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Amphidromic points are isolated points at which the wave amplitude vanishes.
We investigate the consequences of their existence in a wave field. For example,
one method for solving the mild-slope equation (this models the propagation of
water waves over a variable bathymetry) begins by writing the complex potential
in terms of a real amplitude A and a real phase S, both of which are functions
of position. We show that S is not continuous at amphidromic points, whereas
its gradient is singular there. We also find local approximations for A and S. We
discuss various differential equations governing A and S, with emphasis on their
properties in the presence of amphidromic points, and find a new pair that is
well behaved there. We discuss two simple examples for which the amphidromic
points can be found explicitly. Finally, we show that our analysis can also be
extended to Laplace’s tidal equations.

1. Introduction

Consider the propagation of time-harmonic waves, so that a typical dependent
variable (such as a velocity potential) can be written as

Re {y(z)e '},

where 1) is a complex-valued function of position ¢ and w is the circular frequency.
It is conventional to write

Y(z) = Ae', (1.1)
where A(z) and S(x) are real-valued functions of position. Examples occur in
the refraction of short water waves (Keller 1958; Meyer 1979) and in numerical
treatments of the mild-slope equation (Berkhoff et al. 1982; Ebersole 1985; Li &
Anastasiou 1992).

S(zx) is called the phase function. Any feature, such as a crest, can be identified
with a constant value of S and will move in the direction of grad S: ‘the sense
of propagation is also that of S increasing’ (Meyer 1979, p. 104). In simple ray-
theoretic models of refraction, S increases smoothly as one moves along a ray,
apart from known discontinuities at boundaries and caustics (Meyer 1979, p. 81).
This usually implies that S(x) is not single valued. We can easily recover single-
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92 P. A. Martin & R. A. Dalrymple
valuedness by restricting S to lie within an interval of length 2,
0< S5 < 2m, (1.2)

say. The price of this restriction is that S is now discontinuous as one moves
along a ray; however, grad S is unchanged (it can be defined by continuity at
these discontinuities in 5).

If one substitutes (1.1) into the governing partial differential equation for v,
one obtains a pair of coupled partial differential equations for A and S (see §6),
which may be solved numerically. Typically, these equations involve A and grad S;
the latter is single valued, in general.

The use of the representation (1.1) is supposed to aid the determination of .
If we suppose that 1 is given, then A and S can be determined uniquely from 1,
subject to the restriction (1.2), except at places where A = |1| = 0. Isolated points
where A = 0 are called amphidromic points or amphidromes or dislocations (Nye
& Berry 1974); it is shown in §3 that other possibilities can be excluded. (We
remark that simple ray theory fails at caustics and shore-lines, where it predicts
that A is infinite; we are not concerned with those defects here).

In this paper, we describe what happens near an amphidromic point, xy, in
the context of water-wave propagation, as modelled by the mild-slope equation.
First, we show that S(z) is not continuous at a,. Second, we show that grad S is
singular at ag:

lgrad S| ~ | — x| "

near x,; one should be aware of this fact in numerical work. Third, we deduce
that S must increase by 2mm when one circuit of @, is made, where the integer m
is such that A(z) has a zero of order |m/| at xy; this result may be useful in the
location of amphidromic points. It follows that S(z) is single valued, for & # x,
provided one imposes the restriction (1.2). Local approximations for A(x) near x,
are also found. Further consequences of the presence of amphidromic points are
discussed in §5.

In §6 we derive a pair of coupled partial differential equations for A and S.
One of these is well known, the other is often written in an alternative form; the
step leading to this alternative is not valid if there are amphidromic points, be-
cause it involves multiplication by A. We also develop other differential equations,
motivated by the recent paper of Radder (1992).

