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The propagation of linear water waves in regions bounded by porous media is
examined analytically. Two cases are considered: a single porous medium and a
channel with porous sidewalls. For the first case, a porous medium boundary con-
dition is developed for use in numerical parabolic models that allows for scattered
wave energy to leave the computational domain without reflection.

1. Introduction

Parabolic approximations are now routinely used to model the propagation of
waves over large domains. In the context of three-dimensional water waves, we
cite Radder (1979), Mei & Tuck (1980), Booij (1981), Tsay & Liu (1982), Kirby
& Dalrymple (1983), Kirby (1986) and Panchang et al. (1988). These approxima-
tions are appropriate when the waves propagate mainly in one direction, which
we take to be the z-direction, and lead to parabolic differential equations; these
can be solved numerically by marching in z.

A disadvantage of numerical parabolic models has been the efficacy of the lat-
eral boundary conditions, which are imposed to allow the study of very wide
domains by computing within only a narrow domain. Waves should propagate
cleanly across these lateral boundaries, and so the corresponding boundary con-
ditions are referred to as transmitting boundary conditions. Yet, in practice, for
most imposed boundary conditions, partial reflection occurs for scattered waves
generated within the model domain. Dalrymple & Martin (1992) developed a
perfect boundary condition for parabolic wave models to permit these scattered
waves to exit the modelling domain without reflection. For waves in domains
bounded by a porous medium, no transmitting boundary condition Has existed
previously.

In this paper, we examine the propagation of water waves in regions bounded
laterally by porous media modelled by the equations of Sollitt & Cross (1972). The
simplest case we treat is for waves obliquely incident on a thick porous breakwater
lying along the z-axis. For this case, an analytic expression is obtained for the
wave field, which diffracts into the porous medium. A perfect boundary condition,
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412 P. A. Martin and R. A. Dalrymple

similar to that developed by Dalrymple & Martin (1992) is provided for use in
numerical models.

A more difficult case corresponds to waves propagating normally into a channel
composed of two thick porous breakwaters. Melo & Guza (1991 a,b) developed
a numerical parabolic model for waves within parallel jetties and made field ob-
servations of the wave-height decay down the channel (Mission Bay, California).
Following a suggestion from D. H. Peregrine, they showed that the wave-height
decay with distance did not differ drastically from that predicted for the centre-
line decay of height behind a breakwater gap of the same width as the channel,
showing that diffraction of waves into the jetties plays a major role in the wave-
energy reduction. Dalrymple (1992) examined this energy dissipation by using a
simple impedance boundary condition at the jetties and found a simple exponen-
tial decay of wave height down the channel, depending on the specific admittance
of the jetties and the relative width of the channel (ratio of channel width to
incident wave length). For this case, we provide an analytic expression for the
wave field, using more exact matching conditions along the jetties, and find that
the wave-height decay in the far field is proportional to 1/y/z. We further com-
pare the solution to the result for waves passing through a breakwater gap of
similar width. We find that, in the far field, the two solutions differ only by a
multiplicative factor that depends on properties of the porous medium.

(a) Parabolic models

All of the sequel is based on the use of simple parabolic approximations to the
governing equations for small-amplitude time-harmonic waves. Thus, we start by
sketching the derivation of such approximations. Consider the irrotational motion
of an incompressible, inviscid fluid, which we suppose has constant depth h. A
harmonic velocity potential & exists; write it as

coshk(h + z) M}
coshkh ¢ ’

where the bottom is at z = —h (h > 0); the wavenumber k£ and the circular
frequency w are related by the dispersion relation,

w? = gktanhkh,

P(z,y,z,t) = Re {QS(x,y) (1.1)

where g is the acceleration due to gravity; and (z,y) are cartesian coordinates.
By substituting (1.1) into Laplace’s equation, we obtain

——+ —— + k’¢ =0, (1.2)
T Y

which is the Helmholtz equation; it is an elliptic equation for ¢(z,y).
To obtain a parabolic equation, we write

¢(z,y) = Az, y) "
and then discard a term proportional to 9?A/dz?, leaving
0A 0?4
2ik — + — = .
ik + a5 0, (1.3)
which is a parabolic equation for A(z,y). This approach may be justified by
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supposing that A(z,y) is a slowly-varying function of z, so that
|0A/0z| < |kA. (1.4)

Various solutions of (1.3), the simple parabolic equation, are obtained below.

