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A crucial ingredientin the formulation of boundary-valueproblemsfor acousticscatteringof

time-harmonicwavesis the radiation condition. This is well understoodwhen the scattereris a

boundedobstacle.For plane-wavescatteringby an infinite, rough, impenetrablesurfaceS, the

physicsof the problem suggestshat all scatteredwavesmust travel away from (or along the

surface.This conditionis usedtogethemwith Green’stheoremandthe free-spacésreen’sfunction,

to deriveboundaryintegralequationoverS. Thisrequirescarefulconsideratiorof certainintegrals
over a large semicircleof radiusr; it is known that theseintegralsvanishasr — o if the scattered
field satisfiesthe Sommerfeldradiation condition, but that is not the casehere—reflectecplane
wavesmustbe presentTheintegralequationbtainedareHelmholtzintegralequationsthey must
be modifiedfor grazingincidentwaves.As suchintegral equationsare often claimedto be exact,
andareoftenusedto generatdoenchmarkiumericalsolutions,jt seemswvorthwhileto establisttheir

validity or otherwise. © 1997 Acoustical Society of America. [S0001-496807)01406-9

PACSnumbers: 43.20.Fn,43.30.HW[ANN]

INTRODUCTION

Considerthe scatteringof a planetime-harmonicacous-
tic wave by a boundedobstacle.To fix ideashere,we con-
sidera two-dimensionabbstacle with a smooth,sound-hard
surface S. Mathematically, this is an exterior Neu mann
problemfor the Helmholtzequation.n orderto havea well-
posedproblem,we imposethe Sommerfeldradiationcondi-
tion,

au
\/F(——iku)eo &Br 0, (1)
or

uniformly in all directions.Here, u is the scatteredield, r is

aplanepolarcoordinatek is the wavenumber,andwe have
assumeda time dependencef e '“!. Physically,the radia-
tion condition ensuresthat the scatteredwaves propagate
outwardsawayfrom the obstacleMathematically theradia-
tion condition also yields uniquenessand existencefor the

boundary-valugproblem.

A familiar methodfor solving the aboveproblemis to
derive a boundaryintegral equationfor the boundaryvalues
of u on S. In the derivation, Green’stheoremis appliedto
u anda fundamentakolution G, in the region boundedin-
ternally by S andexternallyby C,, a large circle of radius
r. It turns out that the radiation condition implies that the
integral

I(u;C,)= j(uE—G )ds—>0 &sBr—m™, (2

and so only boundaryintegrals over S remain. Thus, the
radiationconditionis a crucial ingredientfor two results:a
well-posedboundary-valugroblem;and the vanishingof a
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standardintegral over a large circle. SeeColton and Kress
(1983 for moreinformation.

For a sound-hardsurface S, the proceduredescribed
aboveleadsto the following boundaryintegral equation:

J(Q) (IOQ)dSq

pes, ()

here,u;,. is the givenincidentwave.Onecanalsoderivean
equation for the boundary values of the total field
Uot= Uinet U; this boundaryintegral equationis

G
utot(p)_Jsutot(q)&_r]q(p’q)dsqzzuinc(p)v peS
4

We shallreferto (3) and(4) asstandard Helmholtz integral
eguations. Similar equationscan be derived for sound-soft
surfacegexterior Dirichlet problem,u;,;=0 on S).

Now, it is knownthatthe wavesscatteredy a bounded
two-dimensionabbstaclehavethe form

ikr
u(r,8)=—=1(6)+0(r 3?3

Jr

where(r,6) areplanepolar coordinatesand f is calledthe
far-field pattern.Thus, apartfrom beingoutgoing(e'*"), the
wavesdecaywith distancefrom the obstacle(1/\/r). Indeed,
the radiation condition implies that u=O(r ~?) as r—oe.

As G also satisfiesthe radiationcondition, we find that the
integrandin (2) is

asr— oo, (5)

u
or

G ou
——|kG)—G(E—|ku)=o(r‘l) asr—o,
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whencel (u; %) —0 asr—o, where? is any pieceof C, .
This showsthattheresult(2) is due,essentiallyfo the decay
of u (andG), notto any cancellationeffectsinducedby the
integration.

The descriptiongiven abovechangescompletelywhen
the obstaclds unbounded. For example supposéhatS is an
infinite, flat plane.Then,anincidentplanewavewill bescat-
tered (reflected specularlyas a single propagatingplane
wave. More generally,supposethat S is an infinite corru-
gatedsurfaceithen,anincidentplanewavewill be scattered
into a spectrumof planewaves.The specificationof a “ra-
diation condition” for suchproblemscontinuegto attractat-
tention (see,for example,Ramm, 1986); clearly, the Som-
merfeld radiation condition is not appropriate,as it is not
satisfiedby a propagatingplane wave. Neverthelessijt is
customaryto proceed,assuming that the scatteredield can
be representedn terms of plane waves, at least at some
distancefrom S. Typically, this requiresthe discardingof an
integralsuchas (2), but with the largecircle C, replacedby
alargesemicircle H, . Canthis stepbe justified?This paper
beganasan attemptto do this.

Another possibleapproachis to assumethat u can be
written as a surfacedistribution of sourcesor dipoles; see
Sec. VI E. One might also invoke the limiting absorption
principle, in which the wave number k is replaced by
k+ie, wheree is smallandpositive;the correspondingi is
requiredto decayasr— . However,this is delicate(com-
paredto scatteringby a boundedobstacl¢ as the limits
£—0 andz—x for exp{iz(k+ie)} do not commute.

