Boundary integral equations for the scattering of
electromagnetic waves by a homogeneous dielectric
obstacle®

P.A. Martin
Department of Mathematics, University of Manchester
Manchester M13 9PL, England

Petri Ola
Department of Mathematics, University of Helsinki
00100 Helsinki, Finland

July 19, 2004

Abstract

Time-harmonic electromagnetic waves are scattered by a homogeneous dielectric ob-
stacle. The corresponding electromagnetic transmission problem is reduced to a single
integral equation over S for a single unknown tangential vector field, where S is the
interface between the obstacle and the surrounding medium. In fact, several different
integral equations are derived and analysed, including two previously-known equations
due to E. Marx and J.R. Mautz, and two new singular integral equations. Mautz’s
equation is shown to be uniquely solvable at all frequencies. A new uniquely-solvable
singular integral equation is also found. The paper also includes a review of methods
using pairs of coupled integral equations over S. It is these methods that are usually
used in practice, although single integral equations seem to offer some computational
advantages.

1 Introduction

It is well known that the problem of time-harmonic electromagnetic scattering by a perfectly-
conducting obstacle can be reduced to a single integral equation over the boundary of the
obstacle. It is also well known that the simplest of these equations suffer from irregular fre-
quencies, at which they are not uniquely solvable. Various methods for eliminating irregular
frequencies have been devised; see, for example, [18], [7, §6.17], [2, §4.6], [12], [20], [8].

The situation for dielectric obstacles is more complicated. If the obstacle is inhomo-
geneous, so that its material properties vary with position, integral equations can still be
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derived but the domain of integration is usually the whole volume occupied by the obstacle;
see, for example, [19, §22], [7, §6.26], [3]. However, for homogeneous dielectrics, the problem
can be reduced to integral equations over the interface between the two materials. It is
equations of this type that we consider below.

The above electromagnetic transmission problem is usually reduced to a pair of coupled
integral equations for a pair of unknown tangential vector fields. Such formulations have
been reviewed recently by Harrington [6]. We give a complementary review in §6, where
we use an operator notation familiar from the book [2]; for convenience, we include an
appendix relating our notation with that used in [6]. Some pairs of integral equations have
irregular frequencies, others do not. A new proof is given of a theorem in which all the
irregular frequencies of the so-called E-field formulation are identified. This proof uses
some properties of a certain operator (A,, defined by (24) below), involving products of the
standard electromagnetic boundary integral operators. These properties are proved in §5,
using the theory of pseudodifferential operators.

In §§7 and 8, we consider methods for solving the electromagnetic transmission problem
using a single integral equation for a single unknown tangential vector field. A systematic
derivation is given (in §7) of two different two-parameter integral equations. As a special
case, we recover a known hypersingular integral equation due to Marx [14], [15]. In fact,
for almost all values of the two parameters, our single integral equations are hypersingular
integral equations. Exceptionally, we find two new singular integral equations, although
these are shown to suffer from irregular frequencies.

In §8, we derive single integral equations that are shown to be uniquely solvable at all
frequencies. Thus, in §8.1 we derive an equation previously obtained by Mautz [16]. We es-
tablish the existence of a unique solution to this hypersingular integral equation by adapting
a regularization method due to Kress [11]. Mautz’s equation is fairly simple and so is worth
investigating for computational work. In §8.2, we derive a new uniquely-solvable singular
integral equation by adapting another method due to Kress [12]; this integral equation is
attractive theoretically, although the kernel is rather complicated.

The paper can be viewed as the electromagnetic counterpart of [10], in which the acoustic
transmission problem was studied. In [10], we found an abundance of Fredholm integral
equations of the second kind; here, hypersingular integral equations are the norm, and it is
this difference that makes existence results more difficult to establish.

2 Statement of the problem

Let B; denote a bounded three-dimensional domain with a smooth closed boundary, S, and
simply-connected exterior, B,. We consider the following problem.

TRANSMISSION PROBLEM. Find electric fields E. and E;, and magnetic fields H, and H,,
which satisfy Maxwell’s equations

curl E, —ip.wH, =0 and curlH,+ic.wE, =0, P € B,

curl E; —igy,wH; =0 and curlH; +is,wE; =0, P € B;,



and two transmission conditions on the interface,

nXxE=nxE, and nxH=nxH;, peS, (1)
where the total fields in B, are given by

E(P)=E, + Ein., H(P)=H,+Hi, Pe€B, (2)

and {Ein, Hi,.} is the given incident field. In addition, the scattered fields {E¢, H.} must
satisfy a Silver-Miiller radiation condition [2, §4.2],

Vietp X He + 1/E.E. = o(rp') asrp — 00, (3)

uniformly for all directions rp.

We have suppressed a time dependence of e throughout. We assume that the electric
permittivities €, and ¢;, and the magnetic permeabilities p, and u; are given positive real
constants.

We shall use the following notation: capital letters P, () denote points of B, U B;; lower-
case letters p, ¢ denote points of S; and n(g) denotes the unit normal at ¢ pointing into B,.
We choose the origin O at some point in B;; rp is the position vector of P with respect to
O, rp = |rp| and tp =rp/7p.

It is known that the transmission problem has precisely one solution. These existence
and uniqueness results are proved in [19, §§21 and 23|.

We shall also need to consider two interior problems.

