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On boundary integral equations for crack problems
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A ubiquitous linear boundary-value problem in mathematical physics
involves solving a partial differential equation exterior to a thin obstacle.
One typical example is the scattering of scalar waves by a curved crack
or rigid strip (Neumann boundary condition) in two dimensions. This
problem can be reduced to an integrodifferential equation, which is often
regularized. We adopt a more direct approach, and prove that the
problem can be reduced to a hypersingular boundary integral equation.
(Similar reductions will obtain in more complicated situations.) Com-
putational schemes for solving this equation are described, with special
emphasis on smoothness requirements. Extensions to three-dimensional
problems involving an arbitrary smooth bounded crack in an elastic solid
are discussed.

1. INTRODUCTION

Boundary integral equations are used widely to determine the effect of obstacles
on otherwise uniform fields. Examples are potential flow past an aircraft, acoustic
scattering by a rigid target and loading of an elastic structure with embedded
cavities. In many problems of practical interest, the obstacles are thin. Examples
are rigid plates in a flow and cracks in a solid. Conventional integral-equation
methods fail for such problems.

To be specific, consider the scattering of a plane sound wave in a compressible
fluid by a rigid plate, I, in two dimensions. (The basic ideas below can be extended
to problems in three dimensions, and to other partial differential equations.
Cracks are considered in §4.) Mathematically, the problem is to find the potential
Re {u(x, y) e71**}, where

0®u/0x® + 0®u/0y®>+ k®>u = 0 in the fluid, (1.1)
ou/ont =0 on Tt (1.2)
u is bounded at both edges of the plate, (1.3)

and the scattered potential »*¢ = u—u'® satisfies a radiation condition.

Here, k is the given wavenumber, assumed real and positive; u®(x,y) is the
given incident wave ; 0/0n* denotes normal differentiation at a point on I'%, in the
direction from I'* into the fluid; I'* are the two sides of an open arc I', which is
assumed to be twice continuously differentiable ; and z, y are cartesian coordinates.
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We shall also require the closed arc, I = I' U aI", where 0I" consists of the two end
points (edges) of I'.
We introduce a fundamental solution, G, defined by

where R is the distance between P and Q, and H{V is a Hankel function. A careful
application of Green’s theorem to %%° and @ gives

20(P) = | (@)= 6P, @) s, (1.5)
q

where [u(q)] = u(q") —u(q") (1.6)

and q* are corresponding points on I'*. Here, and below, we use capital letters
P, Q to denote points in the fluid and lower-case letters p, q to denote points on I'.
Thus, [%#(q)] is the discontinuity (jump) in % across the plate at q. Equation (1.5)
states that 4*¢(P) can be represented as a double layer, i.e. as a distribution of
normal dipoles over I'. The density is seen to be —3[u].

Applying the boundary condition (1.2) on I'* gives

ou™ 1 d 0 . .
w éw r[u(Q)]@G(P ,q)ds; =0, p*rel™.

The same equation is obtained if we let P approach the other side of I', I'". Thus,
we can delete the superscript + throughout to give

0 0 ou'®
| [u(@))5-G(p, ) dsy =27 ) per. (1)

ony, Jr q D

It is this equation, and some of its variants, that we consider below; we discuss
both analytical and numerical aspects.

Equation (1.7) is an integrodifferential equation for [u(q)], q€I'. Its solution is
sought in the space

Cy4(T) = {u(q)e C**I'):u(q) =0 for qedl},

where C*I') is the usual space of functions with one Holder-continuous
tangential derivative on I', and 0 < a < 1. It can be shown that if [u(q)]e C3*(T"),
and [«] solves (1.7), then [u] will have the expected square-root behaviour near the

edges of the plate: .
[u(q)] ~s* as s—>0,

where s is the distance (arc length) of q from oI

Equation (1.7) is an inevitable consequence of using ¢, which is continuous
across I', ie. [G(P,q)]=0. Wickham (1982) has replaced G' by another
fundamental solution which is discontinuous across I'; this leads to a Fredholm
integral equation of the second kind for [%], with a continuous kernel which is itself
given explicitly as a certain singular integral over I'.