The motivationbehindthe presentwork is the pervasive
view that solving a boundaryintegralequationgivesa rigor-
ous,exactway (apartfrom numericalerrorg of solvingprob-
lems involving the scatteringof plane waves by infinite
roughsurfaceslndeed,onecanfind manybooksandpapers
setting out this view. (Referencedo the literature will be
given later) However,very little attentionhasbeengivento
the derivation of the boundaryintegralequationghemselves,
most writers being contentto startby writing down a stan-
dard Helmholtz integral equation,(3) or (4). We will show
that(3) is valid for plane-wavescatteringoy aninfinite, one-
dimensional,rough surface.We will also show that (4) is
valid, exceptfor grazingincidentwaves(in which casethe
right-handside shouldbe replacedby u;,).

The paperis organizedas follows. Sectionl is devoted
to formulating the problem,with somediscussionon radia-
tion conditionsand somebackgroundon angular-spectrum
representationand integral representationfusing G). Esti-
mation of integralsover the semicircleH, is carriedout in
Secs.Il, Ill, andIV. Thus,the methodof stationaryphase
andanexpansiormethodareusedin Secsll andlll, respec-
tively, but only for a single plane wave. Results for
I(u;H,) areobtainedin Sec.lV, andarethenusedin Sec.V
to derive various boundaryintegral equationsof Helmholtz
type. Extensivediscussiorof the resultsis givenin Sec.VI.
Forexampleijt is shownthatthe standardHelmholtzintegral
equationsare valid for a finite patch of roughnessand for
finite incidentbeams.
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|. FORMULATION

Considerthe scatteringof a planewave by an infinite
roughsurface S. In this paper,we assumehatthe surfaceis
one-dimensionalso thatit canbe describedby

z=5(X), —oo<Ix<ow

with —h<s(x)=<0 and some constanth=0. The acoustic
mediumoccupiesz>s and,for definitenessywe assumehat
S is a smooth,sound-hardsurface.Thus we can write the
total field as

Utot= Uijnct U,
whereu is the scatteredield and

Uing(r, 0) =@~ 'K o8040 | o< 27, (6)
is theincidentplanewave; 6; is the angleof incidence(it is
the anglebetweenthe directionof propagatiorandthe nega-
tive z axi9, and (r,6) are plane polar coordinates:
x=r sin @ and z=r cosé. All the fields Uiy, Ujrc, @andu

satisfy the Helmholtz equation

(V2+k?u=0, @)
for z>s. The boundaryconditionis

Ut

n =0 onS, (8)

whered/ dn denoteshormaldifferentiationout of the acous-
tic medium.

A. Reflection by a flat surface

If Sis flat (s=0), the problemis trivial. Nevertheless,
this problemcan still teachus something.lt is well known
thatthe scatteredield is

u(r,g)=e'x" 0= for | g,|<iam. 9

When |6;| = 37 (“grazing incidence”), we haveu=0: The
incidentwave satisfiesthe boundaryconditionon S.
Thus, for | 6;| <3,

U= 2 €' ¥ SN % cogkz cos 6;)
and
2k sinbi cogkzcos 0;) + A, e+ A_e Kx

both “solve” the problem,where A, andA_ arearbitrary
constantsOf course,we disallow this secondsolution, un-
lessA,.=A_=0: but why? The answeris becauseof the
radiation condition (which we have yet to specify). Physi-
cally, we wantto excludeall “incoming” planewavesapart
from theincidentwave.We will be moreprecisein Sec.| B.

B. Angular-spectrum representations

For any S, the scatteredfield abovethe corrugations,
z>0, may be written using an angular-spectrumepresenta-
tion,
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ux,2)= | F(u)ekwrmd 10
(x.2) J (1) ) (10
/2 )
— f A(a)elkrcos(ofa)da
—7l2
+ evanescenterms. (11
Here,F(u) is the spectral amplitude, A(a)=F(sina) and
m( )_ Vl_ 1 |lu‘|<1’
K ivul—1, |u/>1.

The integrals are superpositionsof plane waves;they are
propagating,homogeneougplane waveswhen |u|<1 and
they are evanescentjnhomogeneousplane waves when
||>1 In (11), we seethe propagatingplanewavesexplic-
itly: Theypropagatetanangle« to the positivez axis, with
an (unknown complex amplitude,A(«); the “evanescent
terms” decayexponentiallywith z. For moreinformationon
angular-spectrumepresentationseeClemmow (1966 and
DeSantoand Martin (1996.

In generalthe spectralamplitudemustbe consideredas
a generalizedunction, and not as a continuousor analytic
function. This simple observations motivatedby known re-

sultsfor particularsurfacesThus,for a flat surfacewe have
F(p)=6(u—sin 6))cos6;, |[6]<3m,

where § is the Dirac deltafunction, whereasfor a periodic
surfaceF is a discretesum of deltafunctions.So, we split
the scatteredield into threepartsas

Upr+ UeyT Ucons (12
where
N
upr(rye):nz Anu(r,0;ap),
M
UeF,0)= 2, BrW(r, 6 m), (13
u r{r H)ZJ C(,u)e”““‘ sinf@+mcoso) __ " d,LL (14)
o - m(u)’
v(r,0;a)=ek 0= with | a|< 3, (15)
and
W(I’,@;/.L)Zeikr” sin ee—kr cos OV u?—1 with |:“|>1-
(16)

The first termin (12) is a sumof propagatingplanewaves;
the coefficientsA,, andthe angles«, are unknownin gen-
eral. The secondtermin (12) is a sumof evanescentaves;
the coefficientsB,, and u,, are unknownin general.The
third termin (12) is a continuousspectrumof planewaves;
the unknownfunction C is continuous.Propertiesand con-
sequence®f the generalrepresentatior(12) were investi-
gatedby DeSantoand Martin (1996.

