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EXACT SOLUTION OF A SIMPLE HYPERSINGULAR
INTEGRAL EQUATION

P.A. MARTIN

ABSTRACT. We obtain the general solution to the sim-
plest one-dimensional hypersingular integral equation; the in-
tegral is a Hadamard finite-part integral over a finite interval.
We use elementary methods, relating the integral equation to
a singular integral equation with a known solution. Despite
this, our formula appears to be new.

1. Introduction. We consider the hypersingular integral equation

(1.1) Hf = E ][1 1) dt = v(z), -l<z <1

T J_1 (z—1)?

Here, v(z) is a known function and f(z) is to be determined. The integral must
be interpreted as a Hadamard finite-part integral, defined by

02 f =l [ s [ e

where |z| < 1 and f is required to have a Holder-continuous derivative, f €
C1H*(—1,1). The finite-part integral (1.2) is related to a Cauchy principal-value
integral by

[ CEOP o (U

(13) (=02 dr J_jx—t

provided that f € C“; indeed, (1.3) is sometimes taken as the definition of
a finite-part integral. Further properties of finite-part integrals and numerous
references to the related literature can be found in [6, 7].

In this short paper, we give the general solution of (1.1) for v in a suitably
restricted class of functions. This formula seems to be new, and is obtained by
exploiting (1.3).

The general solution of (1.1) contains two arbitrary constants, which can
be determined by imposing two supplementary conditions on the solution, f.
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For example, the integral equation (1.1) arises in potential flow past a thin
flat rigid plate. In this context, f represents the discontinuity in the velocity
potential for the flow across the plate. Then, the appropriate supplementary
conditions are

(1.4) f(=1)=fQ1) =0,

as these ensure that the velocity potential is continuous at the two plate edges
(x = £1). With these conditions, we find that

(1.5) (H™ ') (@) = %/_1 v(t)log (1 —zt+ \/‘fl_—t‘ﬁ)(l - t2)> “

The paper concludes with some remarks on (i) closed contours, (ii) pseudo-
differential operators, (iii) Chebyshev polynomials, and (iv) non-integrable v(x).

In many applications, (1.1) is generalized to
(1.6) (H+ K)f =,

where K is another linear operator. Typically,
1

(K 1)) = A@)f(z) + ][ Lz, )£ (t) dt,

-1

where A(z) is a known function and L(z,t) has an integrable singularity at
x = t (perhaps only as a Cauchy principal-value integral). For example, if
L =0, (1.6) is equivalent to Prandtl’s equation [8, §121]. Numerical methods
for the direct treatment of (1.6) are discussed in [7]. Alternatively, one can use
H™1 to regularize (1.6) as

(I+H'K)f=H 0.

This approach is used in [2, 3].

2. The airfoil equation. The simplest singular integral equation over a
finite interval is the airfoil equation,

1
(2.1) % o % dt = g(z), -l<z<l.

This equation and its generalizations have an extensive literature; see, e.g. [8,
9, 10, 11].

If we restrict g(z) to be Holder continuous for —1 <z < 1, g € C%*[-1,1],
we can write down the general solution of (2.1); it is (see, e.g. [9, pp. 173-180]
or [13, pp. 188-190])

(2.2 fo =2 iom 2 a2
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where A is an arbitrary constant. Thus, in general, f(z) has an inverse square-
root singularity at both x = —1 and z = 1. For a unique solution, we need
one supplementary condition on f: often, f is required to be bounded at one
end-point.

3. The dominant equation. The simplest hypersingular integral equa-
tion over a finite interval is (1.1), which we call the dominant equation. Suppose
that v(z) in (1.1) is such that

(3.1) v(z) =g'(2),

where g € C%*[—1,1] N C*(—1,1); thus v can have integrable end-point singu-
larities. Hence, using (1.3),

Q)

T) x—1

dt = —g(z) + B,

where B is an arbitrary constant of integration. Solving this equation, using
(2.2), we obtain

(32) fa =2 Jin a2

Now, apart from another constant of integration, we have

V1 —t2
; dt = —/1 —t2 + zarcsint
x_
-
—\/1—3:210g( = — ¢ )

1—azt++/(1—2%)(1 -2

In particular (cf. (4.3) below, with n = 0),

1 [ Vv1=1¢2

whence (3.2) gives

1—¢2 A — Bx
3.5 \/ dt
(3-5) ][ 1—x2x—t +m

This is a formula for the general solution of the dominant equation (1.1) in
terms of g (which is given by (3.1)). We can obtain a formula in terms of v by
an integration by parts, using (3.3); the result is

1 1U . |z — ¢ A+ Bz
(3.6) f(x)_w/_l (t)lg(1—$t+\/(1—x2)(1—t2)) dt+\/1—x2’
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where A and B are (new) arbitrary constants.