It is tempting simply to take the normal derivative 9/dn, in (1.7) under the
integral sign, but this leads to a non-integrable integrand. Instead, it is common
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to regularize (1.7) by rewriting its left-hand side as an integral involving [«] and
its tangential derivative;

f {(n(q) x Vo [w(q)]) (n(p) x V, A(p, q))+k>n(q) n(p) G(p, q) [w(q)]} ds, —2681;(13)-

p

(1.8)

This formula was first given by Maue (1949). (It is also valid in three dimensions.)
For our two-dimensional problem, (1.8) reduces to

9 9 Ou m(P)
f {at [0l 560, )+ (@) n(p) 60, (@1} ds, = 2757, perl, (19)
My
where 0/0t, denotes tangential differentiation at q. This is a regularized equation,
involving both [«] and its tangential derivative.
Equation (1.9) can also be written as

0
at

d duin
[u(@)] 560, a) ds, +k2fr (@) n(p) 6(p, @) (@] ds, = 2B per,

p
(1.10)

which is a different integrodifferential equation for [%(q)], this time involving only
tangential derivatives rather than the normal derivatives occurring in (1.7).
Equations (1.9) and (1.10) are well known; see, for example, Morrison (1979),
Frenkel (1983) and Zakharov & Sobyanina (1986).
If we introduce a parametrization of the curve I'" (see (3.1) below), we see that
(1.10) is of the form

f
— dt 1.
dx + f Kz, t)ydt = g(x), | <1, (1.11)
where ¢ is given, K is a weakly singular kernel and f(x) is to be found in
Cy*([—1,1]). Because

: f(_t>dt=_3(1 (det, (L12)

de ] _jx—t x—t)?

we can rewrite (1.11) as the hypersingular integral equation,

L1
f_l {W+K(x, t)}f(t) dt =g(x), |z <1. (1.13)

Here, the notation X means that the integral must be interpreted as a Hadamard
finite-part integral (Hadamard 1923); these are defined in Appendix A. (Our
notation follows Mangler (1952); there does not seem to be a universal standard.)
The result (1.12) is implicit in Hadamard’s book (1923) — indeed, the definitionsof
% is chosen so that (1.12) holds — and is explicitly proved by Mangler (1952).

In the present paper, we derive, directly from (1.7), a hypersingular integral
equation for our scattering problem, analogous to (1.13). Then, in §3, we describe
some methods for solving this equation. Finally, in §4, we consider the extensions
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necessary to treat arbitrary smooth cracks in three-dimensional elasticity. Since
our primary goal is to develop robust computational methods for these crack
problems, we focus our attentions in §3 on boundary element methods, rather
than on the powerful methods (for two-dimensional problems) using orthogonal
polynomials that have been developed recently by Frenkel (1983), Golberg (1983,
1985) and Kaya & Erdogan (1987). In this sense, the scalar scattering problem
described above is a simple prototype (although it is equivalent to the scattering
of horizontally polarized shear waves by a two-dimensional crack, I').

We conclude this section with some remarks. First, we note that much of the
previous work on crack problems has been based on regularized equations like
(1.9), presumably in an attempt to avoid apparently divergent integrals (see §4.1).
We shall argue that a formulation in terms of Hadamard finite-part integrals,
leading to hypersingular integral equations, is a preferred alternative to
regularized equations, both conceptually and computationally. Besides, if one
intends to collocate at an edge (or crack tip) with the regularized equation, one is
faced with a one-sided Cauchy principal-value integral with a density (the
tangential derivative of [#]) which is singular at the edge. This integral, although
seldom identified as such, is a one-sided finite-part integral of order 3; see
Appendix A. In this paper, we hope to clarify the relations between apparently
divergent integrals and various finite-part integrals. In a subsequent paper, we
shall demonstrate how hypersingular integral equations can be used to obtain
numerical solutions to various problems involving cracks and other thin obstacles.

