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Generalized impedance boundary conditions are presented for parabolic wave
models, which provide either perfect diffractive boundary conditions or perfect
transmitting boundary conditions. The diffractive conditions permit the modelling of
waves in illuminated regions without computations in the shadow regions, while the
transmitting conditions allow incident and scattered waves to propagate out of the
model. The theory is developed for the simplest parabolic model and for a class of
wide-angle parabolic models. Numerical results are presented.

1. Introduction

The propagation of water waves over a three-dimensional ocean is governed by
Laplace’s equation, an elliptic partial differential equation. As the solution of such
equations over large domains is computationally intensive, parabolic approximations
have been developed (see, for example, Radder 1979 ; Mei & Tuck 1980 ; Booij 1981;
Tsay & Liu 1982; Kirby & Dalrymple 1983). These approximations are appropriate
when the waves propagate mainly in one direction, taken to be the x direction, and
lead to parabolic partial differential equations; these can be solved numerically by
marching in x.

The development of parabolic wave models for water-wave propagation over large
coastal regions has led to an interest in the associated model lateral boundary
conditions, located, for example, at ¥y =0 and y =y,. Here, 2, y and z are
cartesian coordinates, with z = 0 corresponding to the undisturbed free surface. The
governing parabolic equation also requires an ‘initial’ condition at x = 0, say; a
downwave condition is not required. Thus, the computational domain is the strip
x> 0,0 <y <y, In this paper, we develop lateral boundary conditions that permit
waves to leave the computational domain, regardless of their character (such as wave
direction or crest curvature).

(a) Parabolic models
To establish the mathematical framework for the lateral boundary conditions, the
simplest parabolic model will be briefly derived. We consider the irrotational motion
of an incompressible, inviscid fluid. The velocity potential ¢ satisfies the three-
dimensional Laplace equation. Write it as

¢(.%', Y, 2, t) = Re {A(x, y) Wei(kaz—ww} ,

cosh kh
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where the bottom is located at z = —#A (b > 0); the wavenumber &k and the wave
angular frequency w are related by the dispersion relation,

w? = gk tanh kh,

where g is the acceleration due to gravity. Assuming that A is constant, we can obtain
a parabolic equation by substituting the assumed form (1.1) into Laplace’s equation
and then discarding a term proportional to 024/0x®. This may be justified by
supposing that 4(x,y) is a slowly varying function of z, whence

|04 /0x| < |kA. (1.2)
The resulting equation is
2ik 04 /0x+0%4 /0y® = 0. (1.3)
We call (1.3) the simple parabolic equation. A generalization of (1.3) is
2ik0A /0x+ 20 0*A /0y® + (214 k) BPA Jox Oy* = 0, (1.4)

where a and f are positive constants. We call (1.4) the wide-angle parabolic equation ;
it was discussed by Kirby (1986a), wherein ¢, = 1, @, = —a—f and b, =f. Note that
(1.4) reduces to (1.3) when a =} and £ =0, whereas (1.4) reduces to ‘Claerbout’s
equation’ when a = { and # = 1 (Claerbout 1976, pp. 206-207). In practice, parabolic
models are often more elaborate than (1.3) and (1.4); variable depth, currents and,
in some cases, wave nonlinearity may be included.

Parabolic approximations are also used widely for underwater acoustics, in which
sound waves propagate through a compressible ocean. For a review, see Ames & Lee
(1987). If the speed of sound in the ocean is taken to be constant, equations such as
(1.3) and (1.4) are obtained.

(b) Lateral boundary conditions
One solution of (1.3) is

Az, y) = Ayexp [ —sikx sin® 0] exp [ik(y —y,) sin 6], (1.5)

corresponding to a plane wave propagating at an angle 0 to the x axis (4, is a
constant). For the case of reflection from a lateral boundary at y = y,, we can write
the total solution as

A(x,y) = Agexp [ —3ikxsin® 0] (exp [ik(y —yy) sin 0]+ Rexp [ —ik(y —y,) sin6]), (1.6)

where R is the (complex) reflection coefficient; |R| can vary between zero and unity
depending on the amount of reflection from the boundary.

