WAVE DIFFRACTION THROUGH OFFSHORE
BREAKWATERS
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ABSTRACT: The interaction of water waves with a long linear array of offshore
breakwaters is examined to determine the reflection and transmission coefficients
for these structures, providing data on the sheltering afforded by these structures.
Two variational methods and an eigenfunction expansion method are used to de-
termine the reflection coefficients for waves with wavelengths longer than the dis-
tance from gap to gap in the breakwater array. The eigenfunction method is also
used for breakwaters, where the spacing between the gaps is longer than the water
wavelength. For this case, analogous to scattering of light by a grating, numerous
monochromatic directional wave trains can be generated in the region behind (and
in front of) these breakwaters, which can lead to the generation of rip currents,
beach cusps, and other periodic phenomena on beaches behind the structures.

INTRODUCTION

Offshore breakwaters are used along shorelines to reduce the amount of
wave energy impinging on beaches. Many are often constructed in a single
straight line parallel to the coast, separated by gaps, which permit some
wave action and water exchange to exist. This paper examines the propa-
gation of the waves through these periodic gaps and determines the level of
protection afforded by these breakwaters by determining reflection coeffi-
cients.

An interesting aspect of the wave field behind (and in front of) the break-
waters is that not only is the incident wave train detectable, but that when
the wavelength of the incident wave train is less than the spacing of the
breakwater gaps, a number of oblique wave trains may be generated as well.
These oblique wave trains can lead to periodic wave-induced phenomena at
the shoreline behind the breakwaters, such as nearshore circulation cells
(Dalrymple 1975) and beach cusps (Dalrymple and Lanan 1976). Recently,
Dalrymple et al. (1988) have shown the same phenomena occur for water
waves around rows of piling.

The problem of waves impinging on a grating composed of periodically
occurring line segments in the plane of the grating is classical in the areas
of acoustics and optics (but not water waves). It can be solved exactly and
numerous studies have been carried out, including those of Burke and Twer-
sky (1966) and Miles (1982) in acoustics. Here the problem is solved using
matched eigenfunction expansions, which lead to “dual series relations” in
order to obain the correct matching conditions at the breakwater (grating).
These relations are solved by a least-squares technique to find the amplitudes
of the propagating and evanescent wave modes both upwave and downwave
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of the breakwater. The amplitudes of the reflected and transmitted waves
are calculated using this technique, and further, the wave fields in the vi-
cinity of the breakwater are shown for several cases.

Several approximate methods can provide adequate estimates of reflection
and transmission coefficients. Lamb’s (1932) solution for low-frequency
acoustic motion is based on a form of a matched asymptotic method, which
is valid as long as the breakwaters have zero thickness (Martin and Dalrym-
ple 1988). This method provides a simple formula; however, it is restricted
to long waves. Variational methods, following Schwinger (Schwinger and
Saxon 1968), can provide estimates valid for all wave lengths. These meth-
ods are compared with the exact eigenfunction expansion method.

THEORETICAL ANALYSIS

The behavior of waves in the vicinity of breakwaters is modeled most
simply by assuming a normally incident wave train (propagating in the pos-.
itive x-direction) in water of constant depth h. The offshore breakwaters lie
along the y-axis, at x = 0. The breakwaters are modeled as infinitely thin
vertical barriers, centered at y = *nb, where n' =1, 3, 5, ..., ©. Between
the barriers are gaps of width 2/, as shown in Fig. 1. Since the breakwaters
occur periodically, the problem can be reduced to an analogous problem of
a normally incident wave train propagating down a channel with imperme-

Incident waves z

FIG. 1. Schematic Dlagram of Incident Waves on Periodlc Offshore Breakwater
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FIG. 2. Analogous Problem for Normal Incident Waves

able sidewalls into a diaphragm that occludes part of the channel at x = 0
(Fig. 2). The case of oblique wave incidence is discussed in Appendix I.

