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ABSTRACT

Three stages are involved in the formulation of a typical direct boundary element method: derivation of
an integral representation; taking a Limit To the Boundary (LTB) so as to obtain an integral equation;
and discretization. We examine the second and third stages, focussing on strategies that are intended to
permit the relaxation of standard smoothness assumptions. Two such strategies are indicated. The �rst is
the introduction of various apparent or ‘pseudo-LTBs’. The second is ‘relaxed regularization’, in which
a regularized integral equation, derived rigorously under certain smoothness assumptions, is used when less
smoothness is available. Both strategies are shown to be based on inconsistent reasoning. Nevertheless, reasons
are o�ered for having some con�dence in numerical results obtained with certain strategies. Our work is done
in two physical contexts, namely two-dimensional potential theory (using functions of a complex variable)
and three-dimensional elastostatics. ? 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a recent paper,1 the �rst two authors concluded (p. 702, summary-item (2)), that collocating

‘at the junction between two standard conforming elements, with hypersingular integral equations,

cannot be theoretically justi�ed’. However, the third author has written several papers with Huang

and Richardson2–4 in which they do so collocate. In fact, they report good numerical computations

(see also References 5 and 6), using regularized integral equations. In this paper, we shall attempt

a constructive reconciliation between these reported good results and the theoretical stance reported

in Reference 1.

First, we must rea�rm the work and statements in Reference 1 regarding theoretical smoothness

requirements for existence of limits to the boundary (LTBs), which give rise to Cauchy-singular

and hypersingular integral equations. So, where are the opportunities for relaxing these smoothness

requirements? One possibility is to replace classical LTBs by something weaker, leading to various

notions of ‘pseudo-LTBs’. Another possibility is ‘relaxed regularization’, in which a regularized

integral equation is derived rigorously using classical smoothness requirements, and then these
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requirements are relaxed. It turns out that these two possibilities are related. Moreover, they both

require the use of some selective, even inconsistent, reasoning to obtain the �nal equations. Nev-

ertheless, one can build a computational strategy on these equations using standard boundary

elements; apparently, the e�ectiveness and reliability of this strategy can be considerable. Such

success is notwithstanding the fact that classical smoothness demands for existence of relevant

LTBs remain in place, and that these LTBs still do not exist without that smoothness.1

In this paper, we explore the above-mentioned computational strategy. We do this �rst in the sim-

ple context of Cauchy-singular and hypersingular integral equations derived from Cauchy’s integral

formula for analytic functions of a complex variable. These are closely related to two-dimensional

Boundary-Value Problems (BVPs) for Laplace’s equation. We use the complex Cauchy formula

because both the Cauchy singularity and the hypersingularity at issue here appear, perhaps, in the

cleanest, simplest, and most classical form. (This is not the case with the real-variable formula for

potential theory; see Appendix I.) In Section 5, we consider comparable issues for the related but

more complicated equations of linear elasticity in three dimensions. Modi�cations of our arguments

for non-smooth boundaries are found in Appendix II.

Speci�cally, we review various integral representations in Section 2, and associated LTBs. In

particular, we consider regularized formulations; these involve improper integrals only, provided the

classical smoothness conditions are satis�ed. Two related strategies for relaxing these conditions are

then studied, namely pseudo-LTBs (Section 3) and ‘relaxed regularization’ (Section 4). Numerical

aspects of these strategies are also discussed.

Throughout, we try to be as clear as possible regarding what smoothness demands are made

on functions, and why they are needed. We also try to clarify what relaxation of these demands

may be made, for whatever reason, and what the consequences of such relaxation might be. In the

process, we pay particular attention to any departures from correct and consistent reasoning that

might be used with various smoothness-relaxation strategies. Our goal is su�cient clari�cation

of theoretical issues so that no doubt about them can remain. At the same time, we wish to

emphasise that what exists, and/or might be true, or dictated on rigorous analytical grounds, is

not necessarily the same thing as what might be possible or convenient in numerical computations

with clever modi�cations, despite some analytical inconsistencies. Indeed, although doubt about

what could happen numerically may exist, the evidence in References 2–4 suggests that one can

have considerable con�dence in the numbers obtained in this way.