INTERIOR MAXWELL PROBLEM. Find a field {E, H} which satisfies Maxwell’s equations
curlE —ipgwH =0 and curlH+icwE=0, P € B, (4)

and the boundary condition
nxE=0 pebs.

If this problem has a non-trivial solution, we say that k2 = w?ue is an eigenvalue of the
interior Maxwell problem. All such eigenvalues are known to be real [2, p. 125]. Physically,
the interior Maxwell problem corresponds to a perfectly-conducting cavity resonator. It is a
special case of the next problem.

ASsOCIATED INTERIOR PROBLEM. Find a field {E, H} which satisfies Maxwell’s equations
(4) in B; and the boundary condition

anxE)+b{nx (nxH)} =0, pes. (5)

Here, a and b are constants. This problem is equivalent to the interior Maxwell problem if
a =0orb=0. Suppose a # 0 and set A = b/a, whence the associated interior problem
reduces to an impedance problem. From Maxwell’s equations and the divergence theorem,
we have

Re /S(E « H)nds = 0,

where the overbar denotes complex conjugation. Then, the boundary condition (5) implies
that
Re (\) / In x H[*ds = 0.
5

It follows that the associated interior problem only has the trivial solution if Re A # 0.



3 Potential theory

Introduce two free-space fundamental solutions, G, defined by
Ga(P,Q) = exp(ikoR)/ (27 R),
where R = |rp — rg| is the distance between P and @),
ko = w\/Ealta

and o = e or . Next, define a single-layer potential by

(Sav) (P) = /S v(q)Gao(P,q)ds,, P € B,U B (6)

In electromagnetic theory, we usually apply S, to a vector-valued function of position, a(q),
say; we define

(Cpa) (P) = curl {S,a} and (Fpa) (P) = curl {C,a}.

We are interested in the tangential components of these vector fields evaluated on S when
a(q) itself is a tangential density (so that a(g).n(q) = 0 for all ¢ € S). For continuous
tangential densities, we have

n x C,a=+a+ M,a,

where the upper (lower) sign corresponds to P — p € S from B, (B;) and M, is a boundary
integral operator defined by

(Mya) (p) = n(p) x curl {S,a}, peS.
For sufficiently smooth tangential densities a (we shall be more precise later), we also have
n x F,a=P,a

on S, where
(Pya) (p) = n(p) x curlcurl {S,a}, peS.

Note that M, and P, are related to the operators M, and N, in [2, §2.7] by
M,a = 2M,a and N,a =2FP,{n x a}. (7)

We shall make extensive use of the Stratton-Chu representation. Applied in B, to
{E,H,}, it gives

. 9E,(P), P € B.,
Cnx B+ LR x ) = { 7 D e b ®

and
; _ 2H6(P), P € B,
Ce{n xH,} — e F.{n x E,} = { 0. Pe B, 9)
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An application in B; to {Einc, Hinc} (with the exterior material) yields similar formulae
which, when added to (8) and (9), give

: 9E,(P), P € B,
Ce{n x E} + 7o Fe{n x H} = { —2Iéinc)(P) P e B (10)
and
, 9H,(P), Pé€B,
Celn x H} — w_ueFe{n x B} = { —QI_éinc)(P) P e B,. (11)
Finally, an application in B; to {E;, H;} gives
i 0, Pe B,
Ciln x B} + oo Fi{n x Hi} = { ~9E,(P), P€B, (12
and
i 0, PeB,
Ciln x Hi} — o Fi{n x Bi} = { _9H,(P), P B, (13)

Computing the tangential components of (10), (11), (12) and (13) on S, we obtain

(I — My){n xE} — wigePe{n x H} = 2n x Ey,, 14

(I — M,){n x H} + W%EPG{n x E} = 2n x Hj,,
(I+ M;){n x E;} + wisiPz-{n x H;} =0,

15
16

)
)
)
17)

(
(
(
(

4 Properties of boundary integral operators

In this section, we begin by defining appropriate function spaces. Properties of M, and P,,
considered as operators acting on these spaces, are given; usually, we omit the subscript « in
this section. Next, we introduce the adjoints of M and P. Finally, we obtain some identities
satisfied by products of M and P.

4.1 Function spaces

We seek classical solutions of the transmission problem, that is
{E.,H,} € C'(B,)nC"(B,) and {E; H;} € C'(B;)nC"(B),

where C%#(2) is the usual Banach space of Hélder-continuous functions on € (with 0 < 8 <
1) and Q is the closure of 2. For functions defined on the interface S, we use the space
T%8(S), where

T°%(S) ={a(q) : ac C*(S) and an =0}

contains all Holder-continuous tangential densities a(q); the spaces T™#(S) are defined sim-
ilarly. Kress [12] has pointed out that the natural space to use is T} #(8), where

T9%(8) ={a(q) : ae T*(S) and Diva e C**(3)}
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contains all a in T%#(S) with a Holder-continuous surface divergence, Diva. Ty P(S) is a
normed space, with norm

lallyos s, = max {[[alless), [IDiv allcoss)} -
From [2], [12] and [9], we have the following properties:
M :T*(S) — T%P(S) and M : TOP(S) — T (S)

are compact;

P:TY(S) — T*¥(S) and P: TP (S) — T5"(S)

are bounded; and
P, — P, : T%(S) — TP (S) (18)

is bounded, whence
P, — P;: T%(S) — T%%(9)

is compact. Note that, according to (18), (P.— P;)a is smoother than a. However, Div {(P,—
P))a} is not smoother than Diva, and so (P, — P;) is not compact from T5(S) into itself.

