End-point behaviour of solutions to hypersingular
integral equations

By P. A, MARTIN
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We consider one-dimensional hypersingular integral equations over finite intervals;
the integral must be interpreted as a finite-part integral. Such equations arise
naturally in various physical situations, involving thin rigid bodies or cracks;
examples are given. A method is developed for determining the behaviour of the
solution to a hypersingular integral equation near the end-points of the interval of
integration. The method uses the Mellin transform. Several examples are worked out
in detail.

1. Introduction

Many two-dimensional boundary-value problems involving thin obstacles can be
reduced to hypersingular integral equations of the general form

(H+K)f=vx), O0<z<a, (1.1)

where I and K are linear operators, v is a known function and f is to be determined.
H is the hypersingular integral operator defined by

(Hf) () = = jf g, (1.2)

S 2n ], (w0
where the integral must be interpreted as a finite-part integral,
‘_fo : ) ‘S 2f(x)
dt =1 d¢ dt ———=3; 1.
Jco e ) N ey i e e (-3

here, 0 < x < a and f(z) is required to have a Holder-continuous derivative, fe C*=.
Equivalently, the finite-part integral (1.3) can be defined in terms of a Cauchy
principal-value integral by

j(a SO dt=—%fa%dt, (1.4)

0 (x_t)z

>0

subject to the same smoothness restrictions on f. For further properties of finite-part
integrals, and a discussion on numerical methods for treating (1.1) (see Martin &
Rizzo 1989).

We assume that K is given by

(KF) (&) = A@)fle) + - f "L )t (1.5)

2n ),
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302 P. A. Martin

where A(x) is a given function and L(z,¢) is a given kernel. Let
Q={x1):0<x<a,0<t<al.

We distinguish two cases, according to properties of A and L over £2.

Case I. L(z,t) is integrable over the whole square 2 with (at worst) a Cauchy
singularity along the diagonal x = {. Often, L has only a logarithmic singularity at
x =t, or is even continuous everywhere in Q.

Case II. A =0 and L(x,t) is continuous everywhere in £2, except for a non-inte-
grable singularity at one corner, which we always take to be x =t = 0: Lz, x) ~ 272
as x— 0. Often, L is very smooth away from this corner.

Case 1 arises whenever a thin obstacle I is embedded in an unbounded medium.
Typically, (1.1) is obtained by parametrizing a boundary integral equation, which is
itself obtained using a fundamental solution (Green’s function) for the governing
partial differential equation in an unbounded region. Case I also arises if the host
medium has boundaries whose effects can be incorporated by introducing a different
fundamental solution, provided that I" does not meet these boundaries. For
example, if the medium occupies a semi-infinite region & > 0 with a plane boundary
at « = 0, then the effects of this boundary can often be incorporated by using an
appropriate system of images, leading to very smooth terms in L(x, t). Then, we have
Case 1 if I"lies completely in « > 0 but we have Case 11 if I" meets the boundary at
x = 0. In the latter situation, the image system usually gives rise to the strong
singularity at the corner of Q.

In §§2 and 3, we give many examples of hypersingular integral equations, all of
which fall into Case I (§2) or Case 11 (§3).

We remark here that singular integral equations (i.e. equations with Cauchy
principal-value integrals) are also classified in a similar manner. Thus, Case 1
corresponds to the simplest situation, as described by Muskhelishvili (1953). Case 11
corresponds to ‘generalized Cauchy kernels’, as described by Erdogan et al. (1973)
and Duduchava (1982).

Our motivation for distinguishing the two cases is twofold. First, we know that to
have a unique solution of (1.1) we must impose two supplementary conditions on the
solution f. For Case I, these are invariably

J0) = fla) = 0. (1.6)
Other conditions are possible, but usually the physics of the original problem requires
(1.6). For Case 11, the supplementary conditions are usually taken to be
fla) =0 and f(0) is bounded. (1.7)
Secondly, we are interested in the ‘edge behaviour’ of f, i.e. the asymptotic
behaviour of f(x) near the end-points x = 0 and x = ¢. For Case I, with (1.6), we
expect (for smooth, bounded v, at least)
fle) ~fuve as x—->0+, (1.8)
and flx) ~ gy (a—2x) as z—a—, (1.9)
where f, and g, are constants. In fact, for square-integrable », the leading asymptotic
edge behaviour is independent of the operator K and is always given by (1.8) and
(1.9). For Case 1I, the situation is different. With (1.7) we still expect (1.9), but
intuition does not readily provide the behaviour near = 0; it is governed by the
strong singularity in L. The situation for singular integral equations with generalized
Cauchy kernels is similar.
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Hypersingular integral equations 303

Actually, the edge behaviour can be extracted from the governing integral
equation itself. To do this, our principal tool is the Mellin transform. These are
often used to find asymptotic expansions of integrals. For example, Bleistein &
Handelsman (1975, ch. 4) show how to obtain agymptotic approximations of

oo

IA) = f h(A2) f(¢) dt (1.10)
0

for small or large values of |A|, where % and f are known functions. However, we can

view (1.10) as an integral equation for f: given I and A, we can use Mellin transforms

to find the asymptotic behaviour of f(¢) near ¢ = 0. We propose to use this method on

(1.1).

Of course, Mellin transforms have long been used to obtain exact solutions to
certain simple integral equations (see, for example, Fox 1935). More recently, they
have been used by Rose (1982) to obtain the behaviour of f(x;A) as A =0, where f
solves a particular Fredholm integral equation of the second kind over 0 < 2 < 1,
with A occurring as a parameter in the kernel. Costabel & Stephan (1983 a,b) have
used Mellin transforms to obtain the corner behaviour of solutions to boundary
integral equations over piecewise smooth closed curves. The integral equations arise
from the interior Neumann problem for Laplace’s equation, using a double-layer
representation for the solution (ef. §2.1 below).