The first term on the right-hand side of (3.6) is a particular solution of
(1.1), for the given function v. The second term is the general solution of the
homogeneous form of (1.1) (i.e. with v = 0); it is also given in [10, p. 45]. For
a unique solution of (1.1), we need two supplementary conditions on f; these
are often taken to be (1.4) whence A = B =0 in (3.6), and (1.5) obtains.

4. Discussion.

4.1. Closed contours. We can also consider the dominant equation over
a simple, smooth, closed contour C', namely

1 ft)

i Jo (z—t)?

(4.1) dt = v(z), zeC.

The general solution of this integral equation, for continuous v, say, is given by
1

(4.2) f(z) = —,/ v(t)log|z — t|dt + A,
T Jo

where A is an arbitrary constant. For a unique solution of (4.1), we need one
supplementary condition on f.

4.2. Pseudo-differential operators. It is well known that H is a
pseudo-differential operator of order +1, i.e. H is a continuous linear opera-
tor between Sobolev spaces H® — H®~!; see, e.g. [11, 12]. Thus, roughly
speaking, H coarsens by one order. It follows that H~! must be a pseudo-
differential operator of order —1 (i.e. smooths by one order), and so we are not
surprised to see the kernel log |z — ¢| in (1.5), since this gives rise to such an
operator [11]; similar remarks apply to (4.1) and (4.2). However, the calculus
of pseudo-differential operators does not usually allow one to construct inverse
operators explicitly, as done here for the simple operator H supplemented with
(1.4).

4.3. Chebyshev polynomials. It is well known that

1 [ V1—¢2

TJ_1 z—1

(4.3) Un(t) dt = Tpin (2),

where T;,(z) and U, (z) are Chebyshev polynomials of the first and second kinds,
respectively. Hence, (1.3) implies that

1}(%/@

L RACEDE

Equations (4.3) and (4.4) are valid forn = 0,1,2,...and —1 < z < 1. It follows
that if

(4.5) v(z) = Un()

(4.4) Un(t) dt = —(n + 1)Un ().



in (1.1), then we have

(4.6) fz) = n_—i-ll V1= 2 U, (),

and (1.4) is satisfied. Since the polynomials U,, are orthogonal, satisfying

1
/ V1= 22U () Un(t) dt = gdmn,
1

we find that

f@)=vV1-a2 Y n”j U ()

where

vy = _72 /_11 VI U,(t) v(t) dt.

This gives an alternative specification of H~!, which is used in [1, 2, 3]. These
papers, and [5], also contain applications of the method and additional refer-
ences.

We note that substitution of (4.5) and (4.6) into (1.5) gives the following
identity,
(4.7)

V1= 22 Up(z) = -1 /1 log ( [z ¢ ) U (t) dt,

T Ja 1—azt+ /(1 —22)(1—1t?)

which is valid for n = 0,1,2,... and |z| < 1. We can rewrite (4.7) as

/;1 K("B7 t)d)n(t) dt = )\nd)n(x)

where T
bn(z) = (1 —2)Y4U,(2), A= —
and
- 1 1—azt+ /(1 —2?)(1—2)
K(z,t) = (1 — 22)/A(1 — 2)1/4 log ( w1 > .

This gives the eigenvalues A,, and eigenvectors ¢,, of the integral operator with
positive, symmetric kernel K. Alternatively, if we put z = cos¢ and t = cos6
in (4.7), we obtain

iy 60
. m [7 sin )
51nm¢:—/ log 29 sin m@ df
™ Jo Sinqﬁ%
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form =1,2,..., which is equivalent to a known Fourier sine series (use 1.441(2)
in [4]).

4.4. Non-integrable data. Tricomi [9, p. 181] notes that

1][1 1—¢\" dt 1 1—z\*
= = - - cot(mar)
mJ_1\1+t) z—t sin(ra) 1+x

for 0 < |a| < 1. Differentiating with respect to z gives

1][1 1—t\* dt 0 (1—z)t (r)

— = —200-————CO .

) \1+t) (z—1)72 Y+ pyort 0N

This formula, which is valid for —1 < a < 1, shows that (1.1) has a solution even
when v(z) is not integrable at z = -1 (0 < a<l)oratz =1 (-1 < a < 0).
For example, in the first case (0 < o < 1), there is a solution which is weakly

singular at x = —1; such solutions cannot be obtained by the methods described
in the rest of this paper.
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Addendum. (J. Int. Eqns & Applics. 5 (1993) 297.)

After publication, S. Okada (University of Tasmania) pointed out to the
author that the formula (1.5) was given previously by M. Schleiff on p. 152 of his
paper [16]. Subsequently, R. Rosel (Paul Scherrer Institute, Switzerland) sent
the author a copy of his paper [15]; this gives the formula (3.6). It also contains
similar formulae for integral equations with kernel (x—t)~™ for integer n > 1. In
fact, such hypersingular integral equations were discussed earlier by C. Fox [14)].
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