(x—y), x3>0, (3.2)
Viu+ k(1 +o(x))u =0, x,<0, (3.3)
with the conditions
ou  Ou, _ _
o, ~ oz, u=0u, on x,=0. (3.4)

Physically, (3.4) means that both the normal velocity and the pressure are
continuous across the interface P. We suppose that we know the solution of
(3.2)—(3.4) on P, for small k£ and for all positions of the source on P, and wish to
determine v(x).

The solution to (3.2)—(3.4) with v = 0 is given by Ewing et al. (1957, pp. 94-96):
if we denote the solution by g(x, y), we have, for y; > 0,

_ 1 (2 IypE)E ~
g(x,y) = on J; )+ ov, exp (vry—v,y;)d§ for z, <O,

where
v(E) = (B2—k>)E, vy(8) = (£2—k3E and p® = (x,—y,)*+ (2, —Y,)%;

a similar expression can be found for z, > O,‘ but we do not need it. Letting k0
(v—>§, v,—>§£), we obtain

g->golx, y) = L f Tol68) o -gevs-2. dg

2n J, 140
2 1 1
_I—HEW, xafo, y3>0

(One can verify that the same limit is obtained regardless of the location of x and
y, relative to P.) So, if we use the method of §2 to solve the present problem, we
obtain

v(2) (1492
fm de =—7—f(z,y), xyeP (3.5)

as our integral equation for v(z); the function f is defined by (2.6). We note that
the presence of the interface has merely introduced an additional constant factor,
1(1+90)%; the integral equation’ is essentially the same, and can be solved as before.
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This simplification occurred because we took the limit £—0. We note that our
method for solving (2.6) and (3.5) will also work on a similar equation, namely

fg(x, 2)v(2)g(y,2) dz = k™ *u(2,y)—g(x,y)}, x,yeP, k>0,

which one obtains by using the Born approximation (w = ) to treat the problem
solved in §2. The corresponding Born-approximation integral equation for the
present problem is much more complicated.

4. THE TWO-DIMENSIONAL PROBLEM

Let us consider the two-dimensional analogue of the three-dimensional problem
solved in §2. Take cartesian coordinates (z,, x,) and assume that there is a bounded
inhomogeneity 2 in the lower half-plane (x, < 0). Thus, we have

V2u+ k(1 +o(x)) u = —d(x—y), (4.1)

where x = (2, 2,), ¥ = (y,, ¥,) and v(x) = 0 outside 2. We suppose that we know
the solution of (4.1), for small values of %, everywhere on the line x, = 0 for all
positions of the source on this line (y, = 0), and wish to find v(z) given that v(x) = 0
for |z| = R.

We recast (4.1) as the integral equation

wx, y) = g(z, y) + & fg(x, 2)v(z) u(z,y) dz, (4.2)

where g(x,y) = }iH (k| z—y]) (4.3)

and the integration is over the lower half-plane, z, < 0. The behaviour of g for small
k, and fixed x and y, is given by

9(x,y) = a(k)+g,(z,y) + Ok In k)

as k—0, where, here,
-1 -1 .
go(x,y)=§n—ln|x—y|, a(k) =2—n(ln%k+‘y-—12~m)

and y = 0.5572... is Euler’s constant. Thus, as t—0, g—co0. This behaviour
prevents us from letting £—0 in (4.2). Similar difficulties arise in the problem of
two-dimensional scattering by a sound-soft obstacle, and have been treated by
several authors (see, for example, Noble 1962 ; MacCamy 1965; Ramm 1968). Our
analysis is similar to that of the last of these references.

From (4.2), we obtain

u=oa(k)+g,+0(1) as k—O0.
More precisely, we have

u—g = kHa?Uy+aU,+ Uyt +o(k®) as k-0, (4.4)
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where U, = f v(2) dz, 4.5)

Uy(x,y) = f 90, 2) + go(y, 2)} v(z) dz (4.6)

and Uy(z,y) = fgo(x, 2) v(2) g,(y, 2) dz. (4.7)
From (4.4), we obtain

U, = lim {Z',j’} = fo(@,9), (4.8)

U, = lim {U#i} = fy(x,y) (4.9)

and Uy =lim {u—g—“%;[] 0—“’“2[]1} = f,(x, y), 4.10)

where f,, f, and f, are, in principle, measurable quantities.

Equation (4.8) says that we can recover U, from measurements of u(x, y) at one
point z, with the source at one point y (x and y can coincide), and at small values
of k. The number U, might be called the intensity of the inhomogeneity.

In the next two subsections, we examine (4.9) and (4.10). These are both integral
equations satisfied by v(z).