At present, a typical application of a parabolic model (such as (1.3)) requires a very
wide domain such that the influence of the lateral boundary conditions is far away
from the region of interest, hence not introducing any contamination due to an
imperfect boundary condition. This of course means that far more numerical
computation is carried out than is desired. Efficient lateral boundary conditions
would mean that model computations would only include the region of interest.

There are two problems of interest, namely diffraction and transmission. More
precisely, divide the first quadrant into an ‘illuminated region’ (x > 0, 0 <y < )
and a ‘shadow region’ (x > 0, y > y,). For a diffraction problem, suppose that there is
a semi-infinite breakwater along x =0, y > y, (where 4 vanishes) and waves are
incident from the region # < 0 (see figure 1). At present, computations would include
both the shadow region and the illuminated region. If only the illuminated region is
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Figure 1. A sketch of the computational domain (z > 0, 0 < y < y,) and the analytical domain
(x>0, y > y,). A piece of the computational mesh is also shown.

of interest, we could reduce the computational domain immensely by placing a
suitable diffractive boundary condition along the interface between the two regions,
namely > 0, y = y, (see §3a). For a transmission problem, we allow waves to pass
cleanly through the line x = 0, y > ¥, (along which 4 does not vanish, in general). To
reduce the computational domain to the illuminated region, we now place a suitable
transmitting boundary condition along x > 0, y =y, (see §3b). (In practice, we will
always impose one of the new boundary conditions along a line parallel to the x axis,
even for obliquely incident wave trains.)

The lateral boundary condition usually used in a parabolic model is an impedance
boundary condition. The impedance, &, in our context, is defined as the ratio of
pressure at the boundary to normal velocity at the boundary,

(pog/dt) _ iwpd
¥ = = =Y :
(—0g/ay) _ gjay) O YT (.7)

For our plane-wave solution with reflection, equation (1.6), we have

__po (1+R)
" ksinf(1—R)

(1.8)

showing that the impedance of the boundary depends on the angle of incidence and
the reflection coefficient ; neither of these is necessarily known.
Rewriting (1.7), using (1.1), we have the impedance boundary condition

0A/0y—(ipw/Z)A =0 on y=y,. (1.9)

In general, & could be real or complex. A real value of the impedance will lead to
transmission of waves and wave energy. A purely imaginary value will result in a
phase shift of the reflected wave, but no transmission. A complex % results in
transmission and reflection.
For example, for plane waves with the impedance given as (1.8), the impedance
boundary condition becomes
04 (1—R)

——iksin

oy (1+R)

A=0 on y=y,. (1.10)
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For a perfectly reflecting boundary, R is set to unity. For a perfectly transmitting
boundary condition, R is set to zero, yielding

0A/0y—ikAsin0 =0 on y=1y,. (1.11)

This boundary condition requires, in addition to planar wave trains at the boundary,
that both k and the wave angle, 6 be known at the boundary. These parameters can
be difficult to obtain within a computational model. One possibility is to assume that
sinf = 1, leading to a simplification. However, as Behrendt (1985) has shown (see
also Kirby 1989), this leads to a reflection coefficient,

_sinf—1

= enorl’ (1.12)

which is only zero for 6 = 90° (waves at normal incidence to the boundary) and
reaches a value —1 for 6 = 0 (grazing incidence).

Alternatively, Kirby (19865) numerically implemented the lateral boundary
condition (1.11), for waves propagating over a variable-depth domain. The condition
assumes that the longshore wavenumber, ksin@, is calculable from the previous
computational grid row. Kirby states that this condition can be used on the upwave
or downwave lateral boundary, but should be far from scattering objects within the
model domain, as scattering of waves occurring within the computational domain
will be partly reflected by this ‘plane-wave’ boundary condition. The intention of
this practice is to have the weak reflection enter the computational domain
downwave of the area of interest.