In the present paper, we develop the Mellin-transform method. We give some
general results applicable to a wide class of operators K, and obtain more precise
results for integral operators of Mellin convolution type. Most of the physical
applications of hypersingular integral equations described in §§2 and 3 are analysed
in §§6 and 7 respectively. Section 4 is devoted to some general results on Mellin
transforms, whilst §5 is concerned with the dominant equation, ff = v.

Most of the result obtained are not new. However, they have been derived here in
a systematic manner which should find application elsewhere. Moreover, it is hoped
to develop the method further so as to treat three-dimensional problems, where one
has an integral equation over a two-dimensional region with a piecewise-smooth
boundary, and the behaviour of the solution near corners is sought.

2. Some examples of hypersingular integral equations: Case I

In this section, we give several examples of Case I, taken from potential theory,
acoustics, hydrodynamics and elastostatics. In all the examples, f satisfies (1.6); in
all but the last (§2.5), the function A(x) in (1.5) is identically zero. Representative
references to the literature are also given.

2.1. Potential flow past curved plates

Consider the potential flow of an ideal fluid past a rigid plate I". Suppose that the
corresponding velocity potential is

bot+ 9,

where ¢, is the (known) potential of the flow in the absence of I', ¢ is due to its
presence and both are harmonic. Introduce the fundamental solution

Go(P; Q) = 3In{(x—£)*+ (y — )%,
Proc. R. Soc. Lond. A (1991)



304 P. A. Martin

where P and @ have cartesian coordinates (z,y) and (£, #), respectively. Assuming
that ¢ decays at large distances and is bounded near the edges of the plate, Green’s

theorem gives

1 0
b(P) = %L[m)}aﬂ 1(P. ) ds,, (2.1)

a

where P is a point in the fluid, 0/dn, denotes normal differentiation at g€ I"and [¢(g)]
is the discontinuity in ¢ across I" at ¢. The boundary condition on I ig

Op/dn, = —0p,/on,,
whence (2.1) gives
1o

d A
— b(q)] =G ) ,
27_[: anp F[? (Q)] (O(p:q) dS{[ an ) per

ana »

We can interchange the integration with the normal differentiation at p, provided we
interpret the integral as a finite-part integral (this was proved by Martin & Rizzo
(1989) for the Helmholtz equation; see §2.2 below). Thus,

ae} 180015, 5 s, = =550 per 2.2
This hypersingular integral equation is to be solved subject to
[¢] =0 at the two edges of I (2.3)
The kernel in (2.2) is given by
0*Gy/On,on, = — N /R*+20 /R*, (2.4)
where
N =n(p)-nlg), O=(n(p)R)nq)R), R=@—-{y-—n), R=IR|

and n(p) = (v}, nd) is the unit normal vector at pe [l
Next, we parametrize I as

= {(z(0),y):0 <t < a}.
Let p and ¢ correspond to parameters s and ¢ respectively. Then
n(q) = (nf, ng) = (—y'(t), «'(1))/w(l),

with w(t) = 4/ ((2'())*+ ('(1))?). If we expand the kernel (2.4) for small |s—¢|, we find
that

622%;q = w(s_);(t) {(S_lt)phszi(s) +0(|8——t|)} (2.5)
where the singular term in (2.5) comes solely from the first term in (2.4),

120hed = 6(xy” — "y )2 — 3w(x"2 + y"?) + 2w (2’2" +y'y")
and we have assumed that I"is a C® curve. It follows that (2.2) can be written as (1.1),
wherein f() = [¢(9)] and

v(s) = —y' (0, /0w) + 2 (0o / Oy).
Moreover the edge conditions (2.3) imply that f must satisfy (1.6). This provides an
example of Case I, with a continuous kernel L.

Proc. R. Soc. Lond. A (1991)
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In particular, suppose that I"is flat, occupying the segment 0 < « < a of the x-axis.
Then 4 =1, @ = 0 and we obtain

L 0 .
on (x—t)2dt =v(x), 0<x<a, (2.6)
where v =0¢,/0y evaluated on y=0. (2.7)

Equation (2.6) is the simplest hypersingular integral equation over a finite interval;
we call it the dominant equation.

loakimidis (1982) has derived the dominant equation (2.6) in plane elastostatics,
for a straight pressurized crack in an unbounded solid. In this context, (2.6) is also
equivalent (using (1.4)) to Bueckner’s equation (Bueckner 1973, p. 268).

2.2. Acoustic scattering by a hard plate

Jongider a plate I” immersed in a compressible fluid. A time-harmonic incident
sound wave (with velocity potential ¢,) is scattered by the plate; the corresponding
scattered wave (with potential ¢) must satisfy a radiation condition at large
distances. The governing differential equation is the Helmholtz equation. All other
conditions are as in §2.1. The appropriate fundamental solution is

G1(P; Q) = —§inHP (kR),

where H" is a Hankel function and k is the given wavenumber, assumed real and
positive. Since

G,~ImnR=0G;, as R-0,
we obtain the integral equation (2.2), with , replaced by ;. The kernel is (cf. (2.4))

2 ¢
T (im(GkR) HO (R)) + o (i (RSP (kD))

a_np on,

both expressions in braces approach unity as kR —0.