4.2 Adjoints
We define the adjoint of M, namely M’ so that

(Ma,b) = (a, M'b)
for every a, b € T%#(S), where (a,b) = [¢a.bds. From [2, §2.7] and (7);, we have
M'a=nx M{n x a}.
From (7)3, we have
N{n xa}=2P{nx (nxa)} =—2Pa, aeT?S).
Since N is known to be self adjoint, we have
(Pa,b) = —(n x a, P{n x b})

whence
P'a=nx P{n x a}.

It follows that, for a € T%#(S), we have
nx M'a=—-M{nxa} and nx M. {Ma} = M M;{n x a}; (19)

the same relations also hold for P.



4.3 Operator products

For Maxwell’s equations in B;, the Stratton-Chu representation gives (16) and (17), namely
(I+M){nxE}+-P{nxH} =0, (20)

and
(I +M){nxH} - ﬁP{n x E} =0. (21)

Let us represent the field {E, H} as
E(P) = (Cm)(P), H(P)=

— _ i
Wi

(Fm)(P), P € B;,
where m € T9#(S); {E, H} satisfies Maxwell’s equations for any m. On S, we have

nxE=(-I+M)m and nxH=--1Pm.

wi
Substituting these boundary values into (20) and (21), we obtain the formulae

P? = k*(I — M?) (22)
and

MP + PM =0, (23)

where k? = w?ue. The formula (22) is equivalent to [2, Eq. (4.56)]; it will be used later.
The same formulae hold for the corresponding adjoint operators. Analogous formulae for
the boundary integral operators of acoustics are well known [21], [9].

5 Pseudodifferential operators

In the sequel, we shall make use of the operator
Ay = (I 4 M)(I+ M,) + (\/k?)P,P,, (24)
where A > 0 is a real parameter. From (22), we have
PP, = P(P.— P,) + k}(I - M}), (25)
whence, using some results from §4.1, we see that
Ay T (S) — TO(S)

is a bounded operator.

The continuity of A, can also be shown by interpreting it as a pseudodifferential oper-
ator [22], [24]. Thus, at any p € S, introduce a local system of orthonormal coordinates
(z,y, z) so that n(p) = (0,0,1). Then, the principal symbol of A, for the smooth bounded
surface S, 0(A,), is the same as when S is replaced by the tangent plane at p; the latter is
readily calculated by taking Fourier transforms in the zy-plane. Let

Fw = w(&,&) = /_o:o /_o:o w(z,y) exp(i€.x) dz dy,
7



where x = (z,y) and & = (&, &). Also, for any u = (u,v,0), we have

0%u +82_v+82_v 0%v _82u 0%u 0
Oxdy  0x? 022’ 0x0y 0x2 022’

n x curlcurlu = (—

Since

Fle*>/@nlx|)} = (€ - #*)7, (26)
where &2 = |€|?, we find that

_ 1 [ && £2
o(P )‘\a(—g% —552)’ 2

in agreement with [23, Lemma 2.7]. Similarly,

206Pp \ —&+28 -4

whence

k2 — k2 2 _
orn- =Rt G ).

Then, from (25), we obtain

_ L BERE (R -k)aE
o(BPJ—?((kzikz)aé k%£%+k£f1€%2>'

This shows that PP, is a pseudodifferential operator of order zero. In general, if A is a
classical pseudodifferential operator, of integer order m, defined on a compact C*°-manifold
S, we have [24, Chpt. 9]

A:CH(S) — CFmB(S),  0<B<1,

for every integer k > m.

Note that (27) shows that P, is a pseudodifferential operator of order 1, whence PP, is
expected to be of order 2; since o(P;)o(P,) = 0, we deduce merely that the order of P,P, is
less than or equal to 1.

From (24), we have

Ak — k2 2
- (1 0) (5, 5,

which is independent of w. Since
det{o(A\)} = (1 + N)(1 + \eZ/k?)

does not vanish (for A > 0), we deduce that A, is an elliptic pseudodifferential operator of
order zero. In fact, A, is a Fredholm operator with index zero (this means that the Fredholm



alternative holds). We show this using a homotopy argument. Thus, consider the family of

Fredholm operators
Ay : TV (S) — TOP(S),

parametrized by ¢, with 0 < ¢ < 1 and a fixed A > 0. From [22, Proposition 8.1], we know
that index(Ay:) is locally constant as ¢ is varied. Hence

index(A,) = index(A4,) = 0,

since Ay — I is compact.

Since A, is an elliptic operator of order zero, we have the following regularity results: any
solution in T%#(S) of the inhomogeneous equation Aya = f inherits additional smoothness
from f, so that £ € T™#(S) implies that a € T™#(S), where m > 0 and 0 < 8 < 1; in
particular, if a solves the homogeneous equation Aya = 0, then

ae [ T™(S) c C™(9).

m>0

6 Pairs of coupled integral equations

The usual method of solving the transmission problem is to reduce it to a pair of coupled
boundary integral equations. There are two standard approaches, namely the direct method
and the wndirect method.

6.1 The direct method

If we use (1) in the Stratton-Chu representations (10)—(13), we obtain the representations

2E,(P) = (FJ)(P) = (C.M)(P), He(P)=—j-cullE,(P), Pé€B., (28
—2Ei(P) = L(FJ)(P) - (CM)(P), H;i(P)=—-cullE/(P), Pe€B; (29)

where, as is customary, we have defined J and M by
Jp)=nxH and M(p)=-nxE, peSs.