Our analysis will proceed under the assumptions that the fluid is incom-
pressible and inviscid, and that the motion is irrotational. We further assume
that the boundary conditions on the free surface can be linearized. The ve-
locity potential, &(x,y,z,?), can be expressed as the real part of

coshk(th +2) _,
—_—

=2

= e— X,
® ’ cosh kh

where a = the wave amplitude; g = the acceleration of gravity; k = the

wave number; and w = the angular frequency of the wave. The governing

equation for the reduced potential, &(x,y), is the Helmholtz equation:

o
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where k = the positive real solution of the dispersion relation

WP =gktanh kB L. e 3)

which relates the angular frequency of the wave to the water depth, A, and
the wave number k. The boundary conditions that must be applied to the
solutions of the Helmbholtz equation are as follows: The velocities in the x-
direction should be zero along the breakwaters so that there is no flow into
the breakwaters; in the gap region between the breakwater, these velocities
should match across the gap; and the potentials on each side should be equal
in the gap to ensure that the pressure (or water surface) is continuous across
the gap.

Eigenfunction Expansion Method
A solution valid on the upwave side of the breakwaters, x < 0, is

di(x,y) = * + E A, cos n)\ye_iv"ZA("")z" ............................. )

n=0

The first term represents the normally incident wave train, while the sum-
mation terms represent the scattered wave modes, which travel in directions
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different from the incident wave direction, unless n\ exceeds k when the
waves become evanescent. The coefficient A, is the reflection coefficient for
the reflected plane wave, traveling in the negative x-direction, which can be
denoted as R. The orthogonal eigenfunctions {cos n\y,n = 1,2,...,%} per-
mit a periodic solution in y and satisfy the analogous no-flow boundary con-
ditions at [y| = b, provided that A = «/b.

On the downwave side of the breakwaters, x > 0, the potential is

da(x,y) = € = D" B, cos maye! Y FTONE Q)

n=0

Here the coefficients B, give the (forward) scattered wave trains.

It is relatively easy to show that B, = A,, for all n. The velocity (in the
x-direction) in the gap, |y| = I, will be represented by iF(y). On the upwave
side, this velocity (at x = Q) is represented by

ik~ > iVE = (1\)? A, cos nhy = {iF(y) forbl=t ©)
n=0

0 I<pl=b

The orthogonality of the eigenfunctiohs over —b < y = b permits us to
multiply each side by cos m\y and to integrate over 2b to find equations for

the A,,.
1 I
A, = f F(y) cos m\ydy form>0............... (7
V2 — (m\)* J-1
1 1
L—Ag === | FOMY. ..o, ®)

2kb J_,

The velocity (x-direction) profile across the gap can also be expanded in
terms of the downwave expansion; this gives

1
1
B,= ——— j F(y) cos m\ydy form>0............... ©)
K — (m\Y’b J—
-
1=Bo=——= ] FOO)AY.. ..o, 10
°~ 2w |, (y)dy (10)

Therefore with B, = A,, the velocities in the x-direction are matched at x
= 0 for all values of y. There are three important implications of the equality
of these coefficients. First, the scattered wave field, made up of the A, and
B, waves, is symmetric about the y-axis; there is as much upwave reflection
as downwave scattering. Secondly, the x-component of the velocity at x =
0 is the same on both sides of the gap for the entire width of the channel
as mentioned, and, finally, we have a way to relate reflection and trans-
mission coefficients for the normally propagating wave modes. Replacing
Ao with R, the reflection coefficient for the normally incident mode, and 1
— By with T, the transmission coefficient for the transmitted wave in the
normal direction, gives us the relationship between the transmission and re-
flection coefficients
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Next, matching conditions are to be prescribed on the velocity and po-
tentials at x = 0. The procedure to be used is not a priori obvious, as it
does not follow the same methodology as used if two eigenfunction expan-
sions (in y) were available, as in the case of the junction of two channels
of different widths (Dalrymple 1989). Here, a mixed boundary condition
must be prescribed. The velocities in the x-direction at x = 0 must be zero
for [ < |y| = b, the portion of the channel occluded by the breakwaters.
Using the upwave potential, ¢, we have the following condition:

k= > iV — M\ A,cosnhy =0  forl<[|=bh.............. (12)
n=0

Matching the potentials across the gap, &; = &, for |y| = [, we have

D Ajcosmhy =0 fory| =l (13)

n=0

The two conditions, Eqs. 12 and 13, are known as dual series relations
(Sneddon 1966). They are to be solved for the values of the coefficients A,,.
The conditions can be combined to make one mixed boundary condition,
which specifies the potential or the velocity along the y-axis. This condition
is G(y) = 0, for 0 = |y| =< b, where