2. HYPERSINGULAR INTEGRAL EQUATIONS
The following theorem is proved in Appendix B.

TurorEM Let u(q)eCy*I), 0 < a < 1. Then

0 0 0
= u(Q)wG(P, q)ds, = ﬁu(Q)WG(P, q)ds, (2.1)

anp r q p~""a
for any peT.
We remark that the integral on the right-hand side of (2.1) is a two-sided finite-
part integral of order 2 if not of peI’, but is a one-sided finite-part integral of order
3 if pedl'; see Appendix A. Moreover, the smoothness requirements on %(q) are

essential.
Using the theorem, (1.7) becomes

0u(p)

)
on,,

0
— =2 . 2.2
)(r [w(q)] o o G(p, q)ds, pel’ (2.2)
This is a hypersingular integral equation for [u(q)], q€I'. It has advantages over
the other equations exhibited in §1: it is not an integrodifferential equation; it
does not involve tangential derivatives of [#(q)], which are unbounded at dI"; and
it is conceptually attractive.
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3. NUMERICAL TREATMENT

We begin by breaking I' into N elements, I}, j=1,2,...,N. To do this, we
parametrize I" as

[ ={(x(t),y@): —1<t<1}, (3.1)
We partition [—1, 1] using N+ 1 nodes ¢;,

—l=ty<t, <l <..<ty,<ty=+1
and then set
: L= {(x(t), y(t)) : by S ES 45

Near the edges I, i.e. near ¢ = +1, we know that

[u(@)] = U) ~ 4, (1 F 0}, (3.2)
where the coefficients 4, are essentially the stress-intensity factors. Hence
V() = Ul)— A (1= x, () — A (1+ 0t x-() (3.3)
satisfies :
V(i) eCy*([—1,1]) and V’'(+1)=0. (3.4)

Here, x , (£) are smooth (C®) cut-off functions, with 0 < x, <1, x,(¢) = 1 for ¢ near
+1 and y, = 0 elsewhere. (Decompositions like (3.3) have been used by Stephan
& Wendland (1984).)

Because of (3.4), we can readily approximate V(¢) by parabolic B-splines,

N-3
V() ~ X v, BR(t).

n=0
where B{®(x) = B, ; () is the i¢th B-spline of order 3 (degree 2) for the knot
sequence t = {ty,¢,,4,...,tx}; see de Boor (1978 ch. IX-XTI). Note that B{*(x) is
non-zero only in the interval ¢, < # < t,,,. Counting up, we see that there are N
unknown coefficients, namely 4,,4_ and v,,n =0,1,...,N—3. To find these, we
can collocate the integral equation (2.2) at N points on I'; we choose ¢ = s;, where
iy <8;<t,j=12,... ,N. (It is known that this method, the spline-collocation
method, is convergent for integral equations like (2.2) on closed curves, at least
when the nodes #; are equally spaced and s; = §(;,_, +1;); see Arnold & Wendland
(1985).)

Note that we can refine the numerical method by adding terms in (1 + t)¥in (3.3),
and then approximating the remainder by cubic B-splines; this leads naturally to
collocation at the nodes ¢, j =0,1,...,N.

To make these methods work, we must evaluate integrals over each element
I;. The singular integrals can be computed using a combination of analytical and
numerical techniques. For an extensive list of finite-part integrals, see Kaya &
Erdogan (1987); for quadrature rules, see Kutt (1975), Paget (1981), Linz (1985)
and Branddo (1987); for linear variation over a flat triangular element, see
Toakimidis (1985).

Previous computational experience of solving one-dimensional hypersingular
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integral equations is limited. Filippi & Dumery (1969) solved (2.2) for a flat plate,
using a piecewise-constant approximation to [«]. Macaskill & Tuck (19%7) solved
a related equation using a similar approximation, but with a graded partition to
account for the edge behaviour (3.2).

For three-dimensional problems, two-dimensional hypersingular integral
equations obtain. Cassot (1975) has solved such an equation, using a piecewise-
constant approximation, for acoustic scattering by a flat rectangular rigid plate.
The hypersingular operator (normal derivative of a double layer) also occurs in
problems involving closed surfaces (see, for example, Nedelec 1978, 1982). It was
used in an interesting paper by Sayhi ef al. (1981). They consider acoustic
scattering by a hard sphere, and compute the total error incurred using a
piecewise-constant approximation (see their figures 8 and 9). They show that this
error does not decrease as the number of elements, N, increases, even though
convergence is achieved at the collocation points themselves. This latter result is
in accord with the theoretical results of Zakharov & Sobyanina (1986) for the one-
dimensional integrodifferential equation (1.10). Sayhi ef al. (1981) go on to show
that the total error does decrease with N if a continuous, piecewise-linear
approximation is used. This is in accord with the general results of Arnold &
Wendland (1985) for one-dimensional equations.