2. SOME MODEL PROBLEMS: REGULARIZATION

2.1. Cauchy’s integral formula

Let D be a bounded, simply connected, plane region with smooth boundary S. (Non-smooth

boundaries are considered in Appendix II.) Suppose that f(z) is an analytic function of the complex

variable z = x+iy in D, and that f(z) is continuous in D ≡ D∪S. (These conditions are su�cient
for the validity of Cauchy’s theorem.) Then, Cauchy’s integral formula gives

f(z) =
1

2�i

∫

S

f(w)

w − z
dw; z ∈ D (1)

where S is traversed in the positive (anti-clockwise) sense. The connection between (1) and

potential theory (Laplace’s equation) is discussed in Appendix I. For present purposes, regard (1)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 885–906 (1998)
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as a representation integral for f(z) in D in terms of its boundary values f(w) on S. The question

of how much of f(w) may be prescribed in a well-posed BVP for f(z) plays no role in this section

and in Section 3. The focus here is on existence of LTBs of various representations for f(z) and

its �rst derivative. The matter of knowns and unknowns in (possibly discretized) integral equations

is considered later.

Choose a point Z ∈ S. If we assume that f is H�older-continuous at Z , we can let z → Z (LTB)

in (1) to give

f(Z) =
1

�i
−

∫

S

f(w)

w − Z
dw; Z ∈ S (2)

where the integral must be interpreted as a Cauchy principal-value (CPV) integral (de�ned by (26)

below) and we have used the jump conditions (Sokhotski–Plemelj formulas) for Cauchy integrals.

It should be noted, before going further, that the terminology LTB, as just used, may have two

interpretations: it could mean

(i) the LTB as z goes to a single point Z only, or

(ii) the LTB as z goes to all points Z on S.

In sense (ii), if the LTB exists, that is it exists at all points Z , we call the result a ‘boundary

integral identity’, or a ‘boundary integral equation’ (BIE). On the other hand, in sense (i) there

is meaning and interest in whether a LTB does or does not exist, for a particular limit point Z ,

without reference to other points. Existence of such a LTB usually depends on the smoothness

of f at Z .

A quite important issue arises then which involves the concept of a limit expression, like (2), for

which the range of admissable Z on S may be restricted to exclude isolated points, Zk , say. Such

restriction may be made because LTBs in sense (i) may not exist at such Zk , but the so-restricted

limit-expressions are useful BIEs, nonetheless. Indeed, suppose we have a representation integral

like (1) for which LTBs do not exist (for any reason) at a �nite number of isolated points Zk .

Then, formulas like (2) obtained in a LTB, but with excluded Zk as limit (collocation) points,

form the basis for the familiar and well-understood boundary element methods used so con�dently

for more than three decades.

On the other hand, there is the strong desire nowadays to collocate at Zk where well-de�ned

LTBs do not exist. Finding ways to quantify and justify such collocation, if possible, for a variety

of BIEs, is the motivation for much of what follows.

In the remainder of Section 2, we use the term LTB in the sense (ii), whereas in Section 3 we

use the term LTB primarily, but not exclusively, in sense (i).

To continue, return to (1) and write it as

f(z) =
1

2�i

∫

S

f(w)− f(Z)

w − z
dw + f(Z); z ∈ D (3)

where f(Z) is de�ned (as f is continuous on S) and we have used

1

2�i

∫

S

1

w − z
dw = 1; z ∈ D (4)

which is obtained by taking f = 1 in (1). In order to take the LTB, z → Z , we need more than

mere continuity of f on S. First, as f(z) is continuous for z ∈ D, we have f(z) → f(Z) as

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 885–906 (1998)
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z → Z on the left-hand side of (3). Then, we deduce that

0 =

∫

S

f(w)− f(Z)

w − Z
dw; Z ∈ S (5)

provided the integral (5) exists: it will exist as an ordinary improper integral, in general, only if f

satis�es the classical H�older condition at Z . This condition also implies that the contour integral

in (3) is continuous (no jumps) as z crosses S.

Equation (5) can be deduced directly from (1), of course. But the derivation here is simpler,

because there are no jump conditions to worry about—the Cauchy-type (simple pole) singularity

in (1) has been regularized in (3).

2.2. Generalizations for the �rst derivative

The derivations above generalize in various ways. For example, let us start with Cauchy’s

integral formula for the derivative of f:

f′(z) =
1

2�i

∫

S

f(w)

(w − z)2
dw; z ∈ D (6)

We can let z → Z in (6), assuming that f′(z) is continuous in D and that f′ is H�older-continuous

at Z . The result is

f′(Z) =
1

2�i
×

∫

S

f(w)

(w − Z)2
dw; Z ∈ S (7)

where the integral must be interpreted as a Hadamard �nite-part integral.