After parametrization of I, we obtain another example of Case I, with a
logarithmic singularity in L(x,t). In particular, for a straight hard strip along
0 < x < a, we obtain

1 1

— o L(s,t)pdt = v 2.
o Of(t){(s_t)2+ (s, )} v(s), 0<s<a, (2.8)
where v is given by (2.7) and

_imk HP(kls—t) 1
T2 s—1 (s—1)2

This problem for curved I is discussed further by Martin & Rizzo (1989).
Numerical results are given by Frenkel (1983).

L{s, ) ~—2In|s—i| as |s—t|—=>0.

2.3. Diffraction of water waves by a submerged barrier

Consider a thin impermeable plate I" submerged beneath the free surface of deep
water. The plate is oscillated in calm water, or it is held fixed while a given surface
wave is incident upon it. This leads to a boundary-value problem for a radiation
potential ¢ in the half-plane y > 0, where ¢ is harmonic and satisfies the boundary
condition

K$+0op/oy=0 on y=0,

Proc. R. Soc. Lond. A (1991)



306 P. A. Martin

the mean free surface. Here, K = w?/g, w is the frequency of oscillation and ¢ is the
acceleration due to gravity. The appropriate fundamental solution is

G,(P;Q) = InR—1n (X2 4 ¥Y?)— 20,(X, V), 2.9)
where DX, Y) = {w e *¥ cos chﬂ
ol )=y —K’

X =x—¢, Y = y+n and the contour of integration is indented below the pole of the
integrand so that (7, satisfies the radiation condition. Since

Yo~InR =0, as R—-0, provided Y >0,
we again obtain the integral equation (2.2), with G, replaced by (7, (the right-hand
side is equal to 0¢/0n, and is prescribed on I'). The kernel is given by (cf. (2.4))
*G¢, AN 20 0D, { y2—-X2 2KY

= T LK (P nd— P pd) 8 g QKD (X 1)
on,,on, R2+R4+ (n{ ng—mny ni) X (X2+Y2)2+X2+Y2+ D, (X, )}

After parametrization of I, we obtain another example of Case I, with a
continuous kernel. In particular, consider a flat plate, so that I" is parametrized as

x(t) = tsina, yit)=d+tcosa, 0<t<a,

where the plate is inclined at an angle a to the vertical (|o| < im) and d is the distance
between the top edge and the mean free surface. The integral equation (2.2) can be
written as (2.8), where

YP—X®  2KY

L(s,t) = (X2+Y2)2+X2+Y2

+2K2 (X, V), (2.10)

X = (s—#H)sina and Y = (s+1t) cosa+ 2d. Numerical solutions have been obtained
with this formulation by Higson (1988), using a boundary element method.

Three special cases are of interest. First, if the plate is deeply submerged, we can
let d - co whence L —0 and we recover (2.6). Second, if the free surface at y = 0 is
replaced by a rigid wall, we can set K = 0, whence

Lis, t) = (Y2 = X% /(X?+ T?)% (2.11)
Third, if the plate is vertical, we have X = 0 and Y = s+¢+2d, whence
L(s,t) = (1/Y*)+ 2K/ Y)+2K?®,(0, T). (2.12)

We note that the problems of wave radiation and scattering by submerged vertical
barriers can be solved exactly (see Evans 1970). Goswami (1982) has also given a
hypersingular integral equation for the scattering problem, although he does not
comment on the strong singularity in his kernel.

2.4. A pressurized crack in an elastic half-space

Consider a homogeneous isotropic elastic half-plane, x > 0, with a stress-free
boundary at # = 0. The solid contains a flat crack perpendicular to # = 0, with its two
edges at (4,0) and (a+d,0); it is opened by a prescribed pressure, p(x). The
corresponding elastostatic boundary-value problem can be reduced to (2.8), where
v(s) = —(1—v)p(s+d)/p,v is Poisson’s ratio, x is the shear modulus, f(¢) is the
discontinuity in the normal component of the displacement across the crack at
x=d+t and

L(s,t)y =—(1/Y*)+12(s+d) (t+d)/Y* (2.13)
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with ¥ = s+1t+2d, as in (2.12). The hypersingular integral equation for this problem
was given by Kaya & Ergodan (1987). It can be derived using Melan’s solution (1932
see Telles & Brebbia 1981) for a point force in a half-plane. Further crack problems,
leading to similar integral equations, are treated by Kaya & Erdogan (1987) and by
Bueckner (1973, §5.4).

2.5. Reinforced cracks

Consider an unbounded elastic solid containing a flat crack, whose faces are
connected by distributed linear springs. The crack is opened by a prescribed tension
perpendicular to the crack. The corresponding boundary-value problem was analysed
by Rose (1987), who reduced it to a singular integral equation; subsequently, Hori
& Nemat-Nasser (1990) reduced it to

(Hf ) () + Alx) flxe) = v(x), O<z<a. (2.14)

Here, fis as in §2.4, v is proportional to the prescribed tension and A is known in
terms of the springs. A physical constraint is that both A and » should be non-
positive.

Equation (2.14) is also equivalent to Prandtl’s equation, which arises in
aerodynamic theory (see, for example, Muskhelishvili 1953, §121). It also arises in the
scattering of low-frequency sound waves by a thin elastic plate (Cuminato et al. 1990,
eqn (6.3)).

3. Some examples of hypersingular integral equations: Case II

In this section, we give several examples of Case 11, obtained as limiting cases of
some examples in §2. In all the examples, f satisfies (2.8) and (1.7).