2. A composite semi-infinite breakwater

We consider a thin impermeable rigid semi-infinite breakwater along x = 0,
y < 0, which protects a porous medium that lies in the fourth quadrant of the
zy-plane. We suppose that the first, second and third quadrants are filled with
water. We suppose further that waves are incident from the region = < 0; thus,
the exact incident field is given by

¢inc($,y) — eik(mc030+ysin0)' (21)

Ginc 18 a solution of (1.2), corresponding to a plane wave propagating at an angle 6
to the xz-axis. The incident waves are reflected by the rigid face of the breakwater
(z = 0, y < 0), diffracted by the corner at the origin, and refracted into the
porous quadrant. The exact solution, then, is governed by (1.2) in the water,
a different Helmholtz equation in the porous medium (with k replaced by Kj,
defined below), continuity conditions across the interface (y = 0, z > 0) and
zero-velocity conditions on the breakwater (z = 0, y < 0). This problem has been
formulated by Meister (1987), but it has not been solved.

To make progress, we start by invoking a Kirchhoff approximation (Born &
Wolf 1980, ch. 8). Thus, we suppose that ¢(0,y) is known for y > 0, and
then try to calculate the transmitted field in & > 0. Usually, one assumes that
#(0,y) = ¢inc(0,y) for y > 0, but one could suppose that ¢(0,y) is known from ex-
perimental measurements. This leads to a problem posed in the half-plane x > 0,
which is itself composed of two quadrants, one filled with water and one filled
with the porous medium. This problem is still complicated (it has been studied
theoretically by Meister et al. 1992) and the generalization to a porous-walled
channel seems to be intractable.

To make further progress, we retain the Kirchhoff approximation, but also
invoke the parabolic approximation. Thus, the incident field is now given by

Ainc z, = e—’ym+iAy, 2.2
Y

where
v = liksin®§ and A= ksin6.

Aine 1s a solution of (1.3), corresponding to a plane wave propagating at an angle
6 to the z-axis; we assume that |8] < %7(. We calculate the wave field in = > 0,
using simple parabolic models.

Denote the solution in the first quadrant @, = {(z,y) : z > 0 and y > 0}
by A.(z,y), and that in the fourth quadrant @_ = {(z,y) : * > 0 and y < 0}
by A_(z,y); when convenient, we shall also use A, defined by

A z, .DQ ’
Ay = {40y g
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We suppose that (). is occupied by water, so that

24 A
8ayj + 7w 6&; =0 inQ,, (2.3)

where
0 = 2ik/x. (2.4)
We suppose further that Q_ is occupied by a rigid porous medium. The fluid
motion within ¢)_ may also be described using a potential and a modified free-
surface boundary condition. These equations have been derived by Sollitt &
Cross (1972); see Dalrymple et al. (1991, Appendix A) for a summary. The porous
medium is characterized by three parameters: the porosity, ¢, the linear friction
factor, f, and the inertial term, s; all these parameters are taken to be constant
here. All wave motion in ¢J_ is damped if f > 0. For our parabolic model in Q)_,
we choose the ‘least-damped’ wavenumber, K; this is the root of the complex
dispersion relation,

w*(s +1if) = gK; tanh K h, (2.5)
in the first quadrant of the complex K;-plane with smallest imaginary part. (Note
that Dalrymple et al. (1991) have (s —if) throughout, as their time-dependence
is e™“!, Furthermore, they examined all the roots of (2.5) and showed that the

modes can ‘swap’ for various combinations of wave and porous media parameters.)
Then, the governing equation in the porous medium is taken as

0%A_ 0A_ .
—é—y‘Q—‘ -+ ﬂ-Qf?a—x-‘ = 0 1n Q_, (26)
where
0?2 = 2iK, /. (2.7)
The boundary conditions on z = 0 are
AL (0,y) = Ainc(0,y) = fory >0 (2.8)
and
A _(0,y) =0 fory <0, (2.9)

where we have used (2.2). Note that, because of the assumption (1.4), (2.9) is
a comparable approximation to d¢/0x = 0 on z = 0, which is itself the appro-
priate boundary condition on a rigid wall or impermeable breakwater. There are
also continuity conditions across the interface between the water and the porous
medium. These are (see Dalrymple et al. 1991)

0A, /0y =€0A [0y, AL =(s+if)A_. ony=0, z>0. (2.10)
Finally, we also assume that
A(z,y) is bounded as |y| — oc. (2.11)

(a) Analytical solution for A

We solve for A using a Laplace transform in z (a similar method was used by
Dalrymple & Martin (1992)):

LAy =Apy) = [ Aley)e ™ da,
0
where we suppose that Rep > 0.