In §7a we study the simplest physical problem involving amphidromic points:
the superposition of three regular wavetrains, propagating in three different di-
rections on water of constant finite depth. (We remark that amphidromic points
cannot be created with two such wavetrains on water of constant depth; if the
depth varies, amphidromic points can, of course, be caused by the refraction of a
single wave.) This problem can be solved exactly. We give the solution for a par-
ticular symmetric choice of propagation directions: there is an infinite, hexagonal
array of amphidromic points; the behaviour of the field near the amphidromic
points is in accord with our simple theory. This solution may also be a useful
benchmark for numerical calculations. )

A comparison with the paper by Berkhofl et al. (1982) is made in § 7b. They
gave graphical results, for a particular configuration, suggesting that S is not
a monotonic function of the polar angle at @y; this is not consistent with our
leading-order approximation. We conjecture that this is due to the presence of a
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On amphidromic points 93

stationary point (where grad S vanishes) near the amphidromic point. We support
this conjecture in two ways: (i) we give an explicit solution (due to Nye et al.
1988) that has the same qualitative features; and (ii) we consider higher-order
approximations. Comparisons with some other published computations are made
in §7c.

Finally, in § 7d we consider the related (and older) topic of tidal amphidromic
points. The governing equations for horizontal motions, taking gravity and the
Earth’s rotation into account are well known (Laplace’s tidal equations) and lead
to an equation that is similar to (but more complicated than) the mild-slope
equation (see (7.6) below). A similar analysis of this equation can be made; the
results are in accord with the well-known exact solution for a rectangular basin
found by G. L. Taylor (1922).

After submission of this paper, Radder’s short paper (1992) appeared. He dis-
cusses some of the effects of amphidromic points, and proposes a system of dif-
ferential equations for A and a function G related to S. In §6 we examine this
system, using our local analysis near amphidromic points. This leads us to pro-
pose an alternative system, which seems worthy of further study.

2. Formulation: the mild-slope equation
The mild-slope equation (Berkhoff 1973) is
div (pgrad+) + k*pyp = 0, (2.1)
where 1(z) is a complex function of two horizontal coordinates, x and v,
z=(z,y), k=w/c, p=cc,

c(z) is the phase velocity and cg(z) is the group velocity; a time-dependence
of e has been suppressed. The wavenumber k(z) is defined as the positive
real root of the dispersion relation

w? = gktanh kh,

where h(z) is the water depth at  and g is the acceleration due to gravity. The
group velocity is given by

o ( 14 2kh )
%= 2¢ sinh 2kh /)
The coefficient p(x) is assumed to be a smooth function of .

In the special case of constant finite depth h, the mild-slope equation (2.1)
reduces to the two-dimensional Helmholtz equation,

(V2+ k) =0. (2.2)

(a) A path-independent integral

Because 1), the complex conjugate of 1, also satisfies (2.1) (p and k? are real),
we have

Y div (pgrad ) — ¢ div (pgrad ¢) = 0. (2.3)
Let T denote a simple closed curve, bounding a region 2 of the mean free surface.
Integrating (2.3) over Q, using the (two-dimensional) divergence theorem, then
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0y -y _

where d/0n denotes normal differentiation on I', out of Q. We shall make use
of (2.4) below.

gives

3. Amplitude and phase

Suppose we write the complex function v as
U(z) = Yr + iy = Ae'”, (3.1)

where g, Y1, A and S are all real-valued functions of  and y. A is the amplitude
and S is the phase. Clearly, A is uniquely determined in terms of :

A= =Y +¢f 2 0. (3.2)

On the other hand, S cannot be determined uniquely from i because it can
only be determined within a multiple of 2r. We eliminate this indeterminacy by
restricting S to satisfy (1.2). Then, just as with plane polar coordinates, we see
that S is uniquely determined by

tr = AcosS and ;= AsinS, (3.3)

unless A = 0.

Now, there are three possibilities. First, suppose that g or v; vanishes identi-
cally, so that ¢ corresponds to a standing wave. If Ygr =0, (1.2) and (3.3) imply
thatS:%then¢1>0and5::%thenw1<0; ifyy=0,5 =0 when ¢ >0
and S = 7 when ¢ < 0. Thus, in either event, S(z) is piecewise constant and the
continuous extension of grad S = 0. Henceforth, we assume that neither 1z nor
1; vanishes identically.