Alternatively, if we take f(z) = a+ c(z− b) in (6), where a, b and c are constants, we obtain

c =
1

2�i

∫

S

a+ c(w − b)

(w − z)2
dw; z ∈ D

Choose a = f(Z), b = Z and c = f′(Z), and subtract the result from (6) to give

f′(z)− f′(Z) =
1

2�i

∫

S

f(w)− f(Z)− (w − Z)f′(Z)

(w − z)2
dw; z ∈ D (8)

Assume that f′(z) is continuous in D and that f′ is H�older-continuous at Z , as before. Then, the

two-term Taylor-series subtraction in the numerator ensures that the integrand has been regularized:

we can let z → Z to give

0 =

∫

S

f(w)− f(Z)− (w − Z)f′(Z)

(w − Z)2
dw; Z ∈ S (9)

The use of linear solutions to regularize the hypersingular integral equations of potential theory

has been described by Rudolphi;7 see Tanaka et al.8 for a review.

The two formulas, (7) and (9), require the same smoothness conditions on f(Z). This conclusion

is consistent with those in Reference 1. However, in the next section, we consider other points of

view.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 885–906 (1998)
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2.3. Smoothness-relaxation strategies

Consider the regularized equation (9), which is derived by assuming that f′ is H�older-continuous

on S. We consider two approaches to relaxing this smoothness condition, with numerical imple-

mentation in mind. In the �rst, several strategies for deriving LTBs are studied (Section 3). It is

shown that what might be called ‘pseudo-LTBs’ can be de�ned under weaker smoothness condi-

tions; they are not genuine LTBs.

In the second approach, we start from the regularized equation (9) (derived rigorously, via a

valid LTB), and then we relax the smoothness condition under which it was derived. This strategy

is called ‘relaxed regularization’;4 it is described in Section 4.

It turns out that (in some cases) the �nal equations obtained by the above two approaches

(pseudo-LTBs and relaxed regularization) are essentially the same. If one is prepared to accept

these equations, the remaining issues concern their numerical treatment; these issues are also

addressed in Section 4.

3. SOME MODEL PROBLEMS: PSEUDO-LTBS

In Section 2.1, we saw that f(w) had to be H�older continuous if the Cauchy integral on the right-

hand side of (1) was to have a LTB as z → Z . Moreover, this limiting value is seen to be f(Z).

Suppose now that we replace f(w) by g(w), where g(w) is discontinuous at one point Z ∈ S (and
possibly at other points). Using g, we can de�ne a new function h by

h(z) =
1

2�i

∫

S

g(w)

w − z
dw; z ∈ D (10)

If g(w) approximates f(w) for w ∈ S, in some sense, we can expect that h(z) will approximate
f(z) for z ∈ D. With this as background, we shall consider several strategies for obtaining LTBs,
given that g is not continuous. In fact, these are all ‘pseudo-LTBs’, not genuine LTBs, and, when

they give a �nite numerical value, it is because of some logical inconsistency.

Let us suppose, for simplicity, that g(w) is H�older-continuous for all w ∈ S, except at one

point Z where g can have a discontinuity. To �x ideas, suppose that S = S1 ∪ S2, where S1 and
S2 are two pieces of S, joined together at Z and Z0, say. By de�nition,

g(Z+) = lim
w→Z

g(w) with w ∈ S1 and g(Z−) = lim
w→Z

g(w) with w ∈ S2

Then, the discontinuity in g at Z is g(Z+) − g(Z−). We also write gj(w) to mean g(w) when
w ∈ Sj, j = 1; 2.
It is clear that the LTB in (10) as z → Z does not exist, as a CPV or otherwise, since g is

discontinuous at Z . In fact, h(z) is logarithmically singular as z → Z ; this is a classical result,

Reference 9, Section 33.

Let us now consider several plausible strategies for obtaining LTBs.

1. Split the integral in (10) into two parts, giving

h(z) =
1

2�i

∫

S1

g1(w)

w − z
dw +

1

2�i

∫

S2

g2(w)

w − z
dw; z ∈ D (11)
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890 P. A. MARTIN, F. J. RIZZO AND T. A. CRUSE

Now consider a possible LTB of (11) as z → Z . It is known that separate LTBs for each

integral in (11) do not exist: each integral is logarithmically singular as z → Z , Reference

9, Equation (29.4).