G(y) = 2 A, cos n\y forfyl < ..o (14a)
n=0
G(y) =D VE — I\ A,cosmy —k  forl<[|=b........... (14b)

n=0

To determine the A,, several techniques can be used, including collocatlon
and lcast squares. The latter method requires that the value of [2,|G(y)[*dy
be a minimum. Minimizing this integral with respect to each of the A, leads
to the following equations:

e

G*—dy=0 form=0,1,2, .. .,%0 i, (15)
where
G Ay forly =1 (164)
— = cosm or e a
oA y y
dG
el V2= (mAYcosmhy forl<ly|=<b.................... (16b)

and G* = the complex conjugate of G. By truncating Eq. 15 to N terms,
and solving for the N values of A, simultaneously, we obtain a complex N
X N matrix equation, which we solve with the International Mathematics
and Statistics Library (IMSL) routine, LEQT1C. The choice of N must be
done carefully, as small values for N lead to truncation errors. Here we
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typically used N = 75, although in most cases far fewer evanescent modes
are needed.

VARIATIONAL APPROACH

An alternative approach to determine the reflection coefficient for this
problem is the variational approach of Schwinger (Schwinger and Saxon 1968).
The method is considered only for the case of plane waves in the upwave
region (x < 0). The advantage of the variational approach is the far-simpler
estimate of the reflection coefficient.

The matching of the potential, Eq. 13, can be rewritten in terms of the
reflection coefficient associated with the plane wave.

R+ E A,cosn\y =0 forfyl L. ... i an

n=1

However, Eq. 17 can be rewritten using the values of the coefficients (A,)
from the matching condition for the velocities, Eq. 8; namely

i
R— 2 F({) cos nhd{

E o cosnhy = 0 for|y|=l.................. (18)
n=1J-1I - (n

Further, the first term can be expressed as

1
f F(Odt
-

R R —
2bk(1 — R)

since the fraction term has a value of unity, from Eq. 8. Next, multiply both
sides of the matching condition by the velocity profile, iF(y), and integrate
over |y| = I to remove the y dependency in Eq. 18. This yields

i L [jl F({) cos nk@d{,]z
R =t V2 — (n\)? LU=

1-R !
[ roa

This final form for R is the variational expression, which can be shown to
be second-order accurate if the assumed velocity profile is first-order ac-
curate. Further, it is independent of the magnitude of the assumed velocity,
which cancels out.

The simplest assumption for F(y) is that the velocity is constant across
the gap. This results in the following form for the ratio:

R R A A R S AT A A

< - i 2k (sin n)\l>2
P by e Wi L

This series converges quite rapidly (the terms decay like n™%); 20-30 terms
provide sufficient accuracy, but note that complex arithmetic is needed due
to the form of the denominator.
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FiG. 3. Huygen’s Principle Explanation for Generation of Several Wave Trains
from Periodic Breakwater Gaps. By Superimposing Wave Crests from Various
Sources, Straight Lines Show Some of Resulting Wave Trains

A better representation of the velocity profile across the gap, F(y), is
F(y) =

where U = a constant (Sommerfeld 1964). The denominator in this form
ensures that singularities in the velocity occur at the ends of the breakwaters,
as predicted by potential flow around a barrier. Substituting this form of
F(y) into Eq. 20, gives

= i 24 Jo(n\l (23)
1-R < kz—(n)\)z o\n ) .................................

where J, = a Bessel function. As shown later, this last representation is the
better of the two. However, it converges more slowly (the terms decay like
n™?), requiring about four times as many terms for the same accuracy.

Both of the variational solutions are functions of two parameters, namely,
kb, which is the ratio of the breakwater spacing to the wavelength, and [/
b, the gap width to breakwater spacing ratio. Further, explicit resonances
occur (|R| = 1) whenever kb = nm, corresponding to k = n\. These cases
correspond to cross-tank seiching, or sloshing, as an integer number of wave
lengths fit exactly across the width, 2b.