Second, there are the spurious discontinuities in S induced by the restric-
tion (1.2). Thus, S(z) will suffer a discontinuity of magnitude 27 whenever
P1(z) = 0 but g (x) > 0. However, because any solution of (2.1) has continuous
second partial derivatives, it follows that the derivatives of S can be continuously
extended across such discontinuities.

Third, suppose that A(z) = 0 for # € D; the domain D consists of patches,
curves and isolated points; the latter are called amphidromic points. When = € D,
S(x) is arbitrary. However, S(x) can be defined in D by continuity, except at
amphidromic points. To see this, we consider three cases.

Case 1. Suppose that A(z) = 0 for all  in a patch Dy of the zy-plane.
Thus, ¥(z) = 0 in Dy. But ¢ solves an elliptic partial differential equation,
whence analytic continuation shows that i vanishes in a larger region; if the
coefficient p(x) is sufficiently smooth, 1 will vanish everywhere. In general, this
solution is either not interesting or contradicts some known property of v, for
example its behaviour on a boundary or at infinity. Hence, we can forego the
possibility that A vanishes on a patch.

Case 2. Suppose that A(x) =0 for all  on a curve C. Parametrize C as
C:x=2z(r)=(z(r),y(r)), 071
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On amphidromic points 95

From (3.2), we have ¢¥,(z(7)) = 0 for 0 < 7 < 1 and a = R,I. We use this
information to calculate S near C. A unit normal to C at z(r) is n(r) =
(y'(7),—z'(7))/|2'(7)|. Thus, the point P at y = x(7) + hn(7), where h is small,
is near C. If we assume that g and 11 both have simple zeros on C, we find that
Yo(y) ~ ho, /On evaluated at x(7), for small h. Hence

_ i(y)  OyYr/On

It follows that S(x(7)) can be defined by letting h — 0. Moreover, because the
numerator and the denominator on the right-hand side of (3.4) are continuous
functions of 7, it follows that the resulting expression for S(z(7)) is also a contin-
uous function of 7 (apart from possible jumps of 27). Finally, similar arguments
show that S(x) has continuous first and second partial derivatives on C. The
same conclusions are obtained also if ¥ or 11 have zeros on C of any finite order.

evaluated at z(7). (3.4)

Case 3. Suppose that A(xz) = 0 at an isolated point, @, say. Introduce plane
polar coordinates (p, ¢) at @y, so that if p is small,

y = @ + p(cos ¢, sin p)
is a point close to x. Then, we find that
Yi(y)  (Oy1/0z) cos o + (94r/0y)sin p

~

Yr(y)  (Oyr/0z)cosp + (OYr/0y)sing

for small p, where the four partial derivatives are evaluated at the amphidromic
point . If we now let p — 0, we obtain different results according to the angle
of approach, ¢. Thus, S(x) is not continuous at x,, in general. We give a more
detailed local analysis around @, in the next section.

4. Local analysis near an amphidromic point
Suppose that h(x) is constant in a neighbourhood of the amphidromic point y,
h(y) =~ hy for small p,

where ho = h(x). Then, locally, ¥(y) solves the Helmholtz equation (2.2). Hence,
if @y is an mth-order zero, we have solutions of the form

P(Y) & Cmm(kop) €™ (4.1)

R A p™ €T (4.2)

for small p, where a,, and c,, are unknown complex coefficients, ky = k(x,) and
J,, is a Bessel function.