Finally, ‘sponge-layer’ models have been introduced, which involve regions of
high energy dissipation near the side walls of the computational domain (Israeli &
Orszag 1981; Larsen & Dancy 1983). The sponge layers serve as absorbing
boundaries, with the disadvantage of additional computational domain, diffraction
into the boundaries, and weak reflection. By placing these boundaries far from the
region of interest, suitable solutions may be obtained.

Here, generalized impedance boundary conditions will be developed to permit
waves to exit the domain regardless of the wave direction, crest curvature, or
strength of scattering. The method closely follows that of Marcus (1991), developed
to produce transmitting boundary conditions for underwater acoustics. As will be
shown, the methods works for diffracting as well as transmitting boundaries. A
comparison with Kirby’s plane-wave boundary condition is also provided in the
numerical examples. The method is extended so as to treat the wide-angle equation
(1.4).

Recently, Givoli (1991) has reviewed the extensive literature on ‘non-reflecting
boundary conditions’, although he does not consider the specific problem of deriving
good lateral boundary conditions for parabolic equations. Our exact boundary
conditions are non-local and similar to Givoli (1991, equation (26)); they become
computationally useful after appropriate discretization.

2. Numerical representation of the simple parabolic model

Before developing the boundary condition, we discuss the discretization of the
simple parabolic equation (1.3) and its solution using the Crank—Nicolson scheme to
provide the numerical framework for what follows; the wide-angle equation (1.4)
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is considered in §5. We superimpose a regular mesh on the computational domain
x>0, 0 <y <y, with grid points at (z,, y,), where x,, = mAz, y, = (n—1%) Ay,
m=0,1,2,....,.M and n = 0,1,2,...,N. By construction, y, = (N—1) Ay. Denote

A:”LIL = A(xm’ yn)'

The Crank—Nicolson approach, which is an implicit scheme with second-order
accuracy in both Ax and Ay, is written as

AR =AW L[AR =240+ A0 ARSI =247+ A7)
2% n n - n+1 n n—1 n+l n n-1t _ .
1’“ ( Az )+2{ Boy gy } 0

This scheme is consistent and stable. It is also convenient in that it uses only the
results from row m—1 to compute row m, resulting in a tridiagonal matrix when
applied to all of the n values excluding those on the boundary. Boundary conditions
have to be applied at » = 0 and » = N to provide enough equations to solve for the
unknowns, A% n=0,1,2,...,N. Once these conditions are included, the resulting
equations may be solved using a (complex) tridiagonal solver; these are very fast. An
analysis of the numerical scheme (in fact, for the wide-angle parabolic equation (1.4)
in the context of underwater acoustics) has been given by St. Mary & Lee (1985).
In finite-difference form, the transmitting boundary condition used by Kirby
(1986 b) is
A:znﬂ_Ag —iksin (9( ZL+1 +A:zn
Ay 2

)=O for n=0 or n=N—-1, (2.1)

when the boundary is located at y =0 or y =y, respectively. The longshore
wavenumber component, ksin @, is found by evaluating (2.1) at the previous grid
TOW:
_ 2 (AR 4T

Ay (A7 +ATY)
Kirby shows that this condition, (2.1) with (2.2), is exact for plane waves.

ksinf = (2.2)

3. Theoretical development of the boundary conditions

The basis for the boundary condition is the exact description of the waves in the
shadow region (outside of the computational domain); denote the solution in this
region by /(x,y). Denote the solution in the computational domain (the illuminated
region) by A(z,y). These two solutions must match across the interface y = y,,