For long waves, kb << 7, Lamb’s (1932) mhethod gives another explicit
expression (rewritten in our notation):
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FIG. 4. Amplitude (Lower Curves at kb = 0) and Phase of Refiection Coefficient
for I/b = 0.25, as Computed by Eigenfunction Method and Two Variational Meth-

ods. Eigenfunction Method: ———; Constant Velocity Variational Method: - ——
~; and Sommerfeld’s Velocity Approximation: «««+--:-

R 2i A
——=—kblog|sin | =) | ... e 24)
o Sen [0 ()
COMMENTS

The wave fields, upwave and downwave of the breakwaters, consist of
the incident plane wave train, propagating in the x-direction, plus, when kb
> ar, the progressive scattered waves, which consist of pairs of intersecting
waves, traveling at angles, *tan~'(nA\/Vk? — (n\)?) to the x-axis. There is
only a finite number of these oblique wave trains, as their propagation angles
must be between ~—/2 and +a/2. Finally, there are the evanescent modes,
with the y-component of the wave number, #A > k. These wave modes serve
to provide matching at the breakwater gaps, but then decay exponentially
away from the breakwater.

The number of progressive oblique wave trains is determined by the re-
quirement that

AV = () = 0 ettt e e e 25)

Solving as an equality, we have
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FIG. 5. Amplitude (Lower Curves at kb = 0) and Phase of Reflection Coefficient
for I/b = 0.50, as Computed by Eigenfunction Method and Two Variational Meth-
ods. Curves Are Defined in Fig. 4

where L = the wavelength of the incident wave field. Thus, when kb < =,
oblique wave trains are not generated; only the wave trains propagating in
the x-direction exist.

The presence of the oblique wave trains, predicted by the eigenfunction
analysis, is explained easily using Huygens’ principle, as illustrated in Fig.
3 (French 1971). If each breakwater gap is viewed as a diffraction source,
producing circular waves, then, by superposition of the diffracted waves from
all the gaps, the wave trains and their directions can be determined. For
example, if a straight line is drawn connecting all the circular wave patterns
that passed through the gaps at the same instant, the normally transmitted
wave train results (as shown by the vertical lines in Fig. 3). However, if
the wave issuing from one gap is connected to the wave crest that passed
through the neighboring gap one wave period before, and to the wave crest
of the next gap from two wave periods before and so on, a wave train is
created by superposition, traveling in a different direction. There is also the
companion wave train traveling at exactly the opposite angle to the x-axis.
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FIG. 6. Amplitude (Lower Curves at kb = 0) and Phase of Reflection Coefficient

for I/b = 0.75, as Computed by Eigenfunction Method and Two Variational Meth-
ods. Curves Are Defined in Fig. 4

FIG. 7. Amplitude of Reflection Coefficients from Eigenfunction Method for Dif-
ferent Dimensionless Gap Widths. //b = 0.25 —=——; I/b = 0.50: ++++++++ ;and I/b
= 0.75: ————
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CompaRISON OF METHODS

First, we examine the range 0 < kb < m, such that only the normally
incident waves are progressive; that is, there are no other directional wave
trains present. In this situation, the variational methods and the eigenfunction
methods can be compared. In Figs. 4, 5, and 6, the amplitude and phase of
the reflection coefficients are shown for the three meéthods as a function of
the dimensionless channel width, kb, for different dimensionless gap widths,
l/b = 0.25, 0.50, and 0.75. The amplitude and phase are defined by

R = |R|e™

For the smallest value of [/b, the variational approaches, which are far easier

—bpjr

FiG. 8. Phase of Reflection Coefficients from Eigenfunction Method for Different
Dimensionless Gap Widths, I/b. Curves Are Defined in Fig. 7

FIG. 9. Instantaneous Water-Surface Displacement in Front of and behind Off-
shore Breakwater Array. Five Wave Lengths Are Shown on Each Side, kb = 2.35
and //b = 1/9, and Incident Wave Train Comes from Top of Figure
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FIG. 10. Instantaneous Water-Surface Displacement in Front of and behind Off-
shore Breakwater Array. kb = 4.7 and I/b = 1/9

FIG. 11. Instantaneous Water-Surface Displacement in Front of and behind Off-
shore Breakwater Array. kb = 9.7 and I/b = 1/9

to compute than the eigenfunction method, bracket the eigenfunction method
results. (Note that 75 terms in the series were taken for all three methods.)
However, as the gap spacing increases, the variational method based on the
Sommerfeld velocity condition proves to be far better than that using the
constant velocity profile in the gap.