We can obtain (4.2) by a systematic method. Let L be the diameter of our

neighbourhood of ®. We assume that ¢ = koL < 1 and that h(z) can vary

slowly, so that 6 = |lh|L/ho < 1, where §;, = grad h evaluated at xy. If we then
look for a solution in the form

¢ = d}o + 57,%1 + 67,b10 + 0(62,65, 52),
we find that v, satisfies Laplace’s equation, and this leads to (4.2). Furthermore,
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96 P. A. Martin € R. A. Dalrymple
we find that o, = 0, and 1, satisfies
V2o = *io - grad o, (4.3)
where Iy = Io/|b|; if o is given by (4.2), a particular integral of (4.3) is
thio = —famp™ " exp{£i((m — )¢ + ao)},

where I, = (cos ap, sin ayp).
In general, we expect the local solution for ¢ to be given by a linear combination
of terms such as (4.2): suppose that

Y(y) = A pme™? 4 AypmeTime, (4.4)
where A; and A, are complex coefficients. It is convenient to write (4.4) as
»(y) = Axp™e” " x(2me + 73 0), (4.5)
where A;/A; = ae", a and « are real, and x is defined by
x(0;a) =1+ ae? = |x|e”, (4.6)

say, with a > 0. Clearly, comparison with (1.1) gives

S(y) =+mp+argA; if A, =0,

S(y)=—mp+arg A, if A =0.
These are both monotonic functions of . In particular, S increases monotonically
by 2mn after one anticlockwise circuit of @, (¢ increasing) if A, = 0 (a = o0),
whereas it decreases monotonically by 2mn if 4, = 0 (a = 0). It turns out
that this monotonic behaviour also occurs with (4.5), wherein 0 < a < oo; the
changeover occurs at a = 1. To see this, use (4.6) in (4.5) to give

S(y) = —me + T(2me + v;a) + arg A,. (4.7)

We cannot write down an explicit formula for T'. However, we have

asinf
1+acosf’
and we observe that if 8 increases by 27, then T also increases by 27« if a > 1,

but T is single valued if 0 < a < 1. Moreover, we can calculate the rate of change
of T(0;a) with 8, for fixed a:

tan{T'(#;a)} =

_dT"_ a(cosf + a)

T'(6;0) = d9 ~ 1+ 2acosf + a2’
whence
ds m(a® — 1)
S’ = = 2mT’ (2 jq) = . 4.

Thus, if 0 < a < 1, 8’(¢) < 0 for all ¢ and S decreases by 2mm if ¢ increases
by 27. Similarly, if a > 1, S’(p) > 0 for all ¢ and S increases by 2mmn if ¢
increases by 27. At the changeover, a = 1 and S is piecewise constant: it is given
by S(y) = 37+ arg A, if cos(mep + £v) > 0 and by S(y) = v + arg A, + 7 if
cos(mep + 37) < 0.
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In summary, equation (4.7) gives the phase S corresponding to the local ex-
pansion (4.4). S is independent of p, it is a monotonic function of ¢ (for a # 1)
and it is not continuous at x,.

5. Some consequences of amphidromic points

If we substitute (3.1) directly into the integral (2.4), we obtain

/pAQ—a—gds:/pAzs'nds:O (5.1)
r on r
for any simple closed curve I', where we have written

s(xz) =grad S. (5.2)

The vector field pA?s is an energy-flux vector, whence (5.1) expresses conserva-
tion of energy. Note that the two-dimensional vector field s() is continuously
differentiable everywhere, except at amphidromic points where it is singular, in
general. Specifically, for an amphidromic point at @, (4.7) and (4.8) give

s(y) = S'(v)¢/p (5.3)
for small p, where ¢ is a unit vector in the -direction. This shows the nature of
the singularity in s(z) at € = x (p =0).

The integral relation (5.1) is valid for any simple closed curve T, even if there
is an amphidromic point in §2. To verify this, we take I' as C,, a small circle of
radius p and centre . Then, from (5.3), we find that s-n ~ 0 on C,, as required.