Proc. R. Soc. Lond. A (1994)



Porous-walled channels 415
(7) Solution in Q4
Because £ {0A/0z} = pA(p,y) — A(0,y), (2.3) is transformed into
%A,
ay?
where we have used (2.8). A particular integral of (2.12) is

+7pP A, = n)?eM, (2.12)

2™ (rpQ? — Nt =M (p+ )7 = Aie(p, ),
and so the general solution of (2.12) is
A (py) = Co(p) exp{iyy/mp} + Do (p) exp{—iyy/mp} + (p+7) e, (2.13)
Given (2.4), we define 2 by
2= 1+1)/(k/m).

Then, the condition (2.11) for y — oo implies that D, (p) = 0. C,(p) will be
determined below by imposing the interface conditions (2.10). Note that, on y =
0, we have

A (p,0) =Ci(p) + (0 +7) 7 (2.14)
0A. /9y = i0ympCo(p) +iX(p+7) " (2.15)

(#) Solution in Q_
Transforming the differential equation (2.6), making use of (2.9), gives
O?A_

Oy?

+7pfA_ =0

with general solution
A_(p,y) = C_(p) exp{iy{2/7p} + D_(p) exp{—iysh/7p}. (2.16)
Now, from the definition of the complex wavenumber K, we have
K, =|K e’ with 0<é< in,

and so, given (2.7), we define {2, by
O = (1 + )| K| /7) el/2

Also, (2.11) for y — —oo implies that C_(p) = 0. Hence, on y = 0, we have
A_(p,0) = D_(p), (2.17)
0A_ /0y = —if\/mp D_(p). (2.18)

(#3i) Determination of C.(p) and D_(p)

Transforming the interface conditions (2.10), and using (2.14), (2.15), (2.17)
and (2.18) gives

Ci(p)+(+7) "= (s+if)D_(p),

QyapCo(p) + Mp +7) ™" = —ei/7p D_(p).
Proc. R. Soc. Lond. A (1994)
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These can be solved to give
B —A(s +1if)

Ci(p) P {m+——9\/7r_p}

and D_ (p) — ’—*—A 1-— A 3
P+ 2/7p
where

A=(s+if+ed), A=0/0= /(K /k) and m=eA/(s+if); (2.19)

these complex quantities involve all the parameters of the porous medium. Dal-
rymple et al. (1991) called m the dimensionless admittance of the porous medium.
Typically m satisfies |m| < 1. Note that if &(z,y) is any solution of (2.3), then
&(z, Ay) is a solution of (2.6). This completes the determination of the transforms

A (p,y) and A_(p,y).
(iv) Inversion of A, and A_
From Gradshteyn & Ryzhik (1980, §17.13, eq. (32)), we have
exp{iay/mp} = L {—%ia:v_S/Z exp (iwaz/x)} :
Integrating with respect to a from ico to o gives
exp{ia\/mp}/\/Tp =L {71'713771/2 exp (%7?(12/37)} . (2.20)
Hence, from (2.13), we have

A (p,y) = Aine(p, y) + Cy (p) exp{iyQy/mp}
= Aine(p,y) + 3w +m) " L{eT"} L{A (2,9)}  (2:21)
for y > 0, where
Au(,y) = {ma2 + (A (ky))o~/2} exp{ Liky? /a}. (2.22)

Similarly, from (2.16), we have

A_(p,y) = D_(p) exp{ily|f2/7p}
= —HYINAL{e "} L{A_(z,y)} (2.23)

for y < 0, where
A(e,y) = (A2 + V(e PYepJiKu?fa). (224)
These expressions for A, and A_ can be inverted using the convolution theorem,
namely .
clupefey = £ [ ue - ue) e},

to give the solutions

Ai(z,y) = Ane(z,y) + 31y +m) te L (z,y), (2.25)
A_(z,5) = iyl 0Ae T (z,y), (2.26)

where e
Li(wy) = [ €5 Au(ep)de (2.27)