Az, yy) = A (%, y,) and  0A(x,y,)/0y = 0 (x, 4,)/0y. (3.1)
Now, it is shown in the Appendix that, for diffraction problems (§10), .o/ is given by

e " E) [y
. ) yb 1 ?/— yb
Az, y) = —LHy— )QJ ex { }dg

y)=—ally—yn) 2| w—g) P\ 2@
for y = y,, where Q = /(2ik/n) = (1+1i) 4/ (k/n). Although this formula shows that
o (x,y) depends solely on values of (£, y,) for £ < «, it is not easy to use within our
numerical scheme. Instead, following Marcus (1991), we differentiate with respect to
y to give (A 9), namely

a&f(x,y):igra&/(é,y) d§
. o & Vb
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If we set y = y, and use the matching conditions (3.1), we obtain

0A(x,y,) . (P04, y,) dE
Ty ‘IQL *E  V(@—E) (32)

The formula (3.2) is exact. It shows that the condition to be imposed on y = ¥, is non-
local and not an impedance condition of the form (1.9). However, we will show that
when (3.2) is discretized, it leads to a condition that is similar to an inhomogeneous
impedance condition; it is called a generalized impedance boundary condition.

From (3.2), we have

ody =igr’”aA(€,yb) dg

0y o 08 V(@,—§)
where A7 = A(x,,,y,). We assume that 4(£,y,) is approximated by a continuous
piecewise-linear function, so that

QA(E, yn)/0E = (A —A})/Da for < E <y, (3.3)

AT " g g
Hence En = (At — ALY Ly(z,,), (3.4)
=0

iQ [z dg 210

where Ln(@) = 1~ . V@b =%, VE—z)—V(r—a,)),
whence Ly(x,,) = (2i2/4/ Az) (v/ (m—1)—+/(m—1—1)).
Rearranging (3.4), we have

oA

m-—2
ay _A{)an—l(xm) Z_A{)nule—l(xm)_‘_ z (A{)_H—"A{))Ll(xm)
1=0

=S AL, () — L)} — A8 Lo(wn).

1=1
If we substitute for L,(x,,), we obtain

aAm m—1
b +aAl' = ¥ b A} (3.5)
dy =0

as our generalized impedance boundary condition on y = y,, where
a=—2iQ/v/Ax, bl'=—(2i2/v/Ax)(v/m—+/(m—1)),
bt = —(212/+/Ax) 2/ (m—D)— v/ (m—1—1)—+/(m—1+1)) for 1=1,2 ..., m—1.

(@) The diffractive boundary condition

The analysis above is appropriate when the lateral boundary at y = y, divides
an illuminated region (y < y,), where the wave field will be calculated numerically,
and a shadow region (y > y,) into which the waves are diffracting. We call
the corresponding condition on y =y, the diffractive boundary condition. 1t is
implemented into the parabolic model by recalling that this boundary is at
Y =3Yy_1+Yyxy); thus, we use central differences and averages to approximate
047 /0y and A respectively. The result is

AT —AT

_ 1m—1
NS AR+ A ) = 5 S A+ A, (3.6)
Y 1=0
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This is the diffractive boundary condition; it is used for » = N in the matrix
formulation of the problem.

(b) The transmitting boundary condition

Suppose that we have a transmission problem (§16) with a known incident wave
field 4, (%, y); in general, 4, .(0,y) does not vanish identically for y > y,. Let us
perturb the incident field within the computational domain (y < %), so that the total
field is 4(x, y). The difference, A—Ad, = A, 3.7)

say, will satisfy 4,(0,y) = 0 for y > y,, and hence will solve the same mathematical
problem in the shadow region as o/. Thus,

04w, p1) _ 10 f "04,(Ey,)  dE
oy Ml Ve 39

It follows that we can derive a boundary condition for A, on y = y, by discretization,
as for the diffractive boundary condition.