Similarly, using (1) in (14)-(17), we obtain

(I = M¢)J = 5-P.M = 2n x Hj,, (30)
(I = Mc)M + -P.J = —2n x By, (31)
(I +M;)J + 5-PM =0, (32)
(I+M)M—_LPJ=0. (33)

These are four boundary integral equations for the two unknowns J(¢) and M(q). To proceed,
we must choose two equations or two linear combinations of equations. Let us consider the
two combinations

01(30) + 2(31) + a3(32) and  S;(30) + B2(31) + B5(33), (34)

9



Formulation ar | | ag | B | B2 | B3
FE-field 0|1 01010 1
H-field 01]0 1 1]10] 0
Combined field 10| -1]07]1]|-1
Mautz-Harrington | 1 | 0 | =8| 0 | 1 | —«
Miiller Pe | O | s | 0 | ee| €

Table 1: Direct method: choices of constants in (34).

where the o’s and §’s are constants to be chosen. Harrington [6] describes several possible
choices; see Table 1. For all these choices, we always have existence: J and M are just the
tangential components of H and E, respectively, and we already know that the transmission
problem always has precisely one solution. However, the question of uniqueness is less
obvious.

Miiller’s system of equations is uniquely solvable [19]; see also [7, §6.27]. The combined-
field formulation (also known as the PMCHW formulation) also gives a uniquely-solvable
system of equations [17]. It turns out that we obtain the same system if we view the
representations (28) and (29) as given, and then impose the transmission conditions, that is
we use an indirect method with the Stratton-Chu representations; this approach has been
used in [4].

The Mautz-Harrington system is uniquely solvable, provided the constants « and [ are
such that a3 is real and positive [17], [6]. This system includes the Miiller and combined-field
systems as special cases.

Let us now consider the E-field formulation, namely the pair (31) and (33). All the
irregular frequencies of this system are identified in the next theorem.

Theorem 6.1 The E-field system of integral equations, (31) and (33), is uniquely solvable
if, and only if, k? is not an eigenvalue of the interior Mazwell problem.

Proof. Suppose that Jo and M, solve the homogeneous forms of (31) and (33), namely
(I = M)My + ;=-P.Jo =0, (35)

(I +M;)Mp — =P,Jo = 0. (36)

Assume that Jy and M, are not both identically zero. We show that this can only occur if
k? is an eigenvalue of the interior Maxwell problem. Define fields {E2, H%} in B, (a = e, 1)
by (28) and (29) with J and M replaced by J, and M, respectively. On S, we find that

nxE! = nxE)=-Mj, (37)
2n><H2 = (I+M)0+—PMO,
s x HY = (I-M)Jy— 2 PM;.

Now, construct the following fields:

2E.(P) = — - FJo+ CiM,y, 2H.(P)=—C;Jo — S-FM,, PeB,

10



2E;(P) = L F.Jo— C.M,, 2H;(P)=C.Jo+ - F.M;+C.my, P E€B;

T wee wit
By construction, {E,, ﬁe} satisfies Maxwell’s equations (for the interior material) in B, and
the Silver-Miiller radiation conditions. Also,

nXEe:Oa pES,

by (36). The uniqueness theorem for the exterior Maxwell problem [2, Thm. 4.18] then
implies that {E., H.} vanishes identically in B,. In particular,

0=nxH, =nxH—J,.
Similarly, {E;, ﬁz} satisfies Maxwell’s equations (for the exterior material) in B; and
n X Ez = Oa pE Sa

by (35). So, if kZ is not an eigenvalue of the interior Maxwell problem, we deduce that
{E;, H;} vanishes identically in B;, whence

0=nxH,=nxH-J,.

Thus
n x H? = n x HY = J,, (38)

the fields {E2, H?} satisfy the homogeneous transmission problem and hence must vanish,
whence (38) and (37) imply that Jo = My = 0, which is contrary to our assumptions.

We have just shown that non-uniqueness for the E-field formulation implies that &2 is an
eigenvalue of the interior Maxwell problem. We now prove the converse. At such a value of
k%, we know that there is a non-trivial tangential density a(q) satisfying

(I+M.,)a=0 and P.a=0;

this follows by using the Stratton-Chu representation in B;, with a = n x H. Clearly, a also
satisfies the homogeneous equation

Ava={(I+M)(I+ M)+ z-—PP.}a=0, (39)
where 7 = ¢;/e.. From §5, we know that A, is a Fredholm operator with index zero. Hence,

there exists a non-trivial solution, b € T(S P (S), of the corresponding adjoint homogeneous
equation, namely

Alb = {(I+M)(I+ M)+ =-P/P/}b=0.

w2pice

Using (19), this equation can be written as

{1 = M)(I = M) + i PP} (n x ) = 0. (40)

w?pige

Now, set .
JO = _w;uv,PZC and MO = (I — Mi)C,

11



for some c(q) € TY?(S). Tt follows from (22) that (36) is satisfied identically, for any such
c. Moreover, (35) is also seen to be satisfied if we choose

c=nxb,

by comparison with (40). Thus, we have found a non-trivial solution to the homogeneous
E-field system, (35) and (36). This concludes the proof of Theorem 6.1.