4.1. The integral equation (4.9)
From (4.6) and (4.9), we have
[0+ 100 @ = o

whence fgo(x, 2)v(z)dz = 3 f, (2, x). (4.11)

This integral equation arises in various inverse problems of potential theory and,
in general, it is not uniquely solvable. However, if further restrictions are placed
on v, a uniquely solvable equation can be obtained, as we shall now show. Suppose
that the source and receiver coincide, and that both are on the line z, = 0. Then
(4.11) becomes

0 [e¢] ~
f f v(2y, 29) In{(x; —2,)2 + 22} dz, d2, = fi(x;), —o0 <z, < o0, (4.12)
—00 —00

where f,(x,) = —2nf(x,, 0; z,, 0). Take the Fourier transform of (4.12) to obtain (see
Appendix B)
0 ©
[ ] vermempiratinimdadgn = -2, @)
-0 J—w ,

6 Vol. 399. A
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where IT’I(/\) is the Fourier transform of f,(x,). Now, suppose that
0(2,2,) = 0(2y), @<z <b, 0>z,>—R,
and is zero otherwise. Then (4.13) becomes

o —2iA|A| F(A
f v(zy) M Z2dz, = ‘_em:ﬁ.,()
—00
Inverting this Laplace transform (for:A > 0, say) gives an explicit formula for v(z,),
in terms of back-scattered data at all points on the line z, = 0.

4.2. The integral equation (4.10)

Suppose that x and y both lie on the line z, = 0, and consider the integral
equation

flnlx—zl In|y—z|v(z)dz = f(,, y,), (4.14)

where z = (z,,0), ¥y = (y;, 0) and f(z,, y,) = 4n*f,(x, y). Equation (4.14) is the
two-dimensional analogue of (2.6). To solve it, take Fourier transforms in z, and
¥,, with transform variables A and g, respectively, to obtain (see Appendix B)

fv(z)exp{i(A+mzl+<|A|+|m>z2}dz=4|A||u|F<A,m, (4.15)

where F is the corresponding Fourier transform of f.
Introduce new variables

p=A+pu and q=|A|+]|pul (4.16)

The arguments at the end of §2.1 show that f = 0 implies that v = 0, i.e. (4.15)
has at most one solution.

The transformation (4.16) is clearly invertible if A and x have opposite signs:
we take 4 > 0 and A < 0. Thus, (4.15) becomes

fv(z) exp (ipz, +9z,) dz = (¢*—p*) F (D, 9), (4.17)

where Z (p, q) = F&(p—q), ¥(p+q)). The restrictions on A and x imply that the
point Q with cartesian coordinates (p,q) lies inside a right-angled wedge,
0 <g< o, —q <p<gq. We denote this region by 2 (see figure 1). We can invert
(4.17) to obtain »(2), using the methods described in §2. So we choose a positive
number ¢, and then consider (4.17) for —qs; < p < ¢, and ¢q = ¢, > 0; this is the
region Z, shown in figure 1. Inverting the Laplace transform in z,, we obtain the
function

R

f v(2y, 2,) P21 dz, = G(p, 2,), (4.18)

-R
say, for z, < 0 and —¢, < p < ¢,. Again, we find an approximate solution to (4.18)
by using theorem 1:

V(2y,29) X 0,(24,2,) = f

—a

(')

ha(p) G(p, 2,) 67721 dp, (4.19)
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0
where h,(p) = %J‘ 3, (x)e'?* dz,

—00

sin Az\27+1 22\ n
8”(’”)=( Az ) (l—m) (41:132)’

A =q,/(2n+1) and |[v—v,| >0 as n— co.

5. THE ONE-DIMENSIONAL PROBLEM

For completeness, we now consider a one-dimensional analogue, namely, given
the solution of
{d?/da®+ k(1 +v(x))} u(x, y) = —6(x—y) (5.1)

for x > 0 and y > 0, determine v(x), where v(x) = 0 for > —e¢and x < — R (¢ and
R are positive constants). As before, we replace (5.1) by the integral equation (2.1),
where now

=i iklz—y|
gloy) =5 e (5.2)

and the integration is along the half-line z < 0.
Asin §2, set u—g = w, whence w satisfies

w(x,y) = Lik fv(z) w(z,y) e**=2 dz + h(x, y), (5.3)

where h(x,y) = —i fv(z) exp{ik(|x—z|+|y—2z|)}d=. (5.4)

Equation (5.3) is uniquely solvable by iteration for sufficiently small k. Thus, w
is an analytic function of % in a neighbourhood of £ = 0: expanding w as in (2.4)
and substituting into (5.3), we easily obtain

Wy = — s
where v, = fz"v(z) dz (n=0,1,..))

are the moments of v. Thus v, (the intensity of v) can be obtained by determining
the limit of u—g¢g as k—0 at any fixed values of  and .
Similarly, we have

1
wey) = —hi—y [ (=l +ly—21) o)
Since x > 0, y > 0 and z < 0, this reduces to
wy(x,y) = — g — 1z +y) v+,

whence the first moment of v can be obtained from measurements of w, and w;.
This procedure can be repeated: given w, for n =0, 1,..., N, this information
determines v, for n = 0, 1,"..., N. (Note that it is only necessary to know w,(z, )

6-2
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for one value of x and one value of y; we can take x = y = 0, giving a closer
analogue to the problems treated previously. In fact, we are unable to use the
additional information obtained by allowing z and y to vary.)