We can give a qualitative explanation for the results of Sayhi et al. (1981). A
constant approximation over an element gives rise to a potential whose normal
derivative is singular around the perimeter of the element; thus, there is a
mismatch with the prescribed normal derivative, which is usually very smooth
everywhere on the surface. If a continuous, piecewise-linear approximation is
used, the corresponding normal derivative is still undefined at element boundaries,
but the mismatch is reduced. Finally, a continuously differentiable approximation
gives rise to a potential whose normal derivative is continuous everywhere on the
surface.

These results suggest that, for our problems, it is probably sufficient to use a
continuous, piecewise-linear approximation, together with additional square-root
terms near the edges. However, such an approximation cannot satisfy the integral
equation (2.2) at the nodes, and so we do not expect pointwise convergence.
Nevertheless, continuous, piecewise-linear approximations are simple, and so
deserve further investigation, especially for three-dimensional problems. For the
present two-dimensional problem, we can write

N-2

Vi)~ X v, BY(t)

n=0-
where B{’(x) =B, , (x) is a linear B-spline. (This approximation satisfies
V(+1) = 0.) Thus, there are N+ 1 unknown coefficients, which we can compute by
collocating at N+ 1 interior points s;; we cannot take s; = t;, because the integral
in (2.2) does not then exist. Alternatively, we could use any other continuous
representation for V(t), such as quadratic elements, with continuity at the nodes.
Some preliminary computations of an elementary finite-part integral, using these
elements, gave us good results when collocating at interior points but somewhat
spurious results, as expected, when collocating at nodes ¢; between elements.
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4. CRACKS

We conclude with some remarks on integral-equation methods for crack
problems in three dimensions. Here, we are not concerned with the vast literature
on the static or dynamic loadings of particular cracks, i.e. on solution strategies
that make explicit use of the crack geometry.

4.1. Regularized integral equations

Although the Somigliana formula has been used widely for many years in crack
problems, it was apparently first used to derive regularized integral equations by
Guidera & Lardner (1975). They obtaned equations analogous to (1.9) for the
static loading of an arbitrary flat crack; they obtaind explicit solutions for the
arbitrary loading of a penny-shaped crack. Similar equations were derived by Lo
(1979) for a crack in a half-space (with the crack plane parallel to the free surface),
and by Budiansky & Rice (1979) for the dynamic loading of a flat crack. For
arbitrary smooth cracks regularized integral equations have been derived by
Slddek & Slddek (1984), Le Van & Royer (1986) and Nishimura & Kobayashi
(1988). All of these equations involve tangential derivatives of [#], the jump in the
displacement vector across the crack. These derivatives are unbounded at the
crack edge. Indeed, Nishimura & Kobayashi (1988) introduce second derivatives
of [u], which are not integrable at the edge but can be interpreted using finite-part
integrals.

The first numerical solutions were achieved by Bui (1977) and by Weaver
(1977). They both considered static loadings of flat cracks. Bui (1977) used a
piecewise-linear representation for [u] and obtained results for elliptical and
square cracks. Weaver (1977) considered rectangular cracks, and used a piecewise-
quadratic, discontinuous representation for [u], with appropriate square-root
behaviour near the edges. This scheme has been refined considerably by Polch
et al. (1987); they used a complicated algorithm to guarantee that their
representation for [u] was continuously differentiable everywhere on the crack
surface, and gave numerical results for static loadings of penny-shaped and
elliptical cracks. Nishimura & Kobayashi (1988) have used cubic B-splines (they
need two tangential derivatives), and gave results for the scattering of P-waves
(compressional waves) by penny-shaped and square cracks.