A different proof of this theorem is given in [6]; the non-trivial solutions at irregular
values of k2 are also given in [1]. We can also give a similar argument to show that the
fields {E,, H, }, given by (28) and (29), will also solve the transmission problem if J and M
solve the E-field system and k? is not an eigenvalue; see [13] for analogous arguments for the
acoustic transmission problem. The usual electromagnetic duality argument gives exactly
the same result for the H-field formulation.

6.2 The indirect method

Suppose that we can write
Eo(P) = 5= (Faja)(P) = (Cam,)(P), He(P) = —gi—curlEqo(P), PeB,,  (41)

where j,(¢) and m,(q) are tangential densities and o = e, i. The fields {E., H.} and
{E;, H,} satisfy the appropriate form of Maxwell’s equations in B, and B;, respectively. The
Silver-Miiller radiation conditions are also satisfied. Imposing the transmission conditions
gives

(I + M )m, + (I = M)m; — £ (LPj.— LPj;) = nx B,

w \ €e

w

(I + Me)je + (I - Mz).]z + 1 (ipeme - ipzmz) = —nxX Hinc-

These are two boundary integral equations for the determination of four unknowns, namely
Je, Ji, m, and m;; we need two constraints.
We know that (P, — P,) is compact in T%#(S), so a good theoretical choice is

Lj. = Lji=j(g) and Lm,=1m,=mg),

say. This leads to the Fredholm system of the second kind
(et )i+ (€eMe — & M;)j+ L (P — P)m = —n x Hy,

(42)
(N’e + Ni)m + (MeMe - N'iMi)m - i(Pe - B)J = nx Einca

which is to be solved for j, m € T,?”H(S); note that n x Ej,., n x H,. € Tg’ﬂ(S). If solvable,
we can then construct the solution of the transmission problem, using

Eo=1Fj— paCom and H, =e,Coj+iF,m, P€B, a=e¢ i (43

It turns out that if we set j = —M and m = J, and interchange the materials (e = 7), we
obtain Miiller’s system of equations; hence the system of integral equations (42) is uniquely
solvable.

12



Formulation Je | Ji m, m;
Electric current Je | Ji 0 0
Magnetic current 00 m, m;
Combined current J |- m —m
Combined source Je | Ji | @en X je | ayn X j;
2nd-kind Fredholm | &.j | €;] eI ;1

Table 2: Indirect method: constraints on the surface currents.

Other choices for the surface currents j, and m, in the representations (41) are possible.
Harrington [6] describes four; see Table 2, wherein . and «; are constants. The first and
second formulations both exhibit irregular frequencies, whereas the third and fourth do
not [6]. We have existence and uniqueness for the fifth formulation. Similar results obtain
for the combined-current formulation; if we set j = 2J and m = 2M, we obtain exactly the
same system of equations as with the combined-field formulation [6]. We are not aware of
any existence results for the other three, although it may be possible to adapt the analysis
of Kress [11] to the combined-source formulation.

7 Single integral equations

In this section, we use a hybrid of the indirect and direct methods, leading to single integral
equations. Specifically, we use a representation in B, involving a single unknown tangential
density j, and the Stratton-Chu representation in B;. Thus, assume that we can write

E.(P) =a_-Fj—bCc{n xj}, H(P)=aCj+bF{nxj}, PeB, (44)

where the constants a and b are at our disposal; the use of n x j rather than j for two of the
densities is convenient, and facilitates comparison with [16]. The Stratton-Chu representa-
tions in B;, (12) and (13), together with (1), give

—2E;(P) = ;- Fi{n x H} + Ci{n x E}, H,;(P)=—_-cuwlE; PeB;. (45)
Computing the tangential components on S, (44) gives
nx E, = awLEePej —b(I + M)(n x j) = K.j, (46)

say, and
n x H, = a(l + M,)j + b-— = Pe(n x j) = Ldj, (47)
say. Similarly, (45) gives (32) and (33), namely

(I + M;)(n x E) + --P(n x H) =0, (48)

)
)

~— ~—~~

(I+ M;)(n x H) - .- P,(n x E) = 0. (49)
If we substitute from (46) and (47) into (48), using (2), we obtain

{T+M)K,+LPL}j=f (50)
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where _
f(p) = —(I + M;)(n x Eine) — ;- Pi(n x Hip). (51)
Similarly, (49) gives
{U+M)L. - -PK.}j=g (52)
where

g(p) = —(I + M;)(n x Hine) + ;- Pi(n x Eig). (53)

Equation (50) is a boundary integral equation for j(¢). Equation (52) is another boundary

integral equation for j(¢). Having solved either, {E., H.} and {E;, H;} are to be constructed
from (44) and

—QEZ(P) = WLQE{II X Hinc + Lej} + CZ{II X Einc + Kej}a HZ(P) = —WLMCUI‘I Ei, (54)

respectively. Note that £ and g are both in T5(S). We have the following two theorems
concerning solvability of the transmission problem and uniqueness.

Theorem 7.1 If j(q) € T2?(S) solves (50) or (52), {E., H.} and {E;, H;}, given by (44)
and (54), respectively, solve the transmission problem.