Let us now return to the radiation condition. Having
chosenan origin O, arbitrarily, we considera large semi-
circle H,, with radiusr and centerat O. We thenrequire
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that all propagatingplane-wavecomponents (r, 6; «,) in
u propagateoutwards throughH,, away from O. This is
almostbuilt into the decomposition(12): we haveto be care-
ful with grazing waves (|a,|=37). For example,if a,
=17, v=e*; this waveleavesthe semicircleat 6= 7 but
entersat #=—37. A simple way to impose our radiation
condition without excluding grazing wavesis to split the
half-spacez>0 andthe semicircleH, into two parts.Thus
with

C=1{(r,0):0=s*x9<im} 17

being quarter-circles,we require that in the region x=0,
>0, we use0< o< 3, s0 thatall planewavespropagate
outthroughH," . Similarly, in theregionx<0, z>0, we use
—ir<a,<0, sothatall planewavespropagateout through
H, . This form of the radiation condition will be usedto
derive boundaryintegral equations.

C. Boundary integral equations

One wayto determinethe scatteredield is to derive a
boundaryintegral equationover the rough surfaceS. The
appropriatfundamentakolutionis

G(P,Q)=G(y,x)= —3iHG" (k]x—yl),

wherex andy arethe positionvectorsof Q and P, respec-
tively, with respectto the origin O, and H{" is a Hankel
function. Apply Green’'stheoremto u and G in the region
D, with boundarydD,=H,US,UT,, whereH, is a large
semicircleof radiusr andcenterO,

S ={(X,2):z=s(x),—r<x<r}

is a truncatedrough surface,and T, consistsof two line
segmentgoining theendsof H, andS; . Then,asbothu and
G satisfy the Helmholtz equation(7) in D, [apartfrom the
singularityin G(P,Q) a P=Q], we obtain

IG Ju
2u<P>=LD [u(q)a—%(P,q)—a—%G(P,q)]dsq,

whereP eD,, qedD, andd/dn, denotesnormaldifferentia-
tion at g. Useof the boundarycondition (8) yields

ZU(P)=JJU(q)

+1(u;H)+1(u;T,),

G(P,q)]dsq

(18

where
) JG ou
I(u;.) = f/[ U(Q)a—nq(P,Q)— &_an(P:Q)]dsq

and normal differentiationis takenin a directionawayfrom
the origin [sothat 9/dn=d/dr on H,, consistentwith (2)].

The scatteredfield u and its derivative du/dx are
boundedn the neighborhoodf S. This assumptioriogether
with simple boundsand the large-argumenasymptoticbe-
havior of Hankel functionsshowthat | (u; T,)=0O(r "*?) as
r—oo, whence

[(u;T,)—0 &ar—oo, (19
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Before estimatingl (u;H,) for larger, using(12), we con-
sider a single propagatingplane-wavecomponentin (12).
Thus,we shallevaluatd (v;H,) asr —o°, wherev is defined
by (15). Indeed,we shall evaluatethe limit usingtwo differ-
ent methodsthe methodof stationaryphase(Sec.ll) andan
expansiommethod(Sec.lll). We shall discussthe evaluation
of 1(u;H,) itself for larger in Sec.IV. Boundaryintegral
equationswill thenbe derivedfrom (18) in Sec.V.

Il. THE METHOD OF STATIONARY PHASE

We use the method of stationary phaseto estimate
[(v;H,). Thereare two cases,dependingon the value of
«, which canbe smoothedogetherusinga uniform approxi-
mation.

A. The method of stationary phase: |a|<3m

We are interestedin large valuesof r=|x| for fixed
valuesof y andk. We have

G(Pn)z—E—exmn«r—y-b}

Vkr
:ieikre—ikp cod 6~ ¢)
Jkr
asr—o, wherex=x/r, y=(p sin ¢,p cos¢) and
B=— Li\(2/m)e " (20)
Hence,for larger,
aG v . B
UW_GE:”(\/?U_ cog6—a)]
X @K (1+ cot 8- a))g—ikp cog 6 ¢)
andthen
I(v;H,)=iBe*"L(kr), (21)
where

/2 .
um=ﬁf g()eMF O,
— /2

9(0)=[1— cog f—a)]e ¥ 107¢)
and
F(0)= cog0—a).

For large N=kr, the dominant contributionto L(\)
comesfrom those points ¢ in the range of integration at
which the phase F s stationary: F'(c)=0. As
F’(6)= sin(a—#) and |a|<3m, the only stationary-phase
pointis at #= «. Then(Bleisteinand Handelsman1986,p.
220

L(N)~.7g(a)e (@

where

[ 27 1 .
P— s " — —iml4
8% F(a)] exp{4|w sgnF (a)} Vv2me .
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as\— o, (22

But g(@)=0,andsoL(A)=0(1) as A\ —oe. In fact, aninte-
grationby partsgives

L(N)= 1—-sin a)e'®+(1+sin a)e '?]

i
\/XCOSa[(
+0O(\"h

as A—o, where ®=N\ sina—Kkp sin¢. Hence,from (21),
we obtain

l(v;H,)=0(kr) ¥ askr—ox, for |a|<3m. (23

B. The method of stationary phase: |a|=3m

Supposethat a= 3. In this case,F(6)=sin g is sta-
tionary at =+ 37r, which are end points of the range of
integration.We have

It follows that

L(\)~27e Mg Nelkesine g\ oo, (24)
whence
[(v;H,)=€ekrsne+ O((kr)~Y?) askr—o, for a= 1.
(25

When a = — 37, we obtainthe sameresultexceptthat ¢ is
replacedby — ¢. In this case,the relevantstationary-phase
pointis at 6= 3.