4.2. Integrodifferential equations

Some authors have given direct numerical treatments of the integrodifferential
equation for [}, analogous to (1.7). The method is essentially as follows: first,
break up the crack surface into elements; on each element, approximate [u] by a
constant vector, except perhaps in those elements bordering the crack edge;
collocate at the centroid of each element; the tractions on flat elements
corresponding to a constant displacement discontinuity can be calculated
analytically (for elastodynamics, Jones (1985) reduces this calculation to the
evaluation of a line integral around the element’s perimeter). This method (the
‘displacement discontinuity method’) was worked out in two-dimensional
elastostatics by Crouch (1976); see also Crouch & Starfield (1983, ch. 5 and 7).
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Polynomial approximations on each element were used by Crawford & Curran
(1982), whereas three-dimensional problems (such as the pressurized penny-
shaped crack) were solved by Wiles & Curran (1982). More recently a similar
method has been used by Budreck & Achenbach (1988) to treat the diffraction of
a normally-incident P-wave by a flat elliptical crack.

4.3. Hypersingular integral equations

Toakimidis (1982 a, b) was apparently the first to derive hypersingular integral
equations analogous to (2.2) for the static loading of a flat crack. Later (Ioakimidis
1987), he showed that the character of the finite-part integral will change if one
collocates at the crack edge; see §2. The same hypersingular equations were
derived by Takakuda et al. (1985) and by Lin’kov & Mogilevskaya (1986). The
former authors also gave a numerical solution for an elliptical crack, using an
expansion for [u] in terms of Chebyshev polynomials and an appropriate square
root. Lin & Keer (1986, 1987) have solved the corresponding equations for a
P-wave normally incident upon a penny-shaped crack buried in an elastic half-
space, and upon a flat elliptical crack in an unbounded solid. In each case, they
correctly modelled the edge behaviour, but their representation for [u] is only
piecewise continuous. The use of such a representation for solving the
hypersingular integral equations is clearly equivalent to using the method
described in §4.2. However, it is our contention that smoother representations
should be used; these are more readily accommodated into a scheme for solving
the hypersingular integral equations.

Stephan (1986) and Costabel & Stephan (1987) have derived hypersingular
integral equations for static loadings of arbitrary smooth cracks. They advocate
a Galerkin scheme, with singular functions near the crack edge.

We believe that the spline-collocation method using at least a continuous
representation for [u], together with Stephan’s singular edge-functions, will be
efficient and flexible, and are currently developing such a scheme. Preliminary
experiments using Overhauser splines (these give a C' representation), gave
excellent results, as we expected. Further development is in progress.

5. CLOSING COMMENT

It is well known that improper (weakly-singular) integrals arise naturally in
boundary integral formulations emanating from the divergence theorem, with a
fundamental singular solution of the governing differential equation as principal
ingredient. For some vector problems, e.g. in linear elasticity, this process leads to
a special, ‘more singular’ integral which exists in the sense of the Cauchy principal
value. Further, whenever it is necessary or advantageous, a normal derivative of
such boundary integrals is taken, as is the case here with crack problems. Then,
an even higher order singular integral, interpretable as a Hadamard finite-part
integral, arises. Each step upwards in singular integrals requires more and more
smoothness of the density function multiplying the singular kernels for such
integrals even to exist. This fact, if not the hierarchy of the ever more singular
integrals, may not be generally appreciated. (Mathematically, this hierarchy
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corresponds to pseudo-differential operators of higher and higher order; see, for
example, Wendland 1982). Indeed, the role of this smoothness requirement in
algorithms for computation with these integrals is rich ground for research. In any
case, the strategy of regularization, i.e. to always remove, or avoid, singular
integrals before beginning any computation, seems to be a burdensome and
conservative posture which we hope, with the help of this paper, to turn about.

Above all, we thank I. R. Gonsalves for many helpful conversations on finite-
part integrals. We also acknowledge the contributions of D. J. Shippy and Z. Jia
to this work. Partial support was provided by the U.S. office of Naval Research
under Contract N00014-86-K-0551. P. A. M. is grateful to the Kentucky EPSCoR
Program, under the Computational Sciences Project, for supporting his visit to the
University of Kentucky in June 1987. He also acknowledges receipt of a Fulbright
Travel Grant.