Proof. This is similar to the proof of Theorem 5.1 in [10]. We have to check that (1) are
satisfied. We have

2(1’1 X Ee +n X Einc —1n X Ez) = {(I+M1)Ke + iPzLe}j —f

and
2(n x Hy +n x Hye —n x Hy) = {(T + M;) L. - ;-PK.}j-g

Thus, if j solves (50), then (1); is satisfied, whereas if j solves (52), then (1), is satisfied.
Next, construct the radiating fields

E.(P) = - F{n x Hine + Lej} + Ci{n X By + K.j}, He(P) = —Z-curl E,,

for P € B,. On S, we find that n x E, = 0 if j solves (50), or n ><~ﬁe = 0 if j solves (52).
In either case, the exterior uniqueness theorem implies that {Ee, H.} vanishes identically.
Then, in the first case, n x H, = 0 implies that (1), is satisfied, whereas in the second case,
n x E, = 0 implies that (1), is satisfied.

The next theorem is concerned with non-trivial solutions of the homogeneous forms of
(50) and (52), namely

{1+ M)K. + ZPL}jo =0 (55)

and
{(I + M;)L, — w;mPiKe}jo =0. (56)

We show that uniqueness depends on the eigenvalues of the associated interior problem (§2).

Theorem 7.2 The homogeneous equations (55) and (56) have a non-trivial solution if, and
only if, k2 is an eigenvalue of the associated interior problem.
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Proof. Suppose that jo # 0 solves (55) or (56). Define fields {E2, H} in B, (o = e, i)
using (44) and (54), with j replaced by jo, n X E;;,c = 0 and n x H;,. = 0. These fields
solve the homogeneous transmission problem, and so vanish identically. Now, construct the
following fields:

Ei(P) = azt-Fojo — bCefn x jo}, Hi(P) = aCejo + b;-Fef{n x jo}, P € B;.
On S, we find that
ani:ang—l—Qb(nxjo) = 2b(n X jo), nxﬁi:ang—Qaj0:—2aj0;
hence, N .
anx E;)+b{nx (nxH;)} =0, pes. (57)

Thus, either {Ei, ﬁl} is an eigenfunction of the associated interior problem, or it vanishes
identically; we can eliminate the second possibility since it implies that jo = 0, contrary to
hypothesis.

Conversely, suppose that k2 is an eigenvalue of the associated interior problem. Then the
Stratton-Chu representations give

(I+M.,)(nxE;)+_LP.(nxH)=0,

(I +M)(n x H;) — Z-P.(n x E;) = 0.

Using the boundary condition (57), these give K.{n x H;,} = 0 and L.{n x H;} = 0,
respectively. Hence, n x H; is a non-trivial solution of both (55) and (56), if @ # 0; if a = 0,
n x EZ is a non-trivial solution.

Let us now examine the structure of (50) and (52) in more detail, with the intention of
establishing existence. Set

p=pi/pe and T =g;/e..
Then (50) and (52) can be written as
awiEiBTj —bA,(nxj)=f (58)

and _
aA.j+ bw#me(n x]j) =g, (59)

where A, is defined by (24) and
By = Pi(I+ M) + A(I + M;)P.. (60)

B, is a pseudodifferential operator of order +1; the determinant of its principal symbol is
identically zero.

Consider (58). If we want only Fredholm operators, we must take a = 0; without loss of
generality, we can set b = —1. This gives

Ay(n x j) =f, (61)
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whilst (59) becomes
By(n x j) = iwpg. (62)

Having solved either,
E(P)=Ce{nxj}, H(P)=-;-F{nxj}, Pe€B, (63)

and {E;, H;} is given by (54), wherein K,.j = (I + M,.)(n x j) and L.j = —%%Pe(n X J)-
Similar considerations for (59) lead to a = 1 and b = 0. This gives

and
B,j = —iwe;f; (65)
having solved either,
E.(P) = ;-F.j, H.(P)=C.,j, PeB, (66)

and {E;, H;} is given by (54), where now K, = stePe and L, = (I + M,).

Equation (65) is a hypersingular integral equation. It was derived previously by Marx [14],
[15], using a different method. Glisson [5] rederived Marx’s equation and noted that irregular
frequencies would occur when k2 was an eigenvalue of the interior Maxwell problem; this is
consistent with Theorem 7.2. He also suggested using the representation (63), but did not
derive any associated integral equations. The two singularintegral equations (61) and (64)
are preferable theoretically and are new. We have the following results.

Theorem 7.3 Assume that k? is not an eigenvalue of the interior Mazwell problem. Then
(61) is uniquely solvable in T%P(S) for any £ € T®#(S) and (64) is uniquely solvable in
TOB(S) for any g € T*#(S). Moreover, if f is given by (51) (or g by (53)), the solution will
be in TSP (S).

Proof. The first part follows from the Fredholm alternative, which gives existence from
uniqueness; we have the latter from Theorem 7.2. For the second part, consider (61). Let
{Ee,He} {EZ,HZ} solve the transmission problem. We know that such a solution exists
(§6), and that

nx E, e TP (S),

using Maxwell’s equations and the formula
Div(n x E,) = —n.curl E,.
Next, consider the Fredholm integral equation of the second kind
(I +M,)(nxj)=nxE,.
Since k2 is not an eigenvalue of the interior Maxwell problem, this equation has a unique

solution j € To?(S) [12]. It remains to show that j solves (61). To this end, construct the
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fields {E,, H,}, using (63) and (54). We find that {E., H.} solves the exterior Maxwell
problem, with ~
nxE,=nxE, on S,

whence {E., H.} = {Ee,ﬁe}, by uniqueness for the exterior problem. The Stratton-Chu
formulae, (12) and (13), then show that {E;, H;} = {E;, H;}. Finally, the interface condition

0= Q(Ee + Einc — EZ) = Q(Ee + Einc — Ez) = .Ap(n X j) —f
gives the desired result. A similar argument succeeds for (64).