When p=0, we can give an independentheckof the
result(24). In this case,we have

L(x)zﬁfﬂli (1—sing)e'* snédg
— /2
=M MIo(N) =i 3:(N)},

where J,, is a Besselfunction. The resultfollows from the
well-known asymptoticapproximation,

2 1 1
Jm()\)’v HCO )\—Em'ﬂ—z’ﬂ

C. Uniform asymptotics

asn—oo, (26)

We haveseenthat the resultsfor || <37 and|a|= 37
are different, that is, the asymptoticestimateof I (v;H,) is
not uniform in the parametete. However,we can obtaina
uniform approximation(see Appendix A); for example,if
« is nearim, we find that

I(v;H,)= cos(3d)e' s ¢erfo( ), (27)
where
2 (2 5
erfc(,u)z\/—;f e X dx (28
y73

is the complementanerror function,

w=+2\e '™ sin 18 and 6= 37— a.
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Note that if a=
hand, if
erfc(u)~m"

im (6=0), we recover(25). On the other
a<im (6>0), we recover (23), since

Y2y~ texp(—u?) as p—o.

Ill. AN EXPANSION METHOD

The integral I(v;H,) is over a semicircleof radiusr,
betweend= — 37 and = + 37. We can evaluatethis inte-
gral explicitly, using appropriateexpansionsof v and G.
Thus

©

v(r,a;a)=e”" cogf—a) _ 2

i™(kr)eimo=e),
(29

henceforth,we suppresghe limits when the summationis
over all integers.Similarly,

G(P.Q)= 51 Hi(kr) 3, (kp)e (30)

for r>p, whereH,=H" . Hence

I(v:Hr>=§ ; i™J,(kp)

where

Winn (1) A (M1,

Win(W) = — 31 mwW{Jn(W)H (W) — I/ (W)H p(w)}

1 (=2
— e|(n—m)0d0
mJ)—7/2

1 ifm=n,
2(-1) .

= (21‘*‘—1)77 ifm=n+2j+1,
0 otherwise,

here,j is anarbitraryinteger.It follows that
1(v;H) =2 i"3n(kp){Wan(kr) = Fp(kr, @)} #),
n

where

1
2]+1

—2i

F(kr,a)= 2

n+2j+1,nei(2j+l)a- (31)
We want to estimatel (v;H,) for larger. We can evaluate
the first term in the bracesexactly: W,, is essentiallya

Wronskian,given by W,,=1. For F,,, we have
Wn(W) ~exp{i(m—n)w/2}
asw— o, for fixed m andn. (32

We proceedformally, and use this approximationin (31).
(This procedurecanbejustified; seeAppendixB.) Theresult

\ —2i, e@rne o sin2j+1)0
AO=—"2 5 _w,-:o —2ir1 9
this is a familiar Fourierseries:
1, 0<o<m,
“0)=1 -1, —w<6<0, (34)
0, 6=0,xm,

and is definedby periodicity for othervaluesof 4. Hence,
for large kr, F,~1 for 0<|a|<3m but F,=0(1) for
|| =3m. Thuswe obtain the same(nonuniforn) resultsas
derived in Secs.Il A and Il B. The drawbackswith this
methodarethatit doesnot yield resultsthat are uniform in
a for « near + 37, andit is very complicatedto use for
three-dimensiongbroblems.

IV. ASYMPTOTIC BEHAVIOR OF /(u;H,)

Whenaplanewaveis reflectedby aroughsurfaceS, we
can usethe angular-spectrumepresentatiori12) for the re-
flectedfield abovethe corrugationsThuswe have

I(U;Hr)zI(upr;Hr)+l(uev;Hr)"_I(ucon;Hr)-
For I (uey;H,), with u,, definedby (13), we have

. 2
I(W;H,):iB\/ﬁe'k’J'

Y

g( e)eikrF(G)d 9,

wherew is definedby (16),
F(6)=p sin 6+iu?—1cos 6
and
g(0)=[1-F()Je 'k os0=¢),
as|u|>1, integrationby partsshowsthat
I(w;H,)=0((kr)"*? askr—o.
Hence,from (13),
[(Uey;H;)—0 asr—oo,

For ucy,, We have

27 .
Ucor(T, 6) ~ \/We'(kr‘”"”C(sin 6) askr—o.

This result makesessentialuse of the continuity of C(u)
(seeClemmow,1966,Sec.3.2). Thus,uc,, satisfiegthe Som-
merfeldradiationcondition (1), whence

[(UgoniH)—0 asr—oo.

[A direct derivation of this result, basedon (14) and the
methodof stationaryphasejs givenin AppendixC.]

Finally, considerl (u,;H,). If |ay| <37, the resultsof
the previoussectionsare immediatelyapplicable,and show
that I (up;H;)—0 a r—c. Next, considergrazingwaves,
|ap| = 37, andwrite

is ve=v(r,0;x3im)=e"1k
Fa(kr,a)~%(a+ 3m) askr—oo, We have
. . _ gt g
independentlyof n, where [(UprsH) =1 (Up s H )+ 1 (up s He ),
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whereH," are quarter-circlesdefinedby (17); the radiation
condition(all planewavesmustpropagateoutwardsthrough
H,, away from O) implies that we limit our attentionto
I(v.;H,), asv. propagateswardsthroughH,” . So,from
Sec.ll A, we have

) /2
(v ;Hf):iBe'*\/ff (1—sin 6)
0
Xefikp cos{f)fgo)ei)\ sin Hde

for large A=kr. Thereis one point of stationaryphase(cf.
Sec.ll B) at #= 3w, butthe integrandvanishegherewhence
(v, ;H)—0 asr—«. A similar argumentsucceedsor
[(v_;H,).