APPENDIX A. FINITE-PART INTEGRALS
In this Appendix, f(¢) is defined for a <t < b and a <x <b.

A. 1. Cauchy principal-value integral
Definition : For fe C*=

bg{—(i)—tdt=lim{z€f dt+f f } (A1)

Regularization : For feC*,
> ft) "
x—_tdt = f(a) In (x—a)—f(b) log (b—x)+ | f'(t)In|x—¢|ds. (A 2)
at™ a
Differentiation : For fe C**,

f = ff_tdt (A 3)

A. 2. Two-sided finite-part integrals of order 2
Definition : For fe C"*,
*_f) {f"e ft) f” f®) _M}
o= imi] e || L e

Regularization : For fe C™*,

j(b fO) g4 _f@) _fb) J[bfit)td" (A5)

5 (@—1)? x—a b—x

dx

Comparing (A. 3) and (A. 5), we obtain
L_ j(" O _q (A6)

dx
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i.e. the differentiation can be taken under the integral. Equation (A 6) is
sometimes taken as the definition of a two-sided finite-part integral of order 2. It
is straightforward to extend (A 4) to higher integer powers of (x—t). Note that it
is common to use the notation { specifically for two-sided finite-part integrals of
order 2.

A. 3. One-sided Cauchy principal-value integrals

Definition :
J: ﬁ)—dt = lim{ ’ ef(_t)dt+f(x) In 6}, (A7)
a x—t >0 a —t

It can be shown that the sum of (A 7) and (A 8) is just the corresponding Cauchy
principal-value integral of f over [a,b]. Note that the integrals in (A 7) and (A 8)
are not independent of simple changes of variable.

A. 4. One-sided (Hadamard) finite-part integrals
Definition : Let p be a real number, with 1 < x4 < 2 (in §2, we required u = 3).

S ()N B L () N )

fa (x_t)ﬂdt_laljf)l{fa (x_t)ﬂdt (/11—1)6”_1}’ (Ag)
O N TRT (f A { () B ) }

j(x G~y legf)l{fm(t—x)"dt (p—1)e )" (A 10)

These are the definitions orginally introduced by Hadamard (1923, §$80-87), in
his investigations into linear hyperbolic partial differential equations. Later, these
equations were solved in the context of supersonic aerodynamics (see, for example,
Ward 1955, §3.4).

The integrals (A 9) and (A 10) are independent of simple changes of variable.
Also, the definitions are easily extended to larger non-integer values of .

A. 5. Multiple integrals

It is possible to define Cauchy principal-value integrals and finite-part integrals
for functions of two variables, over smooth surfaces in three dimensions. For
principal-value integrals, see, for example, Kupradze et al. (1979, Ch. IV). For
finite-part integrals over plane regions, see Takakuda et al. (1985).

ArPENDIX B. PROOF OF THEOREM
After parametrizing I" using (3.1), the double-layer potential (1.5) becomes

we(P) = f U(t)K(R) L(t, P) dt,
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where K(R) = —(%ik/R) H{" (kR),
L(t, P) = —y'(t) (x(t) — X) +2'(t) (y(t) — Y),
P=(X,Y),
R? = (2(t)—X)*+ (y(t)— Y)*.
Set (X, Y) = (x(s), y(s) + (V/v) (—y (), %'($)),

where v® = (2(s))®+ (y(s))? and N is the distance along the normal at p = (2(s), y(s))
to P. We consider 3
lim — w5 (P).
N->0

Case 1. p not at an edge

Suppose p¢dl'. Then, it is clear that we only need to consider a small
neighbourhood of the singularity at ¢ = s. Moreover, we can also replace K(R) by
its asymptotic approximation for small R, namely

— It (R2—L*InR),

since the difference leads to non-singular integrals. Straightforward computations,
and properties of classical single-layer potentials, show that the term involving
In R is continuously differentiable in N at N = 0. So, we can go on to consider

_1 s+a

) U(t)L(t, P) R dt (B 1)

where @ > 0. For small |t—s| and N, we have
1 1—(t—s)w
R? ™ NP4 (t—s)%?