Theorem 7.4 Assume that k? is not an eigenvalue of the interior Mazwell problem. Then
Marz’s equation, (65), and (62) are both uniquely solvable.

Proof. We cannot prove existence for every f and g in 7)) #(S), but only for those f and g
defined by (51) and (53), respectively. Thus, given an incident field {E;,c, Hi,}, Theorem 7.3
says that we can find j uniquely by solving (64). We then construct the fields {E,, H,},
using (66) and (54). By Theorem 7.1, these fields will solve the transmission problem. In
particular, the transmission condition (1); implies that j satisfies (65). Uniqueness follows
from Theorem 7.2. A similar argument succeeds for (62).

We would like to obtain a single integral equation that does not suffer from irregular
frequencies. By Theorem 7.2 and the remarks at the end of §2, we see that we can secure
uniqueness by making different choices for ¢ and . However, if ¢ and b are both non-zero,
we always obtain integral equations involving non-Fredholm operators, and so the question
of existence remains. We discuss this in the next section.

8 Single integral equations without irregular frequen-
cies

In this section, we describe two methods of obtaining single integral equations that are
uniquely solvable at all frequencies.

8.1 Mautz’s equation

Mautz [16] has suggested choosing a = 1 and b = «, where « is a non-zero constant. This
leads to the representations

E(P) = joFej—aCe{nxj}, H(P)=Cj+ag-Fi{nxj}, P€B., (67)

and to two integral equations,

Lij= wigiBTj —aA,nxj)=f (68)
and .
Loj=Arj+a,B,(nxj)=g. (69)
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Mautz derived (68) and noted that his equation has at most one solution if Rea > 0. In
fact, we have uniqueness for both (68) and (69) if Rea # 0.

In order to prove existence at all frequencies, we modify an ingenious argument used by
Kress [11], [2, §4.6] to regularise a related singular integral equation for the exterior Maxwell
problem.

We start by choosing a frequency w* so that k) = w*,/J1.€. is such that

(k?)? is not an eigenvalue of the interior Maxwell problem (70)
and
(k?)? is not an eigenvalue of the interior Dirichlet problem (71)

(so that the only solution of (V2 + (k)?)u = 0 in B; with u =0 on S is u = 0). We use an
asterisk to denote any quantity evaluated at w*. The aim is to show that (68) and (69) have
a solution at w* by actually constructing it.

By Theorem 7.1, Theorem 7.3 and (70), we know that we can solve the transmission
problem at w* by solving (61). Thus, we have

m* = {4},

where the exterior field is given by

E:(P) = C:m*’ H:(P) =— F*m*a P e B,

Wwrpe €
and the interior field is given by (54). Now, construct the potential
F(P) = (S!m*)(P), P € B..

F satisfies the vector Helmholtz equation in B, and, by [2, Corollary 4.14], the radiation
condition
tp X curl F — #p divF +ik!F = o(rp') asrp — oc.

On S, we can compute
n x F =c(qg),say, and divF + %"—e n.F = v(q), say,

where we have written o = a(w*), since « can depend on w. From the proof of Theorem 4.42
in [2], we know that F has an alternative representation, namely

F(P) = Cib+ “ke [S%(n x b) + grad (S;\)}, P € B,,

(it is here that we use (71)), where the densities b € Tv?(S) and A € C%F(S) are given by

b [ C
(3)=x(5)
for a certain matrix of bounded operators, M* (see [2, Eq. (4.71)]). If we set

0%
j*="nxb,
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we see that

curl F = C*j* + o* = F*(n x j*).

w* e

So, comparing with (67), we take
H:(P) = cwrlF, E!(P)=-‘cwlH!, Pe€B,

T wree

giving a representation for the exterior field in the required form. Retracing our steps shows
that we can construct j*(¢) € To?(S) from £*(q) € Ty (S) (subject to (70) and (71)) in the
form

j* — C*f*’
where C* is a known bounded operator. But, from the derivation of (68), we know that j*
solves

L£ij =1
We also know from Theorem 7.2 that there can be at most one j* that solves this equation,

and so it follows that C* = (L)™'
Next, consider an arbitrary frequency w. We have

L1 = BLYj+ (L1 — BLY)j =1,
where (3 is a constant, whence
Bj+C (L — BLY)j=C1. (72)

This is a Fredholm integral equation of the second kind for j(¢) if 8 # 0 and (£, — SLY}) is
compact. Now,

(L1 = BLY] = (Ba"A; — ady) (< §) + L (5B, = 22B;) §.
This will be compact from T%?(S) into itself if
Ba*=a and w*= fBw; (73)
thus, we require that Mautz’s ‘constant’ a be given by
a(w) =n/w,

where 7 is a frequency-independent constant. Since we already have uniqueness for (68),
the Riesz theory gives the existence of j € T%#(S). It remains to show that j is actually in
T9%(S). Consider (72). We know that its right-hand side C*f € T2#(S), since f € T (S).
Also, the choices (73) ensure that £; — BL} is a pseudodifferential operator of order —1;
thus, it maps 7% (S) —s T"#(S) c TV?(S). Hence, j € T?(S), as required, and so we
obtain the following result.