The problem of determining a function » from all of its moments {v,} (r = 0, 1, ...)
is classical (see Appendix A). This problem is uniquely solvable, since » has compact
support. ‘

Practically, it is probably difficult to measure w, for n > 1. Therefore, we
conclude by outlining two other ways for treating our one-dimensional inverse
problem.

First, we can make the Born approximation (i.e. w = &) in (5.4) to give

fv(z) e 2kzdy = —4 7 6kT (g, x) (5.5)

for x = y. Thus, if we measure w at one point x (when the source is at the same
point) and for all wavenumbers £ > 0, then (5.5) is an integral equation for v, which
can be solved by Fourier inversion. If w is only known for a finite range,
ky < k < k,, then (5.5) can be solved by using the method given in §4.2.

Secondly, if the incident field is a plane wave, and the reflection coefficient is
measured for all values of £ > 0, then the one-dimensional problem can be reduced
by the Liouville transform to the quantum-mechanical problem of inverse
scattering by a potential. The theory for this inverse problem is well developed;
see, for example, Chadan & Sabatier (1977).
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Research Council Visiting Fellowship. He is grateful to the Department of
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APPENDIX A. NUMERICAL INVERSION OF LAPLACE TRANSFORMS

Let ©
F(p) = f f(t)e™Pt dt (A1)

denote the Laplace transform of a function f(¢), where p is a complex variable.
Suppose that F(p) is analytic in the half-plane Re(p) > ¢,. Then (A 1) can be
inverted to give )
_ 1 c+ioo 7 - 4
i) = = (p) e*" dp,

where ¢t > 0 and ¢ > ¢,,.

There are many methods for obtaining f(t) from F(p) numerically (see the books
by Bellman et al. (1966), Krylov & Skoblya (1969), and the review by Davies &
Martin (1979)). Here, we shall concentrate on methods that only use F(p) for real

values of p.
Let

fult) = f " b0 (t, ) flar) s,

0

where §,, is a delta-sequence (i.e. || f—f, || >0 as n—> c0). Choosing the functions

Ot u) = (%7{)” exp(—%qf)

gives s =5,0 =S (3) " e (),

n! ; t

where F(™ is the nth derivative of F. This formula (due to D. V. Widder; refer to
Davies & Martin (1979) for complete references) is probably not useful in practice
(unless F is a rational function) because it requires derivatives of F. However, there
are variants that only use evaluations of F, and one of these (due to D. P. Gaver
and H. Stehfest) is recommended by Davies & Martin (1979); see their paper for
further details.
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Davies & Martin (1979) also recommend a method (due to R. Piessens) in which
F(p) is approximated by a series of Chebyshev polynomials as

& B
F@)~p—= X anTn, (1 __)’

n=0 p
where a and £ are free parameters. Term-by-term inversion of this series gives an
approximation to f.

Several other methods are described by Davies & Martin (1979), for example
one can approximate f(t) by a series of Laguerre polynomials. We conclude by
mentioning two further methods.

First, one can consider (A 1) as an integral equation of the first kind for f(t) (take
p real and positive). This equation could be solved, numerically, by using a
regularization technique.

Second, write x = e~* in (A 1) to give

fl 2771 $(z) do = F(p), (A2)

where ¢(x) = f(—Inz). By choosing p =1, 2, ..., (A 2) becomes
1
J 2™ Px)de=F, (m=0,1,...), (A 3)
0

where F,, = F(m+1). The problem of finding ¢(x) from (A 3) is called the classical
moment problem. This problem is discussed in books by Shohat & Tamarkin (1943)
and Akhiezer (1965). Numerical methods for its solution have also been devised
(see, for example, Wimp (1979) and Greaves (1982)).

APPENDIX B. A FOURIER TRANSFORM
In §4, we used the result

[A

Here, we prove this result, assuming for simplicity that A > 0 and y > 0.
We have I(x,y) = "% J(y), where

[ee]
I(z,y) = f el In{(s—x)2+y2}ds = —il exp (iAx—|A||y]).

—00

—00

J(y) = f ei? In (22 +y2)t d.
In particular ’

©° i(®° ., dr T
= ilx = — il = —_—
J(0) f_w % In | x|dx b ffw e — X

Since I(z, y) is harmonic, and we know I(z, 0), Poisson’s formula can be used
to obtain the result. Alternatively, note that

00 ei/\x
J () =yf de =me W,

o L2y

whence an integration, with use of J(0), gives the result.