In practice, a boundary condition for 4 is often preferable. Combining (3.7) and
(3.8), we obtain

04 (2, y) _ -szaA(g’ Yp) df 7
oy )T Vg el 9
where Fipol) = ————aAin%(yx’ ) —iQ Jz aAin%(gg’ o) \/((ig_ 5 (3.10)

is known, in principle. If 4, . is only known numerically, (3.10) can be discretized as

before. If A, is known analytically, further progress may be possible. For example,
if 4, is given by (1.5), we have
F. (x) = A, iksin e~ —24, Q r——e—mg dg
mel(®) = 4,1k sin fe %7 — K )
0 0 0 \/(x_g)

where k = 1ksin?6. Denote the integral by I; it can be evaluated by putting & =
xsin® (Jp), so that

i3

I = \/(x) e—zixxj eikzcos<p sin (%(p) dw

0
=+/(x)e" 8% T ¢, ian(Kx)j cos ng sin (Yp) de,
n=0 0

where J,(x) is a Bessel function, ¢, = 1 and ¢, = 2 for n > 0. Hence

Foo(2) = Aoe—zm{iksinﬁ—FéLQK Vi) 5 Jn(m)} :
o dn®—1

In summary, we have two alternative transmitting boundary conditions, one for
A, (the change in 4, , due to any scattering from the computational domain) and one
for A (the total field, namely the sum of 4,,. and 4).

4. Results

To illustrate the use of the generalized boundary conditions, a numerical model
was set up with Kirby’s transmitting condition (2.1) at ¥y =0 and a generalized
boundary condition at y = ¥, (for all cases). The model grid is 100 x 100 and the grid
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Figure 3. Transmission boundary conditions with a normally incident plane wave perturbed by an
‘obstacle’ on x = 0. In (a) density plot of transmission coefficient. In (b) contours of transmission
coefficient.

sizes are kAx = kAy = 0.622, or about ten grid points per wavelength. The constant
relative water depth, kA, is arbitrarily taken as 1.037. In all the figures, the x axis
points downwards and the y axis points to the right.

The first test of the model is for plane waves, defined by (1.5); we render quantities
dimensionless by taking 4, = 1. The waves propagate at § = 20° to the x axis. We
take the transmitting boundary condition (3.9) and evaluate F, ., numerically from
(3.10). The initial values of 4 are provided to the model by

A0, ) = el#¥sint ) <y < g, .

Figure 2 shows the resulting instantaneous wave height (actually Re {4 (x, y)e'**})
from the parabolic model. Clearly the waves transmit through both of the boundaries
correctly.

Next, for 6 = 0, a disturbance is introduced at ¥ = 0 by arbitrarily reducing the
amplitude over seven grid locations, located at the centre of the grid, using the
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Figure 4. Transmission condition (on right boundary)
with a normally incident plane wave. In (a) density plot of transmission coefficient. In (b) contours
of transmission coefficient.
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Tigure 5. Transmission condition (on left boundary) and diffractive condition (on right boundary)
with a normally incident plane wave perturbed by an ‘obstacle’ on « = 0. In () density plot of
transmission coefficient. In (b) contours of transmission coefficient.

following weights (0.9, 0.8, 0.6, 0.5, 0.6, 0.8, 0.9). In figure 3, the absolute value of
the wave amplitude |A(x,y)| (or equivalently the transmission, or diffraction,
coefficient) is shown in a grey scale; the numerical values are provided in a contour
plot. Note that the solution is symmetric about the centreline, due to the symmetric
initial disturbance, until the diffraction fringe from the disturbance reaches the
boundaries. In this case, the perturbation reflects from the left boundary but is
permitted to exit the computational domain by the generalized boundary condition
on the right boundary.

In the last figures, a diffractive boundary condition is used on the right boundary.
In figure 4, the transmission coefficient |4 (x, y)| is shown in grey scale. The diffractive
fringes induced by the ‘virtual’ breakwater along the initial grid row but to the right
of the computational domain are clearly shown. Further, they reflect from the left
transmitting boundary and are transmitted by the right boundary. Along the right
boundary, the transmission coefficient is 0.5, as expected by analytical results (Mei
1989, §10.7).