where w = (x'(s) x"(s) +y'(s) y”(s))/v*. Again, it is straightforward to show that this
approximation can be used in (B 1); the difference is continuously differentiable at
N = 0. Now, for small |t—s],

L, P)(1—(t—s)w) = f(t,s)+Nyg(t, s),

where fx A(t—s)?, g~ —v+B(t—s)? and A and B are constants. With these
approximations, we readily see that the only term which gives difficulty is the
leading term in g. Subtracting this, we are led to consider

1 [ore N _ D)
%J;—a U(t)2\72+(t—8)2?)2 di = o (B2)

So far, we have only assumed that U(¢) is continuous. We now assume that

Ut)eC**, i.e. that

U (6)—U'(s)l < A Jt—s*

for some 4 and o, with 0 < a < 1. This condition cannot be weakened.
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Example U(t) = |t—s|e C**. Then,

D) = 2Nv2J 2(V?+2%9?)" dx = Nln (1 + a??/N?),

0
D’(N) = In (1 + a*v?/N?) — 2a*0?(N? + a®0?) !
and the first term is unbounded as N—0.
Integrating (B 2) by parts gives, for N > 0,

D) = v{U(s+a)+ U(s—a)} arctan (av/N) +D,(N),

where D\(N) = —vfﬁa (U'(t)—U’(s)) arctan ((t—s) v/N) dt.
Hence, D'(N) = —{U(s+a)+ U(s—a)} av?(N? + a??) " + D (V), (B 3)
where D) = v* e (U () —=U’(s)) (t— ) (N2 + (t—s)20%) "1 dt.

The first term in (B 3) is continuous at N = 0, whereas

s+a

Di(0) = f (U'@t)—=U"(s)) (t—s)"1 ds.

s—a

An application of Holder’s inequality shows that
ID{(N)—D1(0)| < BN
where 0 < # < a. Thus, D’(N) is continuous at N = 0, whence
1 s+a
D'(0) = {U(s+a)+U(s-—a)}+J (U'@t)=U"(s)) (t—s)"1 dt. (B4)

a s—a

Return now to (B 2); differentiate with respect to NV and formally set N = 0 to

give o)
, _ st+a t
D(0) = f (=9 dt.

s—a
Of course, this integral does not exist. However, from (A 5) we have

)(w U 4 Uls—a) Us+a), J[“*“U’(t)

t—s? @  a sq t—8

dt. (B 5)

s—a

Because the range of integration is symmetric about ¢ = s, we see that the right-
hand sides of (B 4) and (B 5) are equal. Thus, the theorem is proved for peI but
pé¢ar.

Case I1. p at an edge
Consider the edge at s = —1. Extend I" smoothly, so that n is defined at the
edge. Near s = —1, we have

U(t) ~ A{v(1+8)}+ B{v(1 + 1)} (B 6)
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(cf. (3.2)), where v is evaluated at.s = — 1. The analysis proceeds as in case I, except
the range of integration is —1 <t < —14a; the point of departure is (cf. (B 2))

D(N) = o U(t) No* (V2 + (£ + 1)%%)* dt. (B7)

-1
We replace u(t) by the approximation (B 6); this gives
D(N) = 2uN:{AI; +BN(X —L)}

X 2 . _ 2 %
IR+iII=f x4+‘dx=_%e—%in1n(l_£_l2l__x)
) 21 1+X2— 25X

where

and X = (av/N):. So, for small N, we find that
D(N) = —2Nv{A (av)"i — B(av)}} + O(N?)
and D’(0) = —2v{A (av) s — B(av)}}. (B 8)

Returning to (B 7) (with (B 6)), differentiate with respect to N and formally set
N =0 to give

D(0) = J o {A@(L+6)i+B(1+8)F (1+8)2dt

-1

—1+a
= Avéf (1 +t)~% d¢ + 2Bv(av)t. (B 9)

-1

The integral does not exist. However, from (A 10),
—1+a . 1
j( (1+¢t)2dt = —2a77,
-1

Thus, if the integral in (B 9) is interpreted as a one-sided finite-part integral of
order 3, we obtain agreement between (B 8) and (B9), and the theorem is
proved.
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