3.1. Rigid plate meeting a rigid wall

Jonsider potential flow past a finite flat rigid plate attached to an infinite rigid
wall. This is a special case of the problem discussed in §2.3. Set d =0 in (2.11),
whence

($* 4 82) cos 20+ 2st
L(s,t) = 3.
(5:) (s2+ 1%+ 2st cos 200)2’ 3-1)

where a is the angle between the plate and the normal to the wall (|| < im). If the
plate is perpendicular to the wall, we obtain

L{s, t) = 1/(s+1)% (3.2)
3.2. Diffraction by a vertical surface-piercing barrier
Set d = 0 in (2.12) to give
1 2K

il 2
(S+t)2+8+t+21{ D0, 5+1). (3.3)

[J(S, t) =

The corresponding boundary-value problem was solved exactly by Ursell (1947).
3.3. Pressurized edge-crack in a half-plane
Set d = 0 in (2.12) to give
L(s,t) =—1/(s+t)2+12st/(s+ )% (3.4)

The corresponding boundary-value problem can be solved exactly ; see, for example,
Stallybrass (1970) who gives a solution for v(s) = ¢# with g > —1.

Proc. R. Soc. Lond. A (1991)
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4, Mellin transforms

In this section, we quote some results on the Mellin transform, defined by

Mf = flz) = f Sy tda. (4.1)

In the sequel, we always use the notation
2= 0+ir
for the transform variable z.
If f(x) solves (1.1), it is only defined for 0 <z <a. We extend f(x) by zero for
x> a, whence f(z) exists and ig analytic in a right-hand plane; within this plane,
|flo+ir) >0 as |7|-> 0. (4.2)
If we know the behaviour of f(x) for small x, more precise results are available.

Theorem 1. (Bleistein & Handelsman 1975, Lemma 4.3.6) Suppose that f(x) = 0 for
x> a and

w N(m)
foy~ 2 ¥ 4,2 (nx)" as x>0+, (4.3)
m=0 n=0

where Re (a,) < Re (a,) < ... and 0 < N(m), finite. Then f(z) is analytic in o > — Re (a,)
and can be analytically continued into o < —Re(ay), with poles at z = —a,,; the

principal part of the Laurent expansion of f(z) about z = —a,, is

N(m) (—1)"n!

Appp———- 4.4
£ =

Moreover, (4.2) holds for all values of o.

_ So, the (asymptotic) expansion of f(x) for small x determines precisely the poles of
f(2). For our application, we also need a converse result: given the poles of f(z),
deduce the expansion (4.3).

The inverse Mellin transform is given by

1 ction |
) = — 2 d 5
fle) = 5 - L_m.f(z) v, (4.5)
where ¢ > — Re (a,). This inversion formula holds for all x > 0 (the extension of f(x)
by zero is continuous, since f(a) = 0). Formally, we obtain the expansion (4.3) by
moving the inversion contour to the left; each term arises as a residue contribution
from an appropriate pole in the analytic continuation of f(z), which we shall obtain
from (1.1). This process can be justified.

Theorem 2. (Oberhettinger 1974, p. 7) Suppose that f(z) is analytic in a left-hand
plane, o < ¢, apart fmfn poles at z = —a,,, m = 0,1,2,...; let the principal part of the
Lauwrent expansion of f(z) about z = —a,, be given by (4.4). Assume that (4.2) holds for
¢ <o <c Then, if ¢ can be chosen so that

—Re (ap1) < <Re(ay)

Sfor some M, we have

M N(m)
flexy= 2 X 4,,x% (nx)"+ R,,(x), (4.6)

m=0 n=0
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1 ¢’ +i00 - .7(/‘_0/ o '
where Ry () = %J/_m fe)a#dz = o | . (¢’ +ir)a " dr.
The remainder Ry, (x) is o(x®¢ @) if, for example,
f |fle’ +iT)|dr < 0, (4.7)

whence (4.6) is an asymplotic approximation.

There are similar theorems relating the behaviour of a function v(x) for large x with
the properties of its Mellin transform #(z) in a right-hand plane. The following is
sufficient for our purposes.

Theorem 3. (Bleistein & Handelsman 1975, Lemmas 4.3.2 and 4.3.3) Suppose that
v(x) is bounded as x— 0 and salisfies

v(x) ~ Cx™@el®® aqs x> 00,

where C, o and w are constants, with o real. Then, 5(z) is analytic for 0 < o < Re (),
cmd can be continued into o = Re (a) as follows.
) If o = 0, the continuation of #(z) has a simple pole at 2 = o with residue —C.

(i) If w #0, 9(z) can be ((mtmued analytically into the whole right-hand plane
o = Re ().

Bleistein & Handelsman (1975, ch. 4) give a detailed analysis of the use of Mellin
transforms for finding asymptotic expansions of integrals such as (1.10). Davies
(1985, §§12—14) describes other applications.

5. The dominant equation

Consider the dominant equation,

L fe
2n ], (x t)_dt

v(x), 0<z<a. (5.1)

Suppose that v(x) = ¢'(x), where g(x) e C** for 0 < « < a; thus v can have integrable
end-point singularities. Then, the general solution of (6.1) is (Martin 1990)

=2 e A+
Sfl) = fo v(t)ln(a(x+t)—2xt+2 v (@la—2z) (a—t)))dt+\/(x(a—x))’ (5.2)

where 4 and B are arbitrary constants. If we impose the edge conditions (1.6) on f,
we must take 4 = B = 0 in (5.2). An integration by parts then gives

2 ()

If we restrict » to be square-integrable (so that g(f) = O(t**%) as t >0, with w>0),
rather than merely integrable, we can extract the behaviour of f(z) as x—0; it is
given by (1.8), with

“ Vi{a)g()

.f(): 1t g\/( —t)

__d f V(e w (5.4)

de
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after another integration by parts. The expression (5.4) is well known in fracture
mechanics (see Barenblatt 1962, p. 90). Note that the edge behaviour is not given by
(1.8) if v is not square-integrable (sce Muskhelishvili 1953, §29).