Lastly, a perturbation is once again introduced in the first row and the diffractive
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boundary condition is used. Again the scattering introduced by the perturbation
is allowed to exit the domain by the generalized impedance boundary condition
(figure 5).

5. The wide-angle parabolic equation

Consider the wide-angle parabolic equation (1.4). This equation can also be
discretized using the Crank—Nicolson scheme. In the Appendix, it is shown that the
wave field in the shadow region is exactly modelled by (A 11), namely

A, yy) _ ik [ ep 0A(, yv)
—_— e e el x J A xX— d 5
where A=ka/2p.
If we discretize as before, using (3.3), we obtain
oA m-l ,
@E—A?Lfnfl(%m) = X AV LY (@) —Li(w,)} — AR Li(,),
=1
where Li(x) = _ ik Jxm @D J (A(x—E)) dE.
V(P Az ),

These integrals can be evaluated exactly, using the formula

Q) = rJo(x) e dx = ze® (Jy(2) —i/,(2)),

0

given by Gradshteyn & Ryzhik (1980, §6.674, equations (7), (8)). Hence
Lij(x) = (ik/uv/ B) { QM@ —2,) — Q(A(x —2;.1))},

where u = AAxz. It follows that we have the generalized impedance boundary
condition (3.5), where now

a = —(ik/v/ p) e {Jo(u) =i, (u)},  bF = — (ik/pv/ B){Q(mp) — Q((m—1) )},
byt = —(ik/pv/ ) {2Q((m —1) ) = Q((m—1+1) 1) = Q((m — 1 —1) )},

for 1=1,2,...,m—1. We can now proceed to derive diffractive and transmitting
boundary conditions, as before. We remark that the results of §3 can be recovered
by setting o =3 and letting A~ oo (#—0), using the well-known large-argument
approximations for Bessel functions; note that

Q) ~ vV (2z/m)e!™* as z— 0.

6. Conclusions

Two types of lateral boundary conditions are developed for parabolic water-wave
models for diffractive and transmitting boundaries. These conditions are illustrated
with a simple parabolic model on constant water depth to demonstrate the validity
of the model and the discretization used. In practice, the conditions would be used
between a constant-depth region (shadow region) and a variable-depth region
(computational domain). Application to variable water depths in both domains is
straightforward, through the use of a variable transformation along the boundary as
used by Liu & Mei (1976).
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A very simple numerical integration is used with the model. For large-scale
models, it may be that a more accurate boundary integral technique should be used.

Similar lateral boundary conditions are also developed for a two-parameter wide-
angle parabolic model. The extension to the three-parameter model discussed by
Kirby (1986 a) can be made, in principle, although the resulting formulae may be too
complicated to be useful in practice. :

R.A.D. was supported in part by the NOAA Office of Sea Grant, Department of Commerce under
Grant NASGAA-D-SG040.

Appendix A. Exact solution in the shadow region

Consider the ‘shadow region’, x > 0, y > y,. We shall solve the simple parabolic
equation (1.3) and the wide-angle parabolic equation (1.4) exactly within this region,
subject to appropriate boundary conditions.

(a) Simple parabolic equation
We consider

024 /0y*+ Q204 /ox = 0 (A1)

subject to the boundary conditions
Az, yp) = Ap(z) for >0 (A 2)
and A0, y) =0 for y >y, (A 3)

where A4, (x) is assumed known and
Q% = 2ik/m; (A 4)

we also assume that

A(z,y) is bounded as y — c0. (A 5)

Clearly, the solution is a function of (y —y,,), so, without loss of generality, we can set
Yp = 0.

We note that, due to the assumption (1.2), (A 3) is a comparable approximation
to 0¢/0x = 0 on & = 0, which is itself the appropriate boundary condition on a rigid
wall or impermeable breakwater.