Proc. R. Soc. Lond. A (1994)
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We can express I in terms of the Fresnel integral
F(v) = /Oo ¢’ du. (2.28)
We find that (see Appendix A)
Io(@,y) = 2/ 0g?) {m+ DM P ) + (m— 1)e ™ Fw,)}  (229)
for y > 0, where vi(z,y) = \/%(y + xsinf), and
I (z,y) = 24/2/(ky?) exp[iAAy] F(—vy) (2.30)

for y < 0, where v; = /1k/z (Ay — zsinb) = v_(z, Ay).
Substituting for I, in (2.25) and simplifying gives

Ai(z,y) = Aar(z,y) + Apor (T, y), (2.31)
where ) )
Aano,) = Auslz) {1+ 52 Py} (2.32)

is solely due to diffraction (it does not depend on the properties of the porous
medium) and

i(1+i)m-1

Vor m+1
incorporates effects in (), due to the porous medium in @ . Similarly, substitut-
ing for I_ in (2.26), noting that F(—v) = /7w ei™/* — F(v), gives the solution in
Q_ as

Apor(xa y) = Apne(z, —y) F(vy)

A_(z,y) = 2A Ay (z, Ay). (2.33)

Finally, it is sometimes convenient to express the solution in terms of the real
Fresnel integrals

C(v):/ cos(%mf)du and S(U):/ sin(%mﬁ)du.
0 0

Because
- {00 () ()}
we obtain
Aanle,) = o Aucloy) {15+ 00 ) +ilk + S0} (230
and
Apen@) = = Al ) " Clo) il - SN (235)

V2
where o1 (x,y) = V/k/(mz) (y £ zsin9).
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(b) Comparisons and special cases

Here, we specialize the solution obtained in §2a, and compare with published
results.
For normal incidence (6 = 0), we have A, (z,y) = 1,

oy =0_ =y\/k/(mzx) =0,

say, and o, = Ao. This leads to slight simplifications in (2.34) and (2.35). In
particular, if we suppose that @ _ is filled with water, we have

s=e=1 and [f =0,

whence

Hence, for all y, we have
Alz,y) = Aaig(z,y) = 27274 {[5 + Co)] +il5 + S(0)]} -

This agrees with equation (7.16) in §10.7.1 of Mei’s book (1983), obtained there
by looking for a similarity solution.
More generally, for oblique incidence but still filling ) with water, we obtain

Az, y) = Aair(z,y)

for all y, where Ay is given by (2.32) or (2.34). In Appendix B, we show that
this is equivalent to a result obtained previously by Kirby & Dalrymple (1986),
using a Fourier transform in y.

(i) Comparison with Sommerfeld’s solution

When the fourth quadrant ¢J_ is filled with water, the exact problem formu-
lated at the beginning of this section can be solved exactly: this is Sommerfeld’s
solution of (1.2) for scattering by a thin rigid semi-infinite barrier. It is of interest
to compare the solution (2.32), obtained by solving the parabolic equation (2.3)
in z > 0, with Sommerfeld’s exact solution, A (z,y) = e **¢(z,y). Thus, from
Noble (1988, p. 73), we have

Aw(z,y) = AD) (z,y) + AD (z,y), (2.36)
where
Ag() (x,y) — Wﬁ1/2e—iﬂ-/4ei/\yeikx(c0s6*1) F(al),

Aéi)(l,,y) — 7T—1/2€~i7r/4ei)\ye41km(cos6+1) F(az),

a1 = \/2kp sin (0 — ¢), as = \/2kp cos 3(6 + @),

and (p, ¢) are plane polar coordinates: x = pcos ¢, and y = psin . This solution
is valid in the whole of the zy-plane, with the breakwater on the negative y-
axis. In & > 0, we have |p| < i7; since || < 37, we have a, > 0. Now, since

. o2
F(v) ~ ziv™'e™" as v — oo, we see that

exp{i[\y — kz cos 0]} F(ay) ~ 3ie*” (2kp)™"/* sec 1(6 + )