Lamb’s method, Eq. 24, although not shown in the figures, compares
extremely well with the eigenfunction solution for small kb and small I/b.
As kb increases (greater than unity), Lamb’s solution for |R| increasingly
underestimates the correct answer.

In Figs. 7 and 8, the amplitude and phase are again plotted for the nor-
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mally incident mode as kb varies from O to 10. Note that at kb = nm, n =
1, 2, 3, ..., there is an increase in the reflection coefficient as the cross-
tank modes are excited.

In Figs. 9-11, the instantaneous water-surface elevations are shown for
various kb values over an area equal to 10 (incident) wavelengths in each
direction to illustrate the directional nature of the waves scattered by the
breakwaters. The breakwater array is located on a horizontal line passing
through the center of the figure, and the incident wave train arrives from
the top of the figure. The water-surface elevations are shaded in these figures
with the highest water levels being white. For each case, the dimensionless
gap width, I/b, is kept constant as 1/9, and kb is varied. For Fig. 9, kb is
less than v, so only a long wave is transmitted. For Fig. 10, w < kb < 24,
and there are three wave trains on the downwave side of the breakwater.
This figure compares qualitatively with the ripple tank experiment illustrated
by French (1971). Finally, for Fig. 11, 2w < kb < 3, five wave trains are
present.

CONCLUSIONS

The reflection and transmission of waves incident on a segmented break-
water are readily computed by several means. When the wavelength is long
compared to the gap spacing, several methods (eigenfunction and varia-
tional) are available to compute the reflection coefficients accurately. Of the
variational methods, the assumption of a realistic velocity profile in the gap
between the breakwaters yields a better comparison to the eigenfunction ap-
proach.

For smaller wavelengths, the eigenfunction expansion method is used to
compute the reflection coefficients for the breakwater gap, as the variational
methods used here are no longer valid when kb > =. For this short wave
case, other wave trains exist, which travel in directions other than the normal
direction. These waves can, in fact, lead to interesting coastal processes
behind the breakwaters.

Realistic fluid effects, such as the influence of viscosity and flow sepa-
ration in the vicinity of the heads of the breakwaters, have been neglected.
These will play a role in reducing the transmitted wave height.
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APPENDIX |. THEORETICAL APPROACH FOR OBLIQUE INCIDENCE

The potential in the upwave region, including the obliquely incident wave
train, can be expressed as

o

by = eVENEAD 4 N g mVEON iy U @7

n=-—o
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where N\, = the wavenumber in the y-direction for the incident wave train.
The direction of the wave train is found from the relationship, Ay = k sin
(8), where 6, is the direction of the wave train to the x-axis.

We can expand the first term in terms of ™ by

P z C, &N
where we find, by orthogonality, that

C, = oo = mNb L (28)

(Ao — n\)b
Rewriting ¢,, we have
by = i _Si‘(‘___)\(xo ;;’)’:bervmrew + i A VI (29)
n=—co 0~ ne—oo
The potential in the downwave region is assumed to be
s = i Si‘(’x(_)‘o ‘;_):‘;)b VR ginty _ i AV gy (30)
n=—c0 0~ n=—co

which guarantees that the velocity through the gap matches on both sides.
Now, using the same matching conditions as before, we obtain the con-
dition, G(y) = 0, where

2 A L™ for [y| =1
G(y) =4 %° c. (3D

S ICNVE =N = aNVE = @ le™  forl<p|=b

n=0

where the C,’s are defined. Minimizing as before, a complex matrix equation
results for the A,’s.
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