Theorem 8.1 Mautz’s single integral equation (68), in which « = n/w and n is a frequency-
independent constant with Ren # 0, is uniquely solvable in Tg”B(S) at all frequencies.

A similar argument works for the other single integral equation, (69); the starting point
is the Fredholm equation (64).

Theorem 8.2 The single integral equation (69), in which o = nw and n is a frequency-
independent constant with Ren # 0, is uniquely solvable in Tg’ﬂ(S) at all frequencies.
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8.2 A singular integral equation without irregular frequencies

Consider the hypersingular integral equation (59). If B, was replaced by B,V, where V is
chosen so that B,V is compact, (59) would be a Fredholm equation. This idea is the basis of
the paper by Kress [12] on the exterior Maxwell problem. Thus, assume that we can write
(cf. (44))

E.(P) = j-Fj—bC.Vj, H(P)=Cj+by-FVj, PeB, (74)

where the constant b and the operator V will be specified later. Proceeding as in §7, we use
the Stratton-Chu representations in B; and then obtain (cf. (59))

{A-+0LBV}i=g, (75)

where g is defined by (53). Having solved (75), {E., H.} and {E;, H;} are to be constructed
from (74) and (54), respectively, with

K= -P.—b(I+ M)V and L.=1+M.+by PV (76)
in (54). We have the following result.

Theorem 8.3 If j(q) € Ty?(S) solves (75), {Ee, Ho} and {E;, H;}, given by (74) and (54)
(with (76)), respectively, solve the transmission problem.

Proof. Straightforward adaptation of proof of Theorem 7.1.
The next step is to examine uniqueness. It depends on the eigenvalues of the following
problem.

INTERIOR V-PROBLEM. Find a field {E, H} which satisfies Maxwell’s equations (4) in B;
and the boundary condition

nxE+biV{nxH}=0, pes. (77)

Theorem 8.4 The homogeneous form of (75) has a non-trivial solution if, and only if, k?
1s an eigenvalue of the interior V -problem.

Proof. Straightforward adaptation of the proof of Theorem 7.2.

We eliminate eigenvalues of the interior V-problem by making appropriate choices for b
and V. Thus, suppose that {E, H} solves the interior V-problem. As at the end of §2, we
deduce that

Re {b/SF.{V(n x H)}ds} —0,

where we have used (77). If, following Kress [12], we set
Va=mn x {EQS()a} s (78)

where ko will be specified and



we find that
Re (b) / 1So(n x H)[2ds = 0.
S

So, if Reb # 0, we deduce that
So(nxH)=0, pes.

But, if we choose ky so that k7 is not an eigenvalue of the interior Dirichlet problem, Sy is
invertible. Hence, n x H= 0 on S, (77) gives n x E = 0 and so {E, H} vanishes identically
in Bz

Now, from (26) and (78), we have

whence (27) and (60) give

4o 8 -
oBV) = Tep (—5152 £ )

Hence, B,V is compact from T%#(S) into itself. The Fredholm alternative then guarantees
the unique solvability of (75) in T%#(S). It remains to show that j € T(S). We proceed
as in the proof of Theorem 7.3. Thus, let {E,, H,} solve the transmission problem, whence
n x H, € T)?(S). Then

{I+Me+b¢PeV}j =nxH,

is uniquely solvable for j € T(?’ﬂ (S) [12, Eqn. (10")]. The result follows as before, using
uniqueness for the exterior problem, and so we obtain the following.

Theorem 8.5 The single integral equation (75), wherein V is given by (78), is a Fredholm
equation. It is uniquely solvable in T%P(S) for any g € T%?(S) if the two constants b and
ko are chosen so that Reb # 0 and kq is not an eigenvalue of the interior Dirichlet problem.
Moreover, if g is given by (53), the solution will be in T (S).

9 Discussion

We have seen that there are various methods for reducing the electromagnetic transmission
problem for a homogeneous dielectric obstacle to boundary integral equations: one can use
a pair of coupled integral equations for a pair of unknowns (§§5 and 6) or a single integral
equation for a single unknown (§§7 and 8). Clearly, we have not exhausted all the possibilities.
Thus, we derived single integral equations by using an assumed representation (or ansatz)
in B, and the Stratton-Chu representation in B;. We could reverse this procedure, leading
to different integral equations; a systematic investigation of this approach for the acoustic
transmission problem is given in [10, §6]. We could also derive single integral equations
without irregular frequencies by modifying the Green’s function, as done in [20] and [8] for
the exterior Maxwell problem.
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Appendix. Notational comparisons

For a time dependence of e'“!, Harrington’s notation [6] for the basic potentials is as follows:

E(J,0) = iwA(J) — grad ¢(J),
H(J,0) = %curl A(J),

(M) = —LF(M),

H(O,M) = iwF(M)— grad (M),

where
AQ) =pSI, ¢(JI)=1Sq, q=;Div],

F(M) =eSM, ¢(M)=.Sm, m=;DivM,
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and S is defined by (6). By Theorem 2.29 of [2], we have
¢(J) = —zdiv{SI} and (M) = —div{SM}.

Then, we can simplify E(J,0) and H (0, M) using (V? + k%)G = 0 and the vector identity
graddiv = curl curl + V2. The results are

E(J,0) = Lcurl {H(J,0)}, H(J,0)=curl {SJT},
F(0,M) = —curl {SM}, H(0,M) = — L curl {E(0, M)}.

Note that F(0,M) = —H(M,0) and H(0,M) = £E(M, 0).
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