In summarywe find thatour radiationconditionensures
that

I(u;H;,)—0 &ar—oo,

(39

V. BOUNDARY INTEGRAL EQUATIONS

In Sec.l, we usedGreen’stheorento obtaintheintegral
representation

G AUijnc
2= [ fua o Pt S o as,

+1(u;H) + 1 (u; Ty)

whenPe D, , the regionboundedby the semicircleH, , the
truncatedrough surfaceS; , andthe two line segmentsT, .

Note thatthe left-handside of this equationdoesnot depend
onr, so thattheright-handside of the equationmusthavea
limit asr—o. Taking this limit, using (19) and (35), we
obtain

Uinc

9
ang

Fle
ZU(P)=JS[U(q)a—%(P,q)+ G(P,q) [dsq,

PeD., (36)

whereD,, is the unboundedegionz>s and

f = lim f ,
S LwdS
which is the standarddefinition of a principal-valueintegral
at infinity. In fact, the integral over S existsas an ordinary

improper integral; to see this, we note that the integrand
behavedike

U(x)e'X|x| =12 as|x|—o0,

whereU(x) is only requiredto be bounded.

We remark that Beckmannand Spizzichino (1963, p.
180 andOgilvy (1991,p. 75) discardl (u;H,) by assuming
erroneoushthatu=0 onH, .

Letting P—peSin (36) gives

G (9Uinc
u(p)—Lu(q)a—%(p,q)deLanq G(p,q)dsy,

peS. (37)
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This is (formally) the standardHelmholtz integral equation
for the boundaryvaluesof u on S.

It is commonto not work with (37) but with anintegral
equationfor thetotal field, u,,;. To obtainsuchan equation,

we startby defininga regionD, with boundarysD, . Given
r, let H, denotethe semicirclein z<0, with radiusr and
centerO; then,D, is theboundedregionin z<s enclosecy
H, andthe rough surface.The boundarydD, consistsof a
pieceof S;, namely S, with t(r)<r, and a piece of ﬁr,
namelyH\ T, whereT, consistsof two circulararcsjoining
the endsof H, and the endsof S,. Now, apply Green's
theoremto u;,. and G in D, . As both fields satisfy (7) in
D,, theresultis
Uin

o—f S p Mine 3 (p.g) L
~Js Uinc(Q)&—nq( 'q)_ﬁ_nq (P,q) (dsq

_I(uinc;ﬁr)"'l(uinc;’fr) (38)

whenP eD, , takinginto accountthe directionof the normal
vector on S. As before, simple bounds show that

| (Uine; T)—0 asr—oo. If | 6| <im, uy [givenby (6)]is a
planewave propagatingoutwardsthroughH, , whence
|(Uine;sH)—0  asr—oo(| 6] <3m).
For grazingincidence,we have
| (Uine:Ho) = Uinc( P (| 6i] = 3 m).

We combinetheseformulasand write

I (UinesHe)— 7(P) (39

Lettingr — e in (38), andaddingtheresultto (36), we obtain

asr—oo(| g < 3 m).

G
2u(P)=fsutot(q)ﬁ—%(P,q)dsq—%i(P), PeD.. (40

Then,lettingP—p e Sgives
(9G 7
utot(p)_f Uror(Q) 7= (P, Q) dSq = 2Uin(P) ~ i(P),
S q

peS. (41

Now, the standardHelmholtz integral equationfor the total
field is

G
w(p)— fswm)a—%<p,q>dsq=2umc<p>, pes. (42

Thus, for nongrazingincidentwaves(7;=0), we seethat
Uy doessatisfy the standardHelmholtz integral equation.
However for grazingincidentwaves,u,,; doesnot satisfythe
Helmholtzintegral equation(42), but 2u,, does.

VI. DISCUSSION
A. Previous work: Helmholtz integral equations

The ideathat a boundaryintegralequationmay be used
to solvethe problemof plane-wavescatteringby an infinite
rough surfaceis familiar. It is discussedn bookson such
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problems; see for example Maystre and Dainty (1991,
Ogilvy (1991, Secs.4.1.1 and 6.3) and Voronovich (1994,
Sec.3.1). In particular the standardHelmholtzintegralequa-
tion (4) is equation(6.53 in Ogilvy’s book and equation
(3.1.37% in Voronovich’'sbook.

Many recent authors refer to the paper by Holford
(1981 onthescatteringof a planewaveby a periodicsound-
soft surface He obtainsthe integralrepresentatiophis equa-
tion (20)]