Proc. R. Soc. Lond. A (1994)
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as p — oo in x > 0; thus, A decays like p~/2 in z > 0. Now, write

AQ () = Axe {14 2 F-ay), (2.37)

where Ainc(m,y) — ei)\yeikm(cos 0—1)
ex
is the exact incident field for a plane wave. A gives the transmitted waves in

x > 0, and should be compared with the parabolic approximation A, given
by (2.32). First, we compare A" with A;,., defined by (2.2); we have

A& (2,y) = Auc(, y) exp{ikzlcos§ — 1 + § sin” 0]},

and the exponent is seen to be O(#*) as § — 0. Second, we compare the arguments
of the two Fresnel integrals: we have

sin ¢ — cos @ sin f .
v_ =/ kp s and  —ay =24/3kp sin (¢ —0).

If we suppose that both ¢ and 6 are small (so that we are close to normal incidence
and we observe close to the z-axis), we find that

—ay = v + third-order terms in # and ¢.

Thus, the parabolic approximation and the exact solution are seen to be an-
alytically close, provided 6 and ¢ are both small and kp is large. Numerical
comparisons with the results of Penney & Price (1952) (based on Sommerfeld’s
solution) have also been made by Dalrymple et al. (1984).

(¢) Numerical results

An example of the full solution (2.31), with (2.34) and (2.35), is shown in
dimensionless coordinates in figure 1, for ¢ = 045, s = 1, f = 0.01, w = %7‘(’,
and h = 8m. These values, with the exception of f, correspond to the values
used by Melo & Guza (1991a). Eight wavelengths (each of 120.6m) are shown
for § = 0. The small value of f permits a significant amount of wave energy to
diffract into the porous medium.

In figure 2, the frictional parameter f has been increased ten-fold to a more
realistic value, and the dissipation takes place in a very narrow region near the
interface between (Q_ and @).. Furthermore, there is a greater penetration of the
wave energy near the origin as the diffraction (due to a discontinuity in wave
amplitude) is stronger.

In figure 3, the angle of incidence is —30°, showing the partial reflection of the
wave from the interface.

3. A perfect boundary condition for porous walls

In practice, the water depth h will vary with position, and so it will usually
be necessary to solve the corresponding parabolic equation numerically. In order
to minimize the size of the computational domain, it is necessary to have efli-
cient lateral boundary conditions, which allow waves to leave the computational
domain regardless of the wave direction, crest curvature or strength of scatter-
ing. Dalrymple & Martin (1992) have derived such a perfect boundary condition,

Proc. R. Soc. Lond. A (1994)



420 P. A. Martin and R. A. Dalrymple

4.
2-
20t
_2..
_4’;‘ . ) :
0 2 4 6 8
Jex

Figure 1. Waves are incident from the left with @ = 0 and w = %71’. The other parameters are
h =8m, € =0.45, s=1 and f = 0.01. Note the diffraction into the porous medium, y < 0.

which, in principle, gives an exact representation for the motion in a quadrant of
constant-depth water. It is non-local, but has the form of a generalized impedance
boundary condition after discretization.

We now develop a similar boundary condition for a porous medium. It could
be used for propagation down a porous-walled channel. Specifically, we consider
a channel C = {(z,y) : * > 0 and —b < y < b} of width 2b, filled with water.
The two quadrants Q% = {(z,y) : * > 0 and +y > b} are filled with a porous
medium, and bounded by semi-infinite breakwaters along x = 0 for |y| > b. A
parabolic equation is solved in C by marching in z, subject to certain boundary
conditions on the walls y = +b, which we shall now derive.