Let us now obtain similar results using Mellin transforms. For simplicity, assume

that v(z) = X v, 2" forsmallx; (5.5)

n=0

v(x) is given for 0 < z < a. Define v(x) for > a by the left-hand side of (5.1), whence
v(x) ~ 2% as x> o0. Thus, #(z) is analytic for 0 <o <2 and can be analytically
continued into the whole plane apart from poles. In particular, #(z) has simple poles
at z = —N with residue vy ; here, and below, N is always assumed to take on integer
values, starting from zero: N = 0,1,2,.... (If the expansion of » is more complicated
than (5.5), the corresponding poles of #(z) in a left-hand plane are given by Theorem
1.) Moreover,

[#(o+iT)| >0 as |1|—>o0 (5.6)

for all values of .
We also know that f(0) = f(a) = 0, whence

flz) is analytic for o >0 (5.7)

and has poles in o < 0. We locate these poles using the integral equation (5.1). Taking
its Mellin transform, using the result

Y Ay = —mfels _

.%0 (x—t)zd% ¥z cot (mz) for 1<o<1,

(which is obtained by combining (1.4) with (6.8) below) we obtain
zeot (m2) flz) = —26(z+1) for —1<o<1.

Hence, cos (nz) f(z) = —2sin (n2) #(z+1)/z for —1 <o <1.
Since cos ntz has zeros, we deduce that
f(z) = —2sin (n2) #(z+ 1)/zcos (rz) for —1<o<1, z#+1i (5.8)

Note that this is not a formula for f(z), since & depends on f. However, we can use it
to obtain information on f. In particular, when combined with (5.6), we have

flo+iry=o(r™Y) as |r|—>o0, (5.9)

whence (4.2) and (4.7) hold.
It follows from (5.7) that #(z+ 1) must have simple zeros at the simple zeros of
cos (mz) in o 2 0, whence
TN +3) = 0.
We then see from (5.8) that f(z) is analytic for ¢ > —1. Take the inversion contour
along o = ¢, with ¢ > —4. By Theorem 2, we can move this contour to the left,

crossing the first pole at z = —§; this is a simple pole, whence the edge behaviour of
fis given by (1.8), as expected. The coefficient f, is given by the residue of f(z) at
z=—1

fo = —(4/m)i(h). (5.10)

It can be shown that the two formulae for f,, namely (5.4) and (5.10), are in
agreement ; see Appendix A.
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We can continue moving the inversion contour to the left. Noting that the simple
poles of #(z+1) at z = —(N+ 1) are removed by the simple zeros of sin (nz), we see
that f(z) has simple poles at z = —(N+1), whence

f@)~ 3 f,a" as  x—0. (5.11)

n=0

6. Development of the method for Case 1

We wish to use the Mellin-transform method described in §5 on more complicated
equations. Consider (1.1), namely

Hf) (@) + (Kf) () =v(x), 0<ax<a; (6.1)

as before, we use (6.1) to define »(x) for x > a. In general, we cannot expect to be able
to calculate the Mellin transform of Kf explicitly. However, we can obtain some
results using asymptotic expansions of Kf: more terms in these expansions will yield
more terms in the edge behaviour of f. In §6.1, we give some general results along
these lines, with applications to some of the examples in §2.

In some applications, (Kf) (x) can be written as a Mellin convolution (or a linear
combination of several). This is useful, for we know that

/l{:ﬂf vl (%)f(t)dt} = b+ ) fe+A+u+1). (6.2)
1)

One application of this result is deseribed in §6.2. Further applications are made in
§7, where Case Il is considered.

6.1. Use of asymptotic properties of Kf
Suppose that there are constants «, 8, ¢ and € such that

Cox™™ as x— 0,

(Kf) (2) ~ { (6.3)

Cox? as x>0,

where « > 2 and > —3 (we could also have included logarithmic terms). Then,

(Kf) () is analytic for —f < o < a; its analytic continuation has simple poles at
z=—p and at z = a (Theorems 1 and 3(i)). Note that the restriction on & implies
that v(x) ~ x? for large x, whence #(z) is analytic for 0 < o < 2, as before. On the
other hand, the restriction on g implies that the leading edge-behaviour is
determined by H.

Taking the Mellin transform of (6.1) yields

~ o~

zoot (nz) f(z) —2(Kf) (2 4+ 1) = —27(2+ 1)
for —o, < o < 1, where o, =min (1,5+1). (6.4)
Hence, flz) = —2sin (n2) {5(z+1)—(k?) (z+ 1)}/z cos (7z) (6.5)

for —o, <o <1, 2# —% using (5.7). Thus, the leading term in the asymptotic
expansion of f(x) near x = 0 is again given by (1.8). The next term depends on the
magnitude of 4, as the next pole to the left of z = —1is at z = —min (£, f+1). Note
that if (Kf) (z) has a simple pole at z = —N, this will be removed by a corresponding
zero of sin (mz).
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An example of this situation is potential flow past a curved plate (§2.1). It can be
shown that (6.3) is satisfied, with « = 2 and # = 0; it is convenient to define v(x) for
x > a by setting

2(t) = a(a)+(i—a)a'(a) and  y(t) = y(a)+ (t—a) y'(a)
for ¢ = a. Indeed, (Kf)(x) has a Taylor series expansion for small x, provided I is
sufficiently smooth. SubJeet to this proviso, the edge behaviour is given by (5.11).