1 G
Usor P) = Uine(P) + Efsutot(Q) (9_nq( PaQ)dSq )

PeD., (43

asin Sec.l C, by applying Green’stheoremto u,,; andG in
the semicircular region D, [using our notation and the
boundarycondition(8)]. He claimsthat “the termu;,.(P) is
the contributionfrom the large semicircle” H, asr—o. He
doesnot provethis statemenand,moreoverit is not true for
grazingincident waves.To seethis, we note that applying
Green’stheoremto u,,; andG in D, gives

dG
2ui(P) = j Uio(9) 0.,_( P,q)dsq+ 1 (Ui Hy)
S Nq

(Ut Tr)-
Now, | (Uyt; T,)—0 asr—o and

(Ut Hy) =1(U;H ) + 1 (Ujne s Hy)
:I(U;Hr)+|(uinc;cr)_|(uinc;ﬁr)v

where C,=H,UH, is a large circle. But, for an incident
planewave,

[ (Uine; Cr) = 2Ujnc,
exactly,whence

I(utot;Hr)_’zuinC_ % asr—o,

where 7, is definedby (39). Thus(43) is correctwhenever
74,50

Holford himself refersto earlier papersby Urosovskii
(21960, who in turn refersto Lysanov(1956. For more re-
cent work, we can cite Thorsos(1988, Bishop and Smith
(1992 and McSharry et al. (1995. All thesepapersstart
from the Helmholtz integral equationfor u,y, (4), or the
analogousequationfor a sound-softsurface.Moreover, all
but one of thesepapersare concernedvith plane-waveanci-
dence the exceptionbeingthe paperby Thorsos(1988. He
considersa ‘tapered’ planewave; we will discussbeamsof
finite extentin Sec.VI D.

B. Far-field asymptotics

Careis neededvhenapproximatinghe scatteredield at
large distancesfrom an infinite surface.To illustrate this,
consider the integral representation(40). Let P=(x,z)
eD, and q=(¢,s(£)) €S have position vectorsy and q,
respectively.In the far field, kR>1, where R=|y—q|, s0
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that we can use the large-argumentapproximation for
H{Y(kR). Thus, assumingfor simplicity that 72=74,=0,
(40) gives

ik H{Y (kR
2u(x,z)= Efsumt(q)Tn(q) -(g—y)ds,

. kR
~|BJELumt(q)szn(q)-(q—y)dsq (44)
askz—o, whereB is definedby (20) andn(q) is the unit
normalvectorat q pointing out of D, .

If u(q) hasa compactsupport(so thatit vanishesfor
lg|>L, say), or if Sis finite (boundedscatterer, we can
makea secondapproximation:

R={r?—2y-q+q?}*?=r—-y.-q+0(q%r) asr—o»,

(45)

wherer=\y|, y=y/r, andq=|q|. (The notationusedhere
differs from that usedin Secs.I C and Il A.) To the same
order,we canalsoreplace(q—y) in (44) by (—y). Hence,
we find thatu is given by (5), wherethe far-field patternis

iBvk . .
f(6)= —T\/_fsumt(q)n(q)v exp{ —iky-qg}ds,.

However,one cannotjustify the useof the approxima-
tion (45) for plane-waveincidenceand unboundedsurfaces
(seethe discussiorby Ogilvy, 1991,p. 78). This is immedi-
ately clear, becausethere must be a reflectedplane wave,
whereag45) leadsto a cylindrical wave.For explicit confir-
mation, considerthe reflection of a plane wave by a flat
surfacesothatu,(q) =2 exgliké sin 6}; theintegralin (44)
canthen be estimatedusing the methodof stationaryphase
[andyieldsthe correctu, givenby (9)], whereaghe integral
for f(6) diverges.

C. A finite patch of roughness

Supposethat the infinite surfaceS is flat, apartfrom a
finite patchof roughnessS,cn, confinedto |x|<L, say.A
plane-wavdncidenton sucha patchwill generatea specular
plane wave and a cylindrical wave. Thus, for nongrazing
incidence,the standardHelmholtz integral equationfor the
total field, (4), is valid.

To seethat the decompositioritself is valid, write

Utot= Ufiat ™ Ugyl s
where
_ a—ikrcog 6+ 6, ikr cog 6 6; 1
Upige= € K100 04 00) - @lkr cos0=00(| g, | < 3 7)

is the total field for reflectionby an infinite flat sound-hard
surface.Thus

aucyI _ auflat

an an (48

0N Spatch

There are now three casesto consider, namely, ridges,
grooves,anda combinationthereof.
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1. Ridges

Supposeéhat Sp,c, consistsof a finite numberof ridges
(“bosses”), so thats(x)=0. Then,the scatteringproblemis
equivalentto the scatteringof two planewaves,ug,;, by a
finite boundedobstacle(a “double-body”) with boundary
Spatctl) Spatchs Where Sj,q, is the reflection of Spacpin the
line z=0. Thusuy, is acylindrical wave,satisfyingthe Som-
merfeld radiationcondition (1).

The use of bossesto model rough surfacesis well
known (Ogilvy, 1991, Sec.6.1). The useof imagesto treat
scatterersnear flat impenetrableboundariesis also well
known; for a recentapplication,seeChaoet al. (1996. In-
deed,if we introducethe exactGreen’sfunctionfor the half-
planez=0,

GE(P,Q)=GE(x,z,£,0)
= — Li{HP(KV(x= &%+ (2= 0)?)
+HP(kV(x— €)%+ (z+ 1))},

we find that
E

G
2ucyI(P):fSr [ucw(q)a—nq(P,q)
idge

Ufar _ ¢
+(5’_an (P,Q) dSq, PeD.,

where Sjgge is the union of all the ridge surfaces
(Spateh Srigge IS partof z=0). Letting P— p € Sjjgqe Yields a
boundaryintegral equationfor uc(p).

Alternatively, we canwrite

ucy|<P>=J v(q)GE(P,q)ds,, PeD., (47

idge
where the boundarycondition (46) implies that the source
densityv, solvesa Fredholmintegralequationof the second
kind over Sjjgge-

2. Grooves

Supposethat Sy, consists of a finite number of
grooves,so that s(x) <0. Then, du,/dz is known, in prin-
ciple, for all x onz=0: It is zeroexceptacrosshe mouthof
eachgroove.As thereis a finite numberof grooves,it fol-
lows that ug, is a cylindrical wave; it has an angular-
spectrumrepresentatiorwith a continuousspectralampli-
tude.