Denote the exact solution in Q% by 4% (z,y). We have A% (z,y) = A_(z,bFy),
where A_(z,y) is the function obtained in §2a; its Laplace transform was found
in §2a(iz). From (2.16) (with C_(p) = 0), we have

0A_ /oy = —i/Tp A_(p,y). (3.1)

Denote the solution in the channel by A.(z,y). On y = +b, A, is related to A_
by the interface conditions, (2.10). When these are used in (3.1), we obtain

07Ac(p,b) /0y = im O/ /p {pAc(p,b)},

on y = b, where m = eA/(s +1if). We can invert, using the convolution theorem,

Proc. R. Soc. Lond. A (1994)
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4t
2.
zof
_2.
_4-.
0 2 4 6 8
kx

Figure 2. As for figure 1, except the friction factor has been increased to f = 0.1.

to give

D) g [FOMED) ok a2
0

y Ve =&
which is just equation (A 9) in (Dalrymple & Martin 1992), apart from the
factor m. This is the exact boundary condition to be imposed on A.(z,y) at the
porous wall y = b. It can be discretized exactly as done previously by Dalrymple &
Martin (1992): for simplicity, we use a uniform discretization in z, with stations
at ¢, = rAz, and then approximate A.(£,b) by a continuous piecewise-linear
function, so that the integration in (3.2) can be done analytically; this gives

r r—1
04 + maA, =m Z by Al (3.3)
Oy =

as our generalized impedance boundary condition on y = b, where

a = —2i/VAz, Sza(f~m),

;= (2\/r~l~\/r~l~1—\/r—l+1), fori=1,2,...,7—1,

and AT = A.(z,,b). The analogous boundary condition on y = —b is obtained by
changing the sign of the first term on the left-hand side of (3.3); note that the
two porous quadrants can have different properties, leading to different values

Proc. R. Soc. Lond. A (1994)
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4l
2 L
zof
_2 L
04 L L 1 A L i
0 2 4 6 8
kx
Figure 3. As for figure 2, except the waves are incident at § = —30°. Note the increase in

wave penetration into the porous medium.

of m on the two walls. Examples of the efficacy of (3.3) (with m = 1) have been
given by Dalrymple & Martin (1992).

4. Analytical solution for a porous-walled channel

Consider the symmetric problem of waves at normal incidence to the entrance
of a channel with identical porous media in Q% . By symmetry, we can write

Au(p,y) = p '+ Cp) cos{yQy/mp} for Iyl < b, (4.1)

where C(p) is to be determined from the conditions on the walls. From § 3, we
know that the porous media are modelled exactly by the boundary conditions

+0A./0y = im§/apA. ony = +b.
When these are applied to (4.1), we obtain
C(p) =m/(pD(w)), (4.2)

where
D(p) =1isinp —mcosp and p = b0\ /7p.

Proc. R. Soc. Lond. A (1994)
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(a) Solution for the rigid-walled channel
If the walls are rigid, we have e = m = 0, whence C(p) = 0 and so

Ac(xay) = 17

which is the expected result.

(b) Solution for a gap in a breakwater
If the quadrants Q% are filled with water, we have m = 1, whence (4.2) gives

C(p) = —e*/p.

Denoting the corresponding solution in the ‘channel’ C by Ag.p(z,y), we obtain

Agap(p,y) =p~ " = 1p7" [exp{i(b + y)2y/7p} + exp{i(b — y)2/7p}]

from (4.1). To invert this expression, we integrate (2.20) with respect to «, from
ioco to a to give

PUTE o 5 [C e (T) at} = e Zewiran),

where U = ; —in/40/7 [ x; here, we have made the substitution t = 2ue'™*\/z /7
and then rotated the path of integration in the u-plane (which is readily justified).
Hence )

i(1+1)

Jan (F()+ FO)Y, (4:3)

where v} = \/k/(2z)(b =+ y). This solution agrees with that obtained by Kitby &
Dalrymple (1986). Similar solutions are also described by Stamnes (1987, §20:1).

Note that we could have obtained the solution (4.3) by simple combinatioiis of
the solution fof scattering by a single semi-infinite breakwater. This method is
not available for problems involving two (or more) different differential equations,
as for the porois-walled channel.