We solve for A using a Laplace transform in 2 (other methods could be used’; see
Marcus (1991) for an alternative derivation):

Py = Apy) = | ey a
0
where we suppose that Rep > 0. Since
£ {04 /0x} = pA(p,y)—A(0,y) = pA(p,y),
by (A 3), the partial differential equation (A 1) is transformed into
024 /0y? +pf22A = 0,
with general solution

A(p,y) = C(p) exp {iyQ v/ (np)} +D(p) exp { —iyQ2 1/ (np)}.
Proc. R. Soc. Lond. A (1992)
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Given (A 4), we define 22 by
Q= (1+i)+/(k/m).
Then (A 5) implies that D(p) = 0, whence (A 2) gives C(p) = 4,(p). Hence,

A(p.y) = Ay(p)exp{(—1+1)y v/ (kp)). (A 6)
This formula can be inverted using the convolution theorem, namely

X

gmxm:x“

0

o — £ () dg}.

From Gradshteyn & Ryzhik (1980, §17.13, equation (32)), with a little manipulation,
we have

exp{iy2 v/ (np)} = £ {— (iyQ/22%) exp (n2*y*/42)}. (A7)
Hence, the convolution theorem gives
10| A iy
) =4 || e {7 ol (49)

Despite appearances, this function is indeed small for large y; in fact, an integration
by parts shows that, as y - o0,

Az, y) ~ (2ix2/nQy) A, (0) exp {iky?/22} + O(y~®).
If we differentiate (A 6) with respect to y, we obtain
A (p,y)/y =i v/ (np) A(p. y) = 12 V/ (n/p) {pA(p, y)}.

Using the convolution theorem again, we deduce that

0A(x,y) _ . J’”@A(é, y)_ df
= 1Q A 9
o ;& VB 4o
in particular, on y = 0,
04(x,0) _ . f” Ay(€)
=1iQ | ——=—d¢.
o V-8 10

This equation is the starting point for the derivation in §3 of the generalized
impedance boundary condition.

(6) Wide-angle parabolic equation

We consider (1.4), subject to the same boundary conditions as before, namely
(A 2), (A 3) and (A 5); again, we can set y, = 0. We find that 4 satisfies

0?4 /oyt +y*4 = 0,

where v:=pk*/f(p—2iA) and A =ka/28>0;

hence A(p,y) = Clp)e? +D(p)e ™,

We choose the square root so that Rey > 0, whence D = 0, C(p) = A,,(p) and
A(p,y) = A, (p) ™.

Differentiating with respect to y gives

0 (p,y)/0y = (iy/p) {pA(p. y)}-
Proc. R. Soc. Lond. A (1992)
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If we write v/p = kpE L{w},
say, the convolution theorem gives (cf. (A 9))
0A(x,y) ik J"” A, y)
— = | w(x—§)—2=dE.
o VAT T ¢

To find w, we use the convolution theorem again:
Liw} = p“%(p—Zi/\)‘% =g g{x—%} ,S,”{x*% e2iATy

1= 2iAE
)y VEV(@E—E)

To evaluate this integral, set £ = xsin®(}0) giving

de.

whence w(x)

w(x) = %JW exp [2iAz sin® (360)]d0

0

2n

L elr® J exp [ —iAz cos 0]df = e'® J (Ax).

Substituting for w and setting y = 0 now gives
0A(x,0) ik [*

o =g AT A a—g)d (A 11)

which is a generalization of (A 10); this formula is used in §5.
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Figure 3. Transmission boundary conditions with a normally incident plane
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wave perturbed by an

‘obstacle” on # = 0. In (@) density plot of transmission coefficient. In (b) contours of transmission

coefficient.
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Figure 4. Transmission condition (on left boundary) and diffractive condition (on right boundary)
with a normally incident plane wave. In (a) density plot of transmission coefficient. In (b) contours
of transmission coefficient.
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Figure 5. Transmission condition (on left boundary) and diffractive condition (on right boundary)
with a normally incident plane wave perturbed by an ‘obstacle’ on x = 0. In («) density plot of
transmission coefficient. In (b) contours of transmission coefficient.