Let Syouth b€ the union of all the groove mouths;it is
part of z=0. We canwrite

ucyI(P):f vo(q)GE(P,q)dsy, P=(x,2) and z>0.
outh (48)

To find the sourcedensityv,, we canapply Green’stheorem
inside eachgroove to u., and G; we have the boundary
condition (46) on the surfaceof eachgroove,and we have
(transmissionconditionsenforcingthe continuity of uc,, and
ducy/ dz acrossthe mouth of eachgroove.

Note thatwe cannot us€48) insidethe groovesbecause
of the image singularitiesin GE. This extra complication

74 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997

with grooves(comparedto ridge9 has given rise to more
sophisticatednethodsfor solving such problems,involving
more complicated integral representations;see Willers
(1987 and Asvestasand Kleinman (1994). Applications of
GF to rough-surfacescatteringwere madeby Bermanand
Perkins(1985 andby Shawand Dougan(1995.

3. Ridges and grooves

Fromthe discussiorabove,we seethatif Sy, consists
of a finite numberof ridges and grooves,then ug, can be
representedising

Ueyi(P) = fS »(q)GE(P,q)dsq,

where S; = SiiggelU Smouthy  P=(X,2) and z>maxs(x),0;.

Thedeterminatiorof v on S, is complicatedalthoughS, is
afinite surfacelf we usethe Helmholtzintegralequationfor
U, Which we know is legitimate,we haveto solveaninte-
gral equationover an infinite surface.However,this canbe
reducedto an integral equationover S, asfollows. Since
dG(p,q)/dng=0 whenboth p andq areon the flat part of

S, Star= S\ Spatchv (4) gives

G
Ul P) = 2Uine(P) + J utot(q)_(paQ)dsqu P € Sqat-
atch U’)nq
This meanghatu,,; onthe (infinite) flat partof Sis knownin
termsof u,, ontheroughpartof S. Hence ,we canwrite (4)

for peSyacnas

utot(p)_J U K (P,@)dsq=2f(p), P e Sparch

atch

where

dG

B 9G | 9G |
K(p,q)—&—%(p,qHLﬂm&—m(p, )&—nq(q, )dsy,

dG
f(p):uinc(p)+J uinc(q)a_nq(pvq)dsq-

lat

D. Finite beams

So far we have taken the incident field to be a plane
wave.However,for manyapplicationstheincidentfield is a
finite beam.To constructsucha beam,we startby consider-
ing a singleline-sourceat Q,

Uinc(P)=G(P,Q).

As u;,. satisfiesthe Sommerfeldradiationcondition, an en-
ergy argument(DeSantoand Martin, 1996 showsthat the
scatteredfield cannotinclude any reflected plane waves.
Thus,the standardHelmholtzintegralequations(3) and(4),
arevalid; seeDeSantoand Brown (1986, Sec.4.1).

Next, we distributethe line-sourcesover a finite curve
¢ (or afinite region, to give

uinc(P):j/Vinc(Q)G(PaQ)dsz

where v, is prescribedand can be adjustedto make u;,.
beamlike.(If < is far from S, the asymptoticapproximations
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describedn Sec.VI B canbeused) It follows thatthe stan-
dard Helmholtzintegralequationgemainvalid.

Another way to generatea beamis to use an angular-
spectrumrepresentation,

/2
Uine(T,0) = j /zA

— T

inc(a)ei kr cog 6+ a)da, (49)
where A;,¢ is a prescribedcontinuousfunction, and is typi-
cally takenasa GaussianSaillardand Maystre,1990. The
standardHelmholtz integral equationsare valid for incident
fields of this type.

Thorsos(1988 usesa “tapered” planewave.This inci-
dentfield doesnot satisfythe Helmholtzequationandsothe
derivation of the Helmholtz integral equationfor u,; fails.
[The Helmholtzintegralequationfor u, (3), is valid without
this qualification] Neverthelessas Thorsospoints out, the
taperedplanewave is an approximationto an actualwave
field, constructedusing (49); seeThorsos(1988,Sec.| B).

E. Other integral equations

An alternative way of solving scattering problems,
touchedon above,is to assumehatthe scatteredield canbe
written as

mm:ﬁgmxxammw PeD,

wherethe sourcedensity y is unknown.For sound-hardsur-
faces,the boundarycondition (8) yields anintegralequation
for vy,

9G IUinc
7(p)—f7(q) (p,q)ds a_np' peS.

For sound-soflsurfacesihe correspondingntegral equation
is

fs')’(Q)G(p’q)dSq: —UpndP), PeS

this has been solved numerically by Lentz (1974, Rodr+
guezet al. (1992, andothers.

Chandler-Wildeand Ross (1995, 1996 use a double-
layer potentialfor sound-softsurfaces,

u(P)= fy(q)—Pq)dsq, PeD,

where G; satisfies an impedance condition on a line
z=—hg (hg>h).

All of the formulations mentionedin this sectionare
indirect, in thatthey assumehatu(P) canberepresenteih
a specifiedform. Thusthe radiationconditionis implicit in
the representation.

VII. CONCLUSIONS

We haveseenthat the use of standardHelmholtz inte-
gral equationgfor the scatteringof a planewave by an infi-
nite, sound-hardpne-dimensionaliough surfaceis justified
in most circumstancesin particular, the equationfor the
boundary values of the scatteredfield is always valid,
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whereaghe integralequationfor the boundaryvaluesof the
total field is valid for nongrazingincident waves(a simple
modificationis requiredfor grazingincidentwaves. These
resultsunderpinthe use of theseintegral equationsfor nu-
merical computations.