Agap( ) =1+

(c) Solution for the porous-walled ¢hannel
Let us write

AC(:L', y) = Agap (.’L‘, y) + Awall(x, y)- (4.4)
We find that
Awall(x, y) = %(1 - m){Aw(xa b+ y) + Aw(xv b— y)}? (45)
where fsin
A, (p,Y) = exp{iY 2/7p}; 4.6
(0.Y) = 5k expliY 277} (4.6)

here, Y = b+ty, so that we have Y > 0. We have been unable to invert this expres-
sion by inspection. So, we resort to the inversion theorem (Bromwich integral);
this calculation is described in Appendix C. We find that

Ay(z,Y) = Ares(2,Y) + Acus(2,Y), (4.7)
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where A,.s comes from the residues at the poles of A, (p,Y) in the complex p-
plane, and A, comes from the branch point at p = 0. Specifically, we obtain

2kb*m X exp{i Y/b Yo + nm) }
T 1-m2 Z (o + nm)? P {

iz
Ares(x Y - 2kb2 (/‘LO + TL7T)2} (48)

and o0
A, V) = - [ e 610 - 60} T- (4.9)

Here, o is the root of D(u) = 0 that is smallest in magnitude and lies in the
sector —ir < argpu, <0,

G+(t) = %%f_iﬂi) exp {iyﬂeiiwﬂm} and  pu(t) = be™2\/xt.

(d) Solution for large x

We can examine the decay of the solutions downwave as £ — o00. For the
problem of a gap in a breakwater, the exact solution of the parabolic model
is (4.3). Using F(v) ~ F(0) — v as v — 0, we find that

Agop(,y) ~ be™ ™4 /2k/(nz) as z — oo. (4.10)

Note that there is no dependence on y at this order. If we want a better approx-
imation, we can use F(v) ~ F(0) — v — 3iv® as v — 0; this gives

2k —im k ir
Agap(2,y) ~ by — {e /4 6_x(3y2 + b%)e /4} as & — 0. (4.11)

This formula agrees precisely with equation (47) in (Penney & Price 1952). Note
that the ezact (closed-form) solution of (1.2) for scattering by a gap between
two semi-infinite rigid barriers does not seem to be known: the ‘solution’ used by
Penney & Price (1952) is just a linear combination of Sommerfeld solutions for a
single semi-infinite barrier, and is not exact.

Now, consider the porous-walled channel. First of all, we note that, due to (C 2),
every term in the series for (4.8) decays exponentially with z. For the branch-cut
contribution, we can find an asymptotic approximation to the integral in (4.9)
using Watson’s lemma. We have G4 (t) ~ —py/m as t — 0, whence

bQ * t—l/Qe—wt dt — _b_e—iﬂ/4 %

im+/7 Jo m T

as ¢ — 00. Thus, the branch-cut integral gives algebraic decay with z, as opposed
to the exponential decay from the residues. It follows from (4.5) and (4.7) that

Acut (.T,', Y) ~

1 ,
Avan(@,y) ~ (E = 1) be—in/4, | 2K

T

as ¢ — oo. Finally, combining this result with (4.4) and (4.10), we obtain

b _, 2k
Az, y) ~ Ee_”’/‘* — asr— oo (4.12)
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When we compare this result with (4.10), we find that

im A(z,y) _ 1 s+if [k
e=o0 Agp(z,y) m € K,

This gives an analytical confirmation of Peregrine’s suggestion: the wave-height
decay for the porous-walled channel is similar to that for a gap in a thin break-
water; in fact, we find that they only differ by a multiplicative factor of 1/m,
which typically has a magnitude that is greater than unity.

Appendix A. Evaluation of I,

Consider I, defined by (2.27) for y > 0. The exponent in I, is v£ + 1iky?/€ =
Sip(t +t71) with t = €|sinf|/y and p = |Aly. So, changing the variable of
integration to t gives

I = \/kzyz /0 " L(t) exp{lin(t+ 1)} dt, (A1)

where L(t) = mt~%/2+t"1/2sgn @, T = z|sin 0| /y and, for the moment, we assume
|sin@| > 0. The integral simplifies by making the substitution ¢t = 2% to give

I, =2, /é%/ {Acosh ¢ + Bsinh ¢} exp{iu cosh 2} de, (A 2)
¥o

where A =m +sgn6, B=m —sgnf and ¢, = —1 logT. But

¢ cosh ¢ eXp{%iCQ cosh 2g0} dp = ge%icz / cosh ¢ eiC2 sinh? ¢ de
@

¥o 0

= e F((sinh o),
where F is the Fresnel integral defined by (2.28), and

(/ sinh ¢ exp{£i¢? cosh 2} dp = e~ %< F( cosh ¢y),
@

[¢]

whence

I, =4/2/(ky?) {Aei” F(y/2u sinhpy) + Be ™ F(1/2u coshcpo)} . (A 3)

If we now return to the original variables, we find that we have the same formula
for sinf > 0 as for sin @ < 0; moréover, the formula is also valid when sinf = 0.
The result is (2.29).