Suppose now that K satisfies (6.3) with £ > —1 but max (0, —f) <a < 2. One
consequence is that v(x) ~ C_x™™ as x—>o0. Nevertheless, (6.5) still holds for
—0, <o <1, 2#—1; the expression in braces in (6.5) does not have any singu-
larities for «—1 < o < 1. The edge behaviour of f can now be deduced. As an
example, consider

LB [0 S0

(Hf) (x) + Axf(x) 2n pos

dt=w(x), O0<x<a (6.6)
where 4, B, y and & are constants, with y > —1 and § > —3. This equation coincides
with (2.14) when A(x) = Ax” and B = 0. A comparison with (6.3) shows thata = 1—¢
and £ = min (y, d), whence (1.8) holds.

The same method works if (6.3) is replaced by

. {Ooo P eimx as x> o0,
~

K
(Kf) () C.of a8 ot

(6.7)
with o > # > —1and w real. Now, (the continuation of) (Ef ) (2) is analytic throughout
the right-hand plane o > — £ (Theorem 3 (ii)). An example of this situation is acoustic
scattering by a plate (§2.2), for which the parameters in (6.7) are « =3, f# =0 and
w=k.

6.2. Mellin convolutions

The singular integral in (6.6) is a Mellin convolution: its Mellin transform is given
by (6.2), wherein A = &, u = —1 and k(x) = (x—1)". Since

f Y Qe =—ntcot (m2) (6.8)
0o £—1

for —1 <0 <0, (6.6) gives

tan (nz)

flz) = ——"2{28(z+ 1) — 2A4f(2+y+ 1)+ Beot (n(z+ ) flz+ 6+ 1)} (6.9)

for —o, <o <1, z%# —3, where, from (6.4), o; = 1 +min (0,7, d). This is an explicit
form of (6.5). It shows that f(z) is analytic for o > —1, with a simple pole at z = —,

whence (1.8) holds. The coefficient f, is given by
fo == (4/m){5(}) — Afly +1) — 1B tan (n9) flo+ )}

We now move leftwards, using a ‘bootstrap’ argument. Thus, we know that f(z) has
a simple pole at 2 = —1. Hence, from (6.9), we deduce that the next pole is at
z=—0,—%oratz=—n—3, where n is a positive integer, the actual pole depending
on the values of v and §. Note that, in general, all these poles are simple (they are
absent if they coincide with a negative integer). The result is an algebraic term in the

agymptotic expansion of f, )
f@) ~ fodb+ o2
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where v > } is known. Logarithmic terms can arise for certain choices of y and §. For
example, if y =4 =0, (6.9) reduces to

flz) = —2tan (m2) {5z + 1) — Af(z+ 1)} Jz—Bf(z + 1) /=,
and this shows that f(z) has a double pole at z = —3 (if 4 # 0), whence
f@) ~ fyad+a¥(fyInaz+f,),
where f, = —44f,/(3n).

7. Development of the method for Case II
In this section, we consider Case II, i.e. we consider equations of the form
1 {“ 1
where L(x,x) ~x? as x—0. (7.2)

As before, we extend f(t) by zero for { > a and define ¢(x) for x > a by the left-hand
side of (7.1).
The integral equation (7.1) is supplemented by the conditions (1.7); we write
f(0) = f,, an unknown constant. It follows that
f(z) is analytic for o >0 (7.3)
(cf. (5.7)). Moreover, since f(0) is required to be bounded, f(z) can only have a simple
pole at z = 0,

fiz) _fo +f 4 3 fimgm (7.4)

AR
in a neighbourhood of z = 0; if fhad a higher-order pole, f(x) would be logarithmically

infinite at x = 0 (Theorem 2).

7.1. Rigid plate meeting a rigid wall
For this problem, L is given by (3.1):

Lz, ty = t72(x/1) (7.5)
here () = (x®+1)cos20+2¢ 1f e e 2l
wher T (@ 1422 c0820)2 2 |(x+eTH)E T (x4 e %2

and 0 < o < {n. We know that

0 .2 g
f Loy = (7.6)
0 X+t sin (mz)
© o xf el t
for —1 < o <0, whence L Y de = sin (12) (7.7)
for —1 <o <1 and lz4+1) =— "2 cos (202).
sin (mz)

Hence, taking the Mellin transform of (7.1), using (6.2), we obtain

28(z) f(z)/sin (n2) = §(z+ 1), (7.8)
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where S(z) = sin (3 + o) 2) sin (3r—a) 2).

Equation (7.8) is valid for —1 < ¢ < 1. Within this strip, S(z) only vanishes at
2z = 0, where it has a double zero. Hence

flz) = H(z+ 1) sin (12)/28(2) (7.9)

for —1 <o <1, 2# 0. In fact, by (7.3), we can deduce some properties of #(z) in
o>1,asin §5.

We can take the inversion contour along o = ¢, with ¢ > 0. Moving the contour
leftwards, we cross the pole at z = 0. This must be a simple pole, whence #(1) = 0 and

Jo =m0 (1)/(Gm* — ).

The result #(1) = 0 can be verified independently. Green’s theorem gives

f(%dé’:()

.on

where C is any closed contour in the fluid. Choose C to bound a large sector, with one
straight side along half of the rigid wall and the other along the plate and its
extension, and a small indentation where the plate meets the wall. There is no
contribution from the indentation (because ¢ is bounded there) or from the wall
(where 0¢p /0y = 0), and the contribution from the large circular arc closing the sector
vanishes as the arc recedes. The remaining contribution is proportional to #(1).