Next consider

/ s-dr,
r

where I' is any simple closed curve bounding a region 2. Suppose that 2 does
not contain any amphidromic points. Then, the definition (5.2) implies that

curl s = 0, (5.4)

everywhere in ), whence Stokes’s theorem gives

/s-dr:():
T

‘conservation of waves requires the total number (with correct sign) crossing any
closed curve be zero’ (Whitham 1960, p. 349). Equivalently, we can assert that

the line integral,
Q
/ s-dr,
P

between the two fixed points P and Q is independent of the path chosen between
P and Q, implying that S is single valued.
Suppose, now, that  contains a single amphidromic point at @;. Then

_ _ [ —2mr if0<a<l,
As-dr—/cjs~dr—{+2mﬂ ifa>1,

P

for an mth-order zero at @, where we have used (5.3). This shows that S(z)

Proc. R. Soc. Lond. A (1994)
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98 P. A. Martin & R. A. Dalrymple

(without the restriction (1.2)) increases by an integer multiple of 27 after making
one circuit around one amphidromic point. Imposing (1.2) eliminates this increase
and reasserts the single-valuedness of s(x) for ¢ # x.

6. Governing equations for amplitude and phase

Let us substitute (3.1) into (2.1) and split the result into real and imaginary
parts, giving

div (pgrad A) + (k* — |s*)pA =0 (6.1)
and
Adiv (ps) + 2ps - grad A = 0, (6.2)

respectively, where s(z) = grad S. These are the coupled partial differential equa-
tions governing A(z) and S(z).

We note here that, in the theory of refraction of short waves there is a small
parameter, which makes the first term in (6.1) negligible compared to the second.
This leads to |s| = k, which is known as the eikonal equation. In our case, this
equation is not satisfied and so we have chosen to use s rather than the more
conventional k.

Suppose that A(z) does not vanish. Then we can write (6.2) as

div (pA®s) = 0. (6.3)

Alternatively, as ' does not contain any amphidromic points, pA?%s is continuously
differentiable within I" and so equation (6.3) follows from an application of the
divergence theorem to the integral in (5.1). Equations (6.1) and (6.3) are well
known; see, for example, Berkhoff et al. (1982, equations (7) and (8), apart from
a sign error in (7)) and Ebersole (1985, equations (4) and (5)). Although one can
view (6.1) and (6.3) as equations for A and S, we have already noted that the
phase S can suffer discontinuities. Thus, it seems preferable to solve the three
equations (6.1), (6.3) and (5.4) for A(z) and the two components of s(x). This
method has been used by Ebersole (1985).

Suppose now that A(x) does vanish at some isolated amphidromic points. If
we use the local approximations obtained in §4, we find that the vector field

pA?s

is continuously differentiable, even at amphidromic points. It follows that (6.3),
which asserts the conservation of energy, is always valid. Thus, we could attempt
to solve (6.1), (6.3) and (5.4); but (5.4) is not valid at amphidromic points.
Alternatively, (6.3) implies the existence of an ‘energy stream-function’ G(z), so
that

05 oG oS oG
AP = —— d pA’— = —-——
or Oy and p Oy Ox

(Radder 1992) and (6.3) is satisfied identically.
To proceed, we need an equation for G. We know that G has continuous second
partial derivatives everywhere. Moreover, apart from amphidromic points, s must
satisfy (5.4). Thus, following Radder (1992; he considered p to be constant), we

(6.4)
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substitute (6.4) into (5.4) and into (6.1) divided by pA, giving

dG
div (gr;‘E ) —0 (6.5)
and
gradG)2 ., 1 (gradE) 1<gradE>2
=k+ — - ; .
( o +2pd1v P +4 5 ; (6.6)

here, F = A? is called the ‘energy density’ by Radder (1992).