The standardHelmholtz integral equationsare valid if
the roughnesss confinedto a finite portion of an otherwise
flat but infinite surface.They are also valid for incident
beamsof finite width.

Similar resultsmay be obtainedfor sound-softsurfaces.
Extensionto electromagneti@and elastodynamigroblems,
andto penetrablanterfacesshouldbe straightforward.

Finally, extensionof these ideaso two-dimensional
rough surfacescan also be made, althoughthe analysisis
more difficult and the resultsare different. Some of these
aspectsare currently underinvestigation.
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APPENDIX A: UNIFORM ASYMPTOTICS

We derive a uniform approximationfor I(v;H,), using
amethoddiscussedy Bleisteinand Handelsmar(1986,Sec
9.4). We start by focussingon the non-uniformity at o=

ar; the nonuniformity at «= — 37 can be treated3|m|larly
Write L=L,+L, where
0 )
ﬂm=ﬁf g(0)e*Fdg
— /2

andL,=L—L;. We haveL,=0(1) as A\—, uniformly in
a, for a boundedawayfrom — 7. ForL, thereis a point of
stationaryphaseat 6= o — 7 (outsidethe rangeof integra-
tion) which approacheshe end point at §=—37 as a
— 2. Let us makea preliminary changeof variables,map-
ping the end point to the origin: Put 6=x—37 and «a
=37 — & giving

/2 .
Li(\)= ﬁf h(x)e2dx
0

with

h(x)=[1+cogx+ §)]e'kr sin (¢~
and

f(x;8)= —coqdx+ ).

ThusL, hasa stationary-phasgoint at x=— 6, which ap-
proacheghe end-pointx=0 as §— 0. The prototypespecial
functionwith this propertyis the complementaryerror func-
tion, definedby (28). In orderto relatethis functionto L,

we changethe integrationvariablefrom x to t, using

f(x;8)—f(0;8)= 3t?+ t,
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requiring that x=—4 is mappedto t=—vy gives y=2
X sinié. Hence,

Ll()\) — \/Xei)\f(O;&) fTﬁ(t)eiM1/2t2+ yt)d'[,
0

where
dX t+y
dt f’(x; o)’
For the dominantEontribqun,we can set the upper limit
T=c andreplaceh(t) by h(0); this gives

Li(\) = heM(©0:) yh(0)

Standardmanipulationsshow that the integral can be ex-
presseds

) imian— 12842 : _ ,/1 —iml4
2)\e e erfu) with u=1vy 2)\e .

Substitutingback, we obtain

L,(N)=\27 cosde' e

whencethe final result (27) follows.

h(t)= h(x(t))— and ——

” IN[(1/2) t2+ 1] t
7(0:8) o © a.

—iN |kp sin ‘Perfc(,u)

APPENDIX B: ASYMPTOTIC BEHAVIOR OF F,

In orderto estimateF,(kr,«) for largekr, we substi-
tutedthe asymptoticapproximation(32) into (31). However,
this requiressomejustification, as (32) presupposeshat m
andn arefixed. [A hint that nonuniformbehaviormight be
expectedcomesfrom (29): The left-hand side is a plane
wave whereas every term on the right-hand side is
O((kr) Y2 as kr—o.] We startby writing

Fo(w,a)=w{H (W).7 (W, )

—Hn(w)(d/ow).7 n(W, @)},

where

i(2j+l)a. (Bl)

T (W, a)= 2T nt2j+1(W)e

Next, we use a standardintegral representatiorfor Bessel
functions,

‘]m(W) — %Jw ei(m0—w sin H)da,
whence

i [ . |
Ta(W,@)= g f 0+ a)e MW snigg (B2)

where 4 0) is definedby (33). Finally, we usethe method
of stationaryphaseto estimate(B2) for large w; thereare
stationary-phasgointsat 6= = 37, whence(22) gives

T (W, a) = (3 m/w)sin(

asw—, for 0<|a|< 3w, whereas

Ta(w,=3m)=0(w 1)

—Inm—im)+0O(w b

asw— o,
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Theseresultsare exactly the sameas we would have ob-
tainedif we hadreplacedthe Besselfunctionin (B1) by the
leading term in its large-argumentasymptotic expansion,
namely(26).

APPENDIX C: ASYMPTOTIC BEHAVIOR OF
I( Ucon 1 Hr)

Disregardingthe evanescentermsin (14), we canwrite
Ucon astheintegralin (11), whence

/2

[ (Ucon;Hr) = f /2A(a)| (U;Hr)daziBe”‘\/XiZ()\)

as\=kr—o, wherewe haveused(21), and

/2 7l2
g(x):fi /2A(a)ff Lcodf—a)]

X efikp cos{b‘ﬂp)eix cos((}fa)d oda

=f A(a)f”’z " (1-cosy)

w2—a

X e—ikp c05(¢+a—<p)ei)\ cos¢d¢da.

As A is a continuoudunction of «, we canchangethe order
of integrationto give

@(”:LW(l—cos«/f)Q(w)e‘”°°S*”d¢, (CY

where

Q)= f " A wsvrae)

—7l2

+A( _ a,)efikp cos(zp+a+qo)}da,_

Now we can estimate Z(\) for large N\ using the
methodof stationaryphase.The stationary-phasgoints are
=0 and =m. At =0, 1—cosy=0, whereasQ(w)=0.
Hence, the integrandin (C1) vanishesat both stationary-
phasepoints, whence Z(\)=0(\ 1) as A—. Thus, we
deducethat | (Uggp;H,)—0 as1r—00.
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