For a > 0, the next pole encountered is at z = —a,, where
1 <a, =2rn/(n+2a) <2,
whence Sy~ fo+fie™ as x—>0, (7.10)
where fi = B(1—a,)sin (na,)/nsin (3n—a) a,.

The result (7.10) could also have been obtained formally by the method of separation
of variables in plane polar coordinates.

The third term in the expansion depends on the angle a; we merely examine the
zeros of sin (At + )z in o < — 1. In general, all the poles of f(z) in & < 0 will be simple
if & is an irrational multiple of in; if

a=mp/q

for some integers 0 < p < ¢, f(z) will have a double pole at z = —2¢, leading to
logarithmic terms in the expansion of f(x).
Finally, consider the special case & = 0, when (7.9) reduces to

J(z) = (2/2) 8(z+ 1) cot (3mz).
We know that §(z) has simple poles at z = — N with known residues v . It follows that
fx) =f,+(2/m)v, 2*Inz+O0(x?) as x>0, (7.11)

i.e. the coefficient of 22 In'x is known explicitly.

We can understand this last result as follows. Recall that, since & = 0, the plate is
perpendicular to the rigid wall. By reflection in the wall, we can consider the
equivalent problem of a flat plate of length 2a¢ (along —a <x<a, y=0) in an
unbounded fluid. The data v(x) is given for —a < < a, but is symmetric about
x = 0. The presence of the term », in (7.11) is due to data wv,|z|, which is not
differentiable at x = 0 and so gives rise to a weak singularity in the solution.
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7.2. Pressurized edge-crack in a half-plane
For this problem, L is also a Mellin convolution, given by (3.4) and (7.5), with
) =—1/(x+1)*+12x/(x+1)*
whence l(z+1) = mz(1—222)/sin (nz)

for —1 < o < 1, using (7.7) and its second derivative with respect to ¢{. Hence, the
Mellin transform of (7.1) is given by (7.8), where

S(z) = t—2%—1cos (m2) = sin? (3nz)—22 = 8, (2) S_(2),
say, where S, (2) = sin (3nz) £ 2.

Asin §7.1, 8(2) has a double zero at z = 0, and no other zeros in —1 < o < 1. Hence,
we obtain (7.9), (1) = 0 (which can also be verified independently) and

fo =¥ (1)/(r2—1).
The next zero of S(z) is given by S_(—1) = 0; noting that sin nz also has a zero at
z = —1 whilst #(z+ 1) has a pole there, we deduce that
fl@) ~ fo+imvy .
This gives an explicit formula for the slope of the crack-opening displacement at the
mouth of the crack.
The remaining zeros of S(z) occur in complex-conjugate pairs. The next satisfy
S.(2) = 0 and are given approximately by
=—2.740—1.1191 = — g, —ir,,
say, and its complex conjugate. Then, we obtain
Sfl@) ~ fo+invgx+ Fa® cos{1yIn x4 8} (7.12)
where the real quantities F' and ¢ are defined by
F el = §(zy+ 1) sin 2y /2, S_(24) S’y (2,)-

The occurrence of the functions S_(z) is not surprising. They arise when the
method of separation of variables is used inside an infinite elastic right-angled wedge,
with traction-free boundaries ; locally, the behaviour near the mouth of the crack is
expected to be given by appropriate solutions of the wedge problem. The solutions
of the transcendental equation S (z) = 0 have been tabulated in the literature (see,
for example, Karp & Karal 1962; Gregory 1979; and references therein).

7.3. A wvertical surface-piercing barrier
For this problem, L is given by (3.3), whence (7.1) can be written as

1 { 1 1 K
o Of(t){(y—t)2+ TN } j {— +Kd5(y+t)}dt =v(y), (7.13)
dk

F (7.14)

for 0 < y < a, where DY) =D,0,Y) = J: e vy
0

and we have used y for the independent variable, since the plate occupics a segment
of the y-axis.
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The equation (7.13) is more difficult to treat, as it is not a Mellin convolution.
Nevertheless, we can find its Mellin transform. First, we note that the first term on
the left-hand side of (7.13) corresponds to a plate perpendicular to a rigid wall, as
studied in §7.1. Next, we can show that v(y) ~ Cy 2 as y > o0, where

2 [*
C= EL {f'O+Kf@)}tde

and, as usual, v(y) is defined for ¥ > a by (7.13). For, by rotating the contour onto
the positive imaginary axis, we have
® dk 1 1 2
D(Y) = 2mi —KY —ikY ~ —_ — .
(Y) Tie +L e ik KY (KY) (KY) as y->o0
It follows that #(z) is analytic for 0 < ¢ < 3.
In Appendix B, the Mellin transform of the second term in (7.13) is calculated.
Thus, y
f(z) = N(2)/28(2) (7.15)

for —1 <o <1, z# 0, where
S(z) = sin?(inz), N(z) = —KQ(2)+5(2+ 1) sin (nz)

and Q(z):F(z+1){‘;;Zfdf(t)etht— g —fé——_%ﬂz+n+l)}. (7.16)

We proceed as before, choosing the inversion contour along o = ¢ > 0. Moving
leftwards, we meet the pole of f(z) at z = 0. At first sight, this appears to be a triple
pole, whereas it must be a simple pole (with Laurent expansion (7.14)); this implies
that N(0) = 0 and N'(0) = 0; these imply that @(0) = 0, which is easily seen to be true
from (7.16), and

KQ'(0) = (1),

which can also be verified independently (see Appendix B). ~
The next pole encountered is at z = —1. To determine the behaviour of f(z) there,
we use the recurrence relation

Q(z) = —(K/(z+1)) Q=+ 1)—flz+1),
which is eagily derived from (7.16). Thus, near z = —1, 28(z) ~—1+4+(z+1) and
N(z) = (K2/(2+1)) Qz+ 1) + Kf(z+ 1) + #(z+ 1) sin (12)
~ K2Q(0)+ K(fy/ (24 1) +o) =7,

whence f&) ~ fi)/ e+ 1)+ 1,

where i =—Kf, (7.17)
and fi = —K*Q'(0)—Kf,— Kf, +m,. (7.18)
Note that there is a simple pole at = = —1, and that we have also calculated the
constant term f, in the Laurent expansion of f(z) around the pole.