A disadvantage of Radder’s scheme is that most terms are singular at am-
phidromic points (these singularities can be seen easily using the local expansions
given in §4). Instead, we may formally multiply (6.5) and (6.6) by p>E? to give

pEV?G = grad G - grad (pE) (6.7)

and
(grad G)* = (kpE)* + ipdiv (pgrad E?) — 3p*(grad E)*. (6.8)
This pair of equations is equivalent to Radder’s pair and to the three equations
((6.1), (6.3) and (5.4)) used by Ebersole (1985), in the absence of amphidromic

points. However, every term in (6.7) and (6.8) is well behaved at amphidromic
points, and so this pair should be better computationally.

7. Discussion

In this section we give two simple explicit examples in which amphidromic
points occur (§7a,b), we make some comparisons with previous work (§7b,c)
and we extend the theory to tidal amphidromic points (§ 7d).

(a) A simple example: three-wave superposition
Probably the simplest example (of physical relevance) exhibiting amphidromic
points is obtained by adding three regular wavetrains together, where the water
has constant depth (see Nicholls & Nye 1987, appendix 1). Thus, consider three
waves, given by
¥;(x) = exp{ik(zcosa; + ysine;)}, j=1,2,3,
so that the jth wave propagates at an angle o; to the z-axis. Let us superpose
these waves in a symmetric manner, with

o) =T, a2:l7r7 O3 = —

3 .

1
3
Then, the wave field is given by

Y = Py + 1Py + Py = e 4 2T 092 cog(ky sin o). (7.1)
The amphidromic points can be found explicitly. Set

X =kzxcosay = %km and Y = kysina, = %ky.
Then, the amphidromic points correspond to

(X,Y) = (Xo + %mﬂ',YO + 27’L7T)

Proc. R. Soc. Lond. A (1994)
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Figure 1 Figure 2

2w

0 7 2m =21 —IT
kx

Figure 1. The amplitude A corresponding to the three-wave superposition (7.1). The scale ranges
from dark (A = 0) to light (4 = 3). ‘

Figure 2. The phase S corresponding to the three-wave superposition (7.1). The arrows indicate
the direction in which S increases around the amphidromic points. Some of the phase lines are
labelled with an integer n, where S = %mr.

where m and n are arbitrary integers, and (X, Yy) is any of

(Oa %W)a (07 %ﬂ-)z (%Wa %W) and (%ﬂ-a g”)
We observe that the amphidromic points form a regular hexagonal array in the
zy-plane. We also find that each amphidromic point corresponds to a simple zero
of A(x); near (Xo,Y;), we find that

() ~ kp{3icos Yy cos g — V3sin Yy sin ¢} X0,

from which the phase can be obtained easily. The amplitude and phase are illus-
trated in figures 1 and 2 respectively (see also Nicholls & Nye 1987, figs 3 and
16a).

Similar calculations can be made for other values of «;, j = 1,2, 3.

(b) Comparison with Berkhoff et al. (1982)

Berkhoff et al. (1982) have sketched the lines of constant phase for wave propa-
gation over a sloping bottom with an elliptical shoal. They present experimental
results (their fig. 3) and numerical results based on the mild-slope equation (2.1)
(their fig. 11a). In both cases, it appears that two amphidromic points are visible.
However, the behaviour of the phase near each amphidromic point is not consis-
tent with (4.7), although the curves themselves stop short of the amphidromic
points. The striking feature of their results is that the phase is not a monotonic
function of ¢ as y makes a circuit around either amphidromic point (if it was,
such a circuit would intersect the solid and dashed lines in their figures alter-
nately). We conjecture that this behaviour is due to the presence of a stationary
point (where s = 0 but A # 0) in the vicinity of each amphidromic point. We
support this conjecture with (i) a local model solution and (ii) a refined local
analysis.

Proc. R. Soc. Lond. A (1994)
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ky/(2m)

0 0.4 0.8
kx /(2m)

Figure 3. The phase S corresponding to the model solution (7.2), for ¢ = 4/2, at intervals of iﬂ'.
Only the first quadrant is shown, as the curves are symmetric about both # = 0 and y = 0. On
the positive z-axis, there is an amphidromic point at kz = /2 (marked with a black dot) and
a stationary point at kz = 1 (marked with a circle). S = 17 on the dashed line to the right of

the armphidromic point, and then decreases as we move upwards; S = %71’ on the curves passing
through the stationary point (recall (1.2)).

(i) An exact model solution
Nye et al. (1988, appendix B) consider functions of the form

P(x) = e7 ¥ {ky +i[(k2)” — ]}, (7.2)
where ¢ is a real parameter. ¥ solves the Helmholtz equation (2.2). If we choose
¢ > 1, we find that 1 has amphidromic points at (kz, ky) = (£c,0) and stationary
points (saddles) at (kz,ky) = (£+/(c* —1),0). The curves of constant phase
when ¢ = /2 are shown in figure 3. The picture is symmetric about both z = 0
and y = 0. It can be interpreted as showing a wave crest along the dashed line,
and wave troughs along the lines passing through the stationary point.

Although the solution (7.2) has no physical relevarice for large = or y, its
phase is qualitatively similar to that found by Berkhoff et al. (1982), near the
amphidromic points. In addition, we can use it to verify some of the results in § 6.
For example, since p(z) = 1, We find that the energy-flux vector is given by

pA%s = K(2XY, — X2 —Y? — (X% - &2)?),
where X = kz and Y = ky. This vector field satisfies (6.3). The corresponding
energy stream-function (defined by (6.4)) is given by

G=X{Y’+iX*'+ X*(1- %)+ -2}
note that there is no corresponding energy potential.

(i) Higher-order terms
We can include higher-order terms in (4.4). Thus, for example, suppose that

d)(y) ~ Alpme+im<p + Bpm+1ei(m—|~1)<p — A1pmeim¢X(Q0 4 'Y;CL,O), (73>
where B/A, = ae'”; hence
S(y) = mp+ T (o +v;ap) +arg Ay,

Proc. R. Soc. Lond. A (1994)
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which depends on ¢ and p. For simplicity, we take v = 0. Then, it is easy to check

that v, given by (7.3), has amphidromic points at p = 0 and at (ap,¢) = (1,7),

and a stationary point in between at (ap, ¢) = (r,, 7), where r,, = m/(m + 1).
Now, for fixed p, we have

5'(p) = dS/dp = m + T'(p;ap) = S, (5 ap), (7.4)
say, where
, m + (2m + 1)rcos p + (m + 1)r?
Sp(pir) = ( ! ) (2 .
+2rcosp+r

We will see that, for a certain finite range of values of r, S] is not a monotonic
function of ¢: it changes sign twice. For S/, to vanish, we must have

m+ (m+1)r*

cosp = — Gm e (7.5)

this gives real solutions for ¢ provided r,, < r < 1. So, for such values of r, let
©m (1) solve (7.5), with 0 < ¢,,(r) < . Then

Snliyr) >0 for 0.< ¢ < ¢m(r),
Sp(@3r) <0 for m(r) <@ < 2m = om(r),
S (g;7) >0 for 27 — ¢, (1) < ¢ < 2.

As r increases from r,,, the angle ¢,,(r) decreases from 7 to a minimum value,
Omin S8Y, at r = /T, and then increases back to 7 at r = 1; moreover, @, > %71‘.
Ifr<r,orr>1 8 (p;r)is a monotonic function of .

In our application, r = ap, where a can be any positive number. Thus, the above
argument gives an explanation for the results of Berkhoff et al. (1982): it gives
two sign changes in S’(y), for a certain interval of p, and, within this interval,
the two points at which S’ changes sign subtend an angle at @ of 2, (ap) < 7.

(¢) Comparisons with other published results

The simple prediction (4.7), giving the behaviour of the phase around am-
phidromic points, can be compared with other published results. Skovgaard &
Jonsson (1981) have calculated the scattering of waves by an ideal axisymmet-
ric island, known as Homma’s island, by solving the mild-slope equation (2.1).
They give phase contours in the zy-plane for y > 0 (the motion is symmetric
about y = 0) for two frequencies: in one (their fig. 7), five amphidromic points
are clearly visible; in another (their fig. 6), there are 23 amphidromic points! The
phase increases by 27 around each amphidromic point, implying simple zeros in
the amplitude. Thus, these results are consistent with our simple theory. Simi-
lar results have been obtained by Sprinks & Smith (1983, fig. 6) for scattering
by a conical island; they take viscous effects into account and solve a modified
mild-slope equation.

Ebersole (1985) has made computations for the same bathymetry as used
by Berkhoff et al. (1982), using a finite-difference approximation to (6.1), (6.3)
and (5.4). He noted that his results were not in good agreement with their experi-
mental data, especially downwave of the shoal. He conjectured that this error was
‘related to the occurrence of an “amphidromic” point in the wavefield’ (Ebersole
1985, p. 946). In fact, one of his dependent variables, |s| in our notation, is infinite
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at amphidromic points and so cannot be approximated using finite differences in
their vicinity.

(d) Tidal waves

The simple analysis described above for gravity waves governed by the mild-
slope equation can also be extended to treat tidal waves. Lamb (1932, §168)
defines tidal waves as ‘waves in which the motion of the fluid is mainly horizontal’,
although rotational effects are usually included. Thus, let u(z,t) = (u,v) be
the horizontal fluid velocity and let ((x,t) be the surface elevation. Then, the
governing equations are known as Laplace’s tidal equations; in their homogeneous
planar form, they are (see, for example, Lamb 1932, §207; Bowden 1983, §2.3.3;
Hendershott 1977, p. 64)

ac . b o
o TV =0 G fu=—oge
B S
a1 T =0,

where h(x) is the water depth at @ and f is the Coriolis parameter. For time-
harmonic motions, with

¢(z,t) = Re {¢(@)e '},
we can eliminate u and v to give

if <aha¢ aha¢> +w2—f2
g

w

Or 0y Oy ox
If h is constant, (7.6) reduces to
(V2 + k) =0, (7.7)

div (hgrad ¢) +

¥ =0. (7.6)

where the parameter

k= (W~ f*)/(gh)
can be positive or negative.

Taylor (1922) solved (7.7) in a rectangular bay, for « > 0, and showed that
amphidromic points could occur. See Bowden (1983, §2.5) and LeBlond & Mysak
(1978, §28) for more information and further references on tidal amphidromic
points.

For water of constant depth, the local behaviour near an amphidromic point @y
depends on the value of  at @,: if & > 0, then 9 is given by (4.1) wherein k3 = &;
if x < 0, then 1 solves the modified Helmholtz equation, locally, whence

¢(y) ~ chm(k0p> e:timzp

for small p, where k2 = —x and I, is a modified Bessel function. In either case,
the local solutions are given by (4.2), even when h(x) varies slowly near x;. It
follows that the phase is given by (4.7).

The governing equations for the amplitude and phase can be found, as before,
by substituting (1.1) into (7.6). Again, the resulting equations involve only A and
grad S, so they may be solved by supplementing them with (5.4); again, grad S
is singular at amphidromic points.
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Finally, it is perhaps worth noting that there is an extensive literature on the
finite-difference solution of (7.6); see Hendershott (1977) for a review. Within
this context, it is notable that the representation in terms of an amplitude and a
phase (1.1) does not seem to have been used.

R.A.D. was supported in part by the NOAA Office of Sea Grant, Department of Commerce
under Award No. NA-16RG-0162-02.
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Figure 2
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Figure 1. The amplitude A corresponding to the three-wave superposition (7.1). The scale ranges
from dark (A = 0) to light (A = 3). |

Figure 2. The phase S corresponding to the three-wave superposition (7.1). The arrows indicate
the direction in which S increases around the amphidromic points. Some of the phase lines are

labelled with an integer n, where S = %?lﬂ'.