2. Next, write

h(z) =
1

2�i

∫

S1

g1(w)− g(Z+)

w − z
dw +

1

2�i

∫

S2

g2(w)− g(Z−)

w − z
dw

+
g(Z+)

2�i

∫

S1

dw

w − z
+
g(Z−)

2�i

∫

S2

dw

w − z
; z ∈ D (12)

Again, the LTBs of the last two integrals do not exist for the same reason as in (11), namely,

the known singular behaviour of Cauchy integrals near the end points of their integration

contours. However, the �rst two integrals are well behaved if g1 and g2 satisfy one-sided

H�older conditions on each side of Z ; this means that

|g1(w)− g(Z+)|6A|w − Z |� for all w ∈ S1 (13)

|g2(w)− g(Z−)|6B|w − Z |� for all w ∈ S2 (14)

where A ¿ 0, B ¿ 0, 0¡ �61 and 0¡ �61. If these conditions hold, the LTBs of each

of the �rst two integrals in (12) exist, regardless of the values of g(Z+) and g(Z−), and,
moreover, they exist separately! Despite this, a LTB of the entire right-hand side of (12)

does not exist at Z .

3. For a third approach, return to (10) and write it as

h(z) =
1

2�i

∫

S

g(w)− a

w − z
dw + a; z ∈ D

where a is an arbitrary constant and we have used (4). Use this formula twice, once with

a = g(Z+) and once with a = g(Z−), and then add them together to give

2h(z) =
1

2�i

∫

S

g(w)− g(Z+)

w − z
dw

+
1

2�i

∫

S

g(w)− g(Z−)

w − z
dw + [g(Z+) + g(Z−)]; z ∈ D (15)

where we note that both integrals are taken over all of S, despite the assumed discontinuity

at Z . This formula looks attractive because one might argue that the last term could be

replaced by 2f(Z). However, the two integrals in (15) will behave badly as z → Z , unlike

the �rst two integrals in (12). To see this, separate each of the two integrals in (15) into two,

using S = S1∪S2 as in (12). Then, one of the integrands satis�es (13) and one satis�es (14);
these two integrals are �nite in the LTB. The other two integrals are unbounded as z → Z .

4. For a fourth attempt at a �nite LTB, consider the following strategy. Suppose that we are

willing to make an assumption about the values g(Z±), as they appear as multipliers of the
third and fourth integrals in (12), namely that they are equal:

g(Z+) = g(Z−) = ga (16)

say, where ga might be the average of g(Z+) and g(Z−). However, we make no such
assumption in the �rst two integrals in (12), so that g(Z+) and g(Z−) are to retain their

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 885–906 (1998)
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di�erent values, in general, in those two integrals. Under these albeit inconsistent assumptions,

the right-hand side of (12) becomes

1

2�i

∫

S1

g1(w)− g(Z+)

w − z
dw +

1

2�i

∫

S2

g2(w)− g(Z−)

w − z
dw + ga ; z ∈ D (17)

This expression is no longer equal to h(z) (de�ned by the right-hand side of (10)). However,

it does have a LTB (assuming that (13) and (14) hold): simply replace z by Z . But how

this LTB is related to f(Z) is quite unclear and needs further examination.

5. Perhaps the most useful of the possible LTBs, and its associated integral equation, comes by

making the following two assumptions:

(a) expression (17) is a formula for f(z); and (b) ga = f(Z):

With these assumptions, we obtain

0 =

∫

S1

g1(w)− g(Z+)

w − Z
dw +

∫

S2

g2(w)− g(Z−)

w − Z
dw (18)

wherein g(Z+) need not equal g(Z−) once (18) is obtained as described! As noted previ-
ously, �nite numbers may be obtained from (18) so long as g(w) meets the conditions (13)

and (14). However, (18) does not have meaning as a well-de�ned LTB like (5) does for

f(z). For (5) to be the LTB of (1), f must be H�older-continuous on S.

Now, consider (18). This equation can be obtained in a di�erent way, using ‘relaxed regular-

ization’ (see Section 4); informally, this means ‘assume su�cient smoothness, derive an integral

equation (such as (5)) via a valid LTB (in the sense (ii) of Section 2.1) with no free terms, and

then relax the smoothness requirements on f at selected points such as Z , requirements that are

needed for a valid LTB at Z (sense (i))’. Regardless of its genesis, the result is something which

looks like an integral equation derived via consistent reasoning, when, in fact, this is not the case.