The next pole is at 2 =—2; it appears to be a triple pole. Using the recurrence
relation again, and known properties of f(z) around z = 0 and z = — 1, we find that,
near z = — 2,

28(z) ~ —in*(z+2)? (7.19)
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and

K? 2 K? N
_(z_'_Ql;z(:_'_)Q)_vz_!_1f(2+2)+Kf(Z+1)+5(z+1)sin(nz)

~ K3Q(0)+ K2(1+ (2+2)) (fo/ (2 +2) +fo) + K (fi/ (2 +2) +f,) + 1o,
= (K/(2+2)) (Kf, +f1) + K*Q(0) + K2(f, + f,) + Kf, +mo,.

But, from (7.17), we see that the first term vanishes, whence there is only a double
pole; we have

N(—2) = K*Q"(0)+ K*(f, + o) + Kf, + v, = n(Kv,+v,)

and  N(z) =

and flz) ~ —%1(?1-;;1.
It follows that
J) ~ foll=Ky)+(2/m) (Kvg+0) (g Iny +fo?) (7.20)
as y 0. It is noteworthy that the coefficient of y*Iny is given explicitly as
(2/m) (Kv(0)+v(0)), (7.21)

where v(y) is given for 0 < y < a. In fact, this coefficient was given many years ago
by Kravtchenko (1954, p. 58) in his analysis of the motion generated by a
wavemalker.

If the barrier is scattering an incident regular surface wave, v(y) is proportional to
e %Y whence Kv+v' vanishes identically, and so the logarithmic term in (7.20) is
absent. Indeed, it can be shown that, for this particular problem, all logarithmic
terms are absent; this is in accord with Ursell’s exact solution (1947).

T am grateful to my good friend Lassi Péivérinta for interesting me in the use of Mellin transforms
for asymptotics. This paper was completed while I was visiting the Groupe Hydrodynamique
Navale, Ecole Nationale Supérieure de Techniques Avancgées in Palaiseau; I am grateful to Marc
Lenoir and his colleagues and students for their generous hospitality.

Appendix A. Equality of two expressions for f,
Write Barenblatt’s formula (5.4) as

fo = (4/1) (@ —36)),

where Q, = ﬁo v(t)%—fﬂ“—;—gg—wv(t) dt (A1)

We show that @, = 0 (cf. (5.10)). From (1.4), we have

—1d [ 118) 4

Substituting into (A 1) and integrating both integrals by parts gives

—1 [
=1 f S Qu() e,
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= —t)—+/a d
where Qu(&) = ftzt_ f\/tz t)_t\/at_tg

Q,(£) vanishes identically for 0 < £ < 1. This can be shown using contour integration.
In a complex ¢-plane, with a cut along the positive real axis, consider

J AV (t— —1\/a dt
Vit—a)y t=§

where the closed contour C consists of the large circular arc t = Re'?, 0 < 6 < 2n,
together with the two sides of the cut and suitable indentations around the two
branch points (! = 0 and ¢ = a) and the pole at ¢ = £. Routine calculations now show
that ¢, = 0, whence @, = 0 and (5.4) reduces to (5.10).

Appendix B. The vertical barrier
(a) A Mellin transform
Using (7.6) and noting that

® dk
— mie— Ky —ky
D(y) = rwie +£ e
and 4 {e %%} = k™*I(z), we deduce that
—+ Ko ¢
sm J f {7 +t+ v+ )}dtdy
Je+) e _
= N 1 Kt
sin (72) K (z+ f dt+ I'z+1) f Pit;z+1)dt
ooe—lct dk
h ;7)) = —
where Y(t;z) }0 K
We evaluate ¥ by taking its Laplace transform:
o 0 k—z
f{?’}zj Pit;z e‘ptdt=f [
) s (=K) (4 K)

T » Pt
dk = K — .
p—i—Kf {k K p+k} p—i—K{ cot (72) sin (nz)}

Now, (p+K)™' = Z{e %} and

pfz © —K\* ( K) -~
p+K  p Eo( P ) B Z (n+2+1)${ b

.. = cos(mz) _,, & (—K)"t"t®
S”‘t’z"sinmz){ K n_or<n+z+1>}

whence

and the stated result for @(z), namely (7.16), follows after some simple algebra.

b) Proof that KQ'(0) = wi(1)

We have
0%Q, /02 08 = — 0°(,/0x® = 0@, /Oy?
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[ 2, 26

. el T Ty

whence = KGy|,y = —2KD()

y=0

on the barrier. Integrating the governing integral equation with respect to y then
gives

KJaf(t) () dt = (1)

But the left-hand side of this equation is precisely K¢'(0), as follows directly from
(7.16) and the known expansion

Dy)=—(nKy—in+y)e X¥+ 3

m=1

(Yu & Ursell 1961), where v = 0.5772... is Euler’s constant.

St —
m! m

(—Ky)" (1 1 1
(1 2 )
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