A similar calculation succeeds for I_, defined by (2.27) for y < 0. The exponent
is now € + 21K1y? /€ = ip(t+¢71) with t = ¢|sin6|/(Aly|) and p = AJA||y|. So,
changing the variable of integration to t shows that I_ is given by (A 1), with
L(t) = t73/2 —t~Y/?sgn@ and T = z|sinf|/(Aly|). Putting t = e~2¢ then gives
I as (A 2), but now A =1—sgn6f and B = 1+ sgnf. Hence, I_ is given by
(A 3), with the current values for A, B, u and ¢y = —1logT. Again, we obtain
the same formula for sind > 0 as for sinf < 0; however, since A = 0 for § > 0,
one term inside the braces in (A 3) is absent. Thus, the result is (2.30).
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Appendix B. Comparison with Kirby & Dalrymple (1986)

Kirby & Dalrymple (1986) have solved (2.3) in 2 > 0. Thus, their equation
(300) gives '
A(ma y) = Ainc (JI, y) - 7T—1/2e-17r/4 I(l‘, y))
where I is given by an integral over the breakwater. So, for a breakwater along
z =0, y <0, we obtain

Ha) = \/Thfe [ explixg + Jikly - 2/} .

The exponent is a quadratic in {; completing the square, it can be written
as 1i(k/z)[¢ = (y — zsinb)]? + idy — yz. Then, the change of variable u =
—V/(3k/xz) [{ = (y = zsinb)] shows that I(z,y) = Ainc(z,y) F(o-), whence A =
Agig, as given by (2.32).

Appendix C. Inversion of 4, (p,Y)

Ay (p,Y) is defined by (4.6). To apply the inversion theorem, we start by de-

termining the singularities of A, (p,Y) in the complex p-plane. We exclude the
cases m =0 (§4a) and m =1 (§4b).

Clearly, Aw(p,Y) has a branch point at p = 0; cut the p-plane along the
negative real axis, and choose the branch with —7 < argp < w. We have u =

b2 /7p = b\/2kpe™/* whence
—im<argp < 3m. (C1)

Now, suppose that u satisfies D(ug) = 0; we have e %#0 = (1 — m)/(1 + m).
Thet, periodicity implies that D(uo +nm) = 0 for any integer n. However, we are
only interested in those roots that satisty (C 1).

Because s > 0 and f > 0, we have 0 < arg (s +if) < %’/T; arg K lies in the
same interval. Hence, from (2.19), we obtain —i7 < argm < 1m; thus, Rem > 0.
It follows that |(1 —m)/(1+m)] < 1 whence Im p < 0. Thus, all the roots of
D(p) = 0 lie along a line parallel to, and below the real axis in the complex
u-plane. Let ug be that root satisfying

—im <arguo <0 with |uo| = min. (C2)
Then, the corresponding sihgularities in the p-plane are at
Do = (2k%) " te /2 (g + n)?, n=0,1,2,...;
note that Rep, < 0 and Imp,, < 0, with Rep,, T 0 and Imp,, | —0o as n — oc.

Summarising, A, (p,Y) has simple poles at p = p,, and a branch point at p = 0.
Let us now use the inversion formula; this gives

Az, Y) = % / :: Ao (p,Y) e dp,
for z > 0, where ¢ > 0. It follows that

Ay(2,Y) = Ares(7,Y) + Acue(z,Y),
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where A, arises from deforming the Bromwich contour around the cut and A,
is the residue contribution from all the poles. We find that

Apes(2,Y) = Z R, exp{p,z + 1Y /7P, },
n=0

where

) (1 — po — mr)isiny,} im
R,= lim { = .
Hence, we obtain (4.8). Wrapping the inversion contour around the cut, we obtain
the formula (4.9) in a straightforward manner. We observe that

G.(t) ~ —i(1£m) " exp{F(1+i)YVkt} ast— oo,

and so the integral in (4.9) is certainly convergent for all z > 0.

p— fio+nm
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