The process of relaxing the smoothness seems innocent enough, although it a�ects the numerical

value (but not the �niteness of the value) of the weakly singular integrals which remain. However,

there is the serious question now of how well (18) maintains contact with an underlying BVP.

There is no doubt about (5) in this regard. These issues will be discussed later.

As a warning, though, note that the integral in (5) is zero for any H�older continuous f, whereas

the integrals in (18) do not necessarily sum to zero if g(Z+) 6= g(Z−). In essence, the zero on
the left-hand side of (18) depends on one set of assumptions about g, and the right-hand side

depends on another set.

Contrast this inconsistency in (18) with an expression valid for discontinuous g arising from the

following argument. Return to (10) and consider the LTB as z goes to any point Z∗ ∈ S except
the point Z∗ = Z (at which we admit a discontinuity in g as before). The result is

h(Z∗) =
1

2
g(Z∗) +

1

2�i
−

∫

S

g(w)

w − Z∗
dw; Z∗ 6= Z

Now, split the integral in two, and write it in a form similar to (12), giving

h(Z∗) =
1

2
g(Z∗) +

1

2
�i −

∫

S1

g1(w)− g(Z+)

w − Z∗
dw +

1

2�i

∫

S2

g2(w)− g(Z−)

w − Z∗
dw

+
g(Z+)

2�i
−

∫

S1

dw

w − Z∗
+
g(Z−)

2�i

∫

S2

dw

w − Z∗
; Z∗ ∈ S∗ (19)
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wherein S∗ = S\{Z; Z0} and we have assumed that Z
∗ ∈ S1, without loss of generality. (The �rst

CPV integral can be regularized, if desired; the second is explicit.) We observe that, unlike (18),

(19) is an exact equality, regardless of the discontinuity in g at Z , and (19) holds for all Z∗,

except the isolated points Z∗ = Z and Z∗ = Z0. Thus (19) as a BIE (de�ned on S
∗) would be a

perfectly unambiguous vehicle for solving a BVP wherein a discontinuity in g were (a) important

input data, or (b) an important aspect of the sought-for solution. With (19), we have the means

to capture and maintain a discontinuity in g at Z , if desired. With (18), according to our own

experience, and that reported in References 3 and 4, we fear that this is not so. In any case,

(19) is a familiar BIE—the kind which is well understood and has been used with con�dence for

decades. Equation (18), and similar equations arising from ‘relaxed regularization’, are new by

comparison.

3.1. Generalizations for the �rst derivative

The discussion above extends to integrals for f′(z), as described in Section 2.2. Thus, we

di�erentiate (10) and consider

h′(z) =
1

2�i

∫

S

g(w)

(w − z)2
dw; z ∈ D (20)

Expanding (20) into a form similar to (12) gives

h′(z) =
1

2�i

∫

S1

g1(w)− g(Z+)− (w − Z)g′(Z+)

(w − z)2
dw

+
1

2�i

∫

S2

g2(w)− g(Z−)− (w − Z)g′(Z−)

(w − z)2
dw

+
g′(Z+)

2�i

∫

S1

w − Z

(w − z)2
dw +

g′(Z−)

2�i

∫

S2

w − Z

(w − z)2
dw

+
g(Z+)

2�i

∫

S1

dw

(w − z)2
+
g(Z−)

2�i

∫

S2

dw

(w − z)2
; z ∈ D (21)

Let us assume, as before, that (16) holds for the �fth and sixth terms; they can then be combined

into

ga

2�i

∫

S

dw

(w − z)2
= 0 for all z ∈ D

using the calculus of residues. Similarly, if we assume that

g′(Z+) = g′(Z−) = g′a (22)

say, but only for the multipliers of the third and fourth integrals, they combine into

g′a
2�i

∫

S

w − Z

(w − z)2
dw = g′a for all z ∈ D

Finally, if we assume that the right-hand side of (21) gives a formula for f′(z) and that g′a = f
′(Z),

the LTB of (21) results in an equation similar to (9), namely

0 =

∫

S1

g1(w)− g(Z+)− (w − Z)g′(Z+)

(w − Z)2
dw +

∫

S2

g2(w)− g(Z−)− (w − Z)g′(Z−)

(w − Z)2
dw (23)
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In this formula, g and g′ are allowed to be di�erent on each side of Z in the weakly singular

integrals in (23), now that the troublesome (free) terms have been discarded. This was brought

about by the selective and inconsistent assumptions made in the various terms in (21).

Again, an equation like (23) can be obtained using ‘relaxed regularization’; see (35) below.

However, proceeding from (21) (and from (12) for h(z)), the inconsistencies in the selective use

of assumptions, whereby all in�nities in the LTBs are avoided, are more readily observed. Also,

via (21), one is reminded that unique, well-de�ned LTBs at Z without adequate smoothness of

g and g′ simply do not exist. In any case, (23) does not have meaning via a well-de�ned LTB,

whereas (9) does for f′(z) expressed by (6). As was the case with (5) for continuous f versus (18)

for discontinuous g, what to expect numerically from (9) for continuous f′ as opposed to (23)

for discontinuous g′ is uncertain. This too is discussed further below. Again, as a warning, the

zero on the left-hand side of (23) depends on one set of assumptions about g, and the right-hand

side is based on another set.

As before, if we were really interested in modelling discontinuous g′, in a consistent unambigu-

ous fashion, it is possible to return to (20) and proceed as was done above in deriving (19). The

resulting expression is

h′(Z∗) =
1

2�i
×

∫

S1

g1(w)− g(Z+)− (w − Z)g′(Z+)

(w − Z∗)2
dw

+
1

2�i

∫

S2

g2(w)− g(Z−)− (w − Z)g′(Z−)

(w − Z∗)2
dw (24)

+
1

2�i
{g′(Z+)C1(Z

∗) + g′(Z−)C2(Z
∗) + g(Z+)C3(Z

∗) + g(Z−)C4(Z
∗)}

for Z∗ ∈ S∗, where Cj(Z
∗) (j = 1; 2; 3; 4) are the LTBs at Z∗ of the last four integrals in (21).

We observe that, like (19), (24) is an exact equality, regardless of the discontinuity in g and/or g′

at Z , and it holds for all Z∗ ∈ S, except for the two isolated points Z∗ = Z and Z0. Also

(24) has features similar to (19) regarding proper modelling of discontinuous or smooth functions

alike.

4. SOME MODEL PROBLEMS: RELAXED REGULARIZATION AND DISCRETIZATION

In this section, we suppose that we have derived a BIE, rigorously via a well-de�ned LTB, using

classical smoothness requirements. Thus, concern about various LTBs is not an issue in this section.

We then examine some consequences of relaxing those smoothness requirements.

Before discussing particular equations, we should keep in mind that f itself is not the unknown.

For example, a typical problem might be to �nd u given v, where f = u + iv, so that part of f

is known; see Appendix I. However, this should not a�ect the following discussions.

Begin by partitioning S into N pieces (elements), Sj, j = 1; 2; : : : ; N , with end-points Zj−1
and Zj; as S is closed, we have Z0 ≡ ZN . Let E denote the set of all the end-points. For the

purposes of our discussion in Sections 4.1–4.3, we suppose that the partitioning of S into elements

is exact, so that there is no approximation of the geometry of S. Nevertheless, we do consider

other approximations, including various polynomial representations of certain functions de�ned

on S; also, numerical quadrature, as needed, is implied throughout Section 4. However, nonexact

element approximations of S are implicitly allowed in Section 4.4.
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4.1. Unregularized equations

Consider the singular equation (2). Introducing the elements Sj, (2) becomes, exactly,

f(Z) =
1

�i

N
∑

j=1

−

∫

Sj

f(w)

w − Z
dw; Z ∈ S\E (25)

Note that we have to exclude the set of end-points because a Cauchy principal-value integral is

essentially a two-sided integral; by de�nition,

−

∫

S

f(w)

w − Z
dw = lim

�→0

∫

S\S�

f(w)

w − Z
dw; Z ∈ S (26)

where S� = {w ∈ S : |w − Z | ¡ �} is a set of points on S close to, and on both sides of,
Z . Thus, if we wanted to consider Z ∈ E, so that Z = Zk say, we would have to consider the

sum of the integrals over Sk and Sk+1—but we cannot consider these integrals separately, because

they do not exist, even though their sum is well de�ned. This presents an obvious numerical

di�culty if we want to collocate (evaluate) (2) at Zj. For, in a typical boundary-element strategy,

one approximates f by a quadratic function on each element Sj, collocates at Zj (and at other

points not in E), and then evaluates the resulting integrals over each element without reference to

neighbouring elements. This strategy cannot be justi�ed for singular integral equations, involving

CPV integrals. Similarly, such a strategy cannot be justi�ed for hypersingular integral equations

such as (7); this conclusion was reached in Reference 1.

The simplest method for avoiding this di�culty is to avoid E. For example, let Wj be the

mid-point of Sj, and then approximate f by a constant, fj, on Sj; collocating at Wk then gives

fk =
1

�i

N
∑

j=1

fj −

∫

Sj

dw

w −Wk
; k = 1; 2; : : : ; N

This method (the ‘panel method’) is known to be convergent.10 An exactly similar method can be

developed for the hypersingular equation (7), but we do not pursue this here.

4.2. Regularized equations

Consider the regularized equation (5). Introducing the elements Sj, (5) becomes, exactly,

0 =
N
∑

j=1

∫

Sj

f(w)− f(Z)

w − Z
dw; Z ∈ S (27)

We observe that this equation holds for all Z ∈ S, including those Z ∈ E, because the integrals

are all ordinary improper integrals. This means that we can integrate over each element without

reference to neighbouring elements, even if Z ∈ E.

Numerically, we can see that the regularized equation is attractive. For, suppose that we ap-

proximate f by a quadratic function gj on each Sj. Then, we can collocate at Zj (and at other

points not in E) and evaluate the resulting integrals over each element. Moreover, if we enforce

continuity at Zj so that

gj(Zj+) = gj+1(Zj−) (28)
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where gj(Zj+) = limw→Zj gj(w) with w ∈ Sj, and gj+1(Zj−) = limw→Zj gj+1(w) with w ∈
Sj+1, then we automatically get a H�older-continuous approximation (because it is continuous and

piecewise quadratic).

Note that if we do not impose (28), we still obtain �nite integrals, even if we collocate at Zj.

This is an example of ‘relaxed regularization’,4 in that the approximation to f is piecewise-

continuous whereas (27) was derived under the assumption that f is H�older-continuous.

Next, consider the regularized equation (9). Introducing elements as before, (9) becomes, exactly,

0 =
N
∑

j=1

∫

Sj

f(w)− f(Z)− (w − Z)f′(Z)

(w − Z)2
dw; Z ∈ S (29)

The same observation can be made: this equation holds for all Z ∈ S, and we can integrate over
each element without reference to neighbouring elements.

Now, to evaluate (29) numerically, suppose we approximate f by quadratics gj on each Sj, as

before, and collocate at Zj; all the integrals involve bounded integrands. Enforcing continuity at Zj
is easily done. However, in general, we have

g′j(Zj+) 6= g
′
j+1(Zj−) (30)

so that the approximation is not di�erentiable at Zj. On the other hand, the exact f is required to

be di�erentiable at Zj. This is another example of ‘relaxed regularization’.
4

4.3. Relaxed regularization: general ideas

We have seen two examples of ‘relaxed regularization’ above. For a third example, see

Reference 11 and the discussion in Reference 1, Section 8.1. The ideas behind ‘relaxed regu-

larization’ can be exposed in a general way; they will be made quite explicit later. Thus, we begin

with a BIE, which is derived rigorously under certain smoothness assumptions. Let us write such

an equation as

(Au)(Z) = d(Z); Z ∈ S (31)

where A is an operator, u is the unknown function and d is a known forcing function. To be

precise, we must specify that u ∈ X , d ∈ Y and A :X → Y , where X and Y are function spaces.

Then, assuming that our problem is uniquely solvable, we can always �nd the unique u ∈ X for

which Au = d, for any given d ∈ Y .
For a speci�c example, consider the regularized equation (9). Then, we can take X = C1;�

and Y = range{A}. The precise formula for A can be extracted from (9); if f = u + iv and v is

known, A is de�ned by taking the real part of (9). If S is partitioned exactly, A can also be de�ned

using (29). Note that (31) holds for all Z ∈ S; discretizations will be discussed later. We note
that (19) and (24) provide additional examples of (31), despite the assumed discontinuities in g

and/or g′. This is true since the point of discontinuity Z and the other junction point Z0 between

intervals are excluded from S to de�ne S∗, so that, for instance, we may take X = C1;�(S∗)

for (24).

On the other hand, consider another BIE

(A′ũ)(Z) = d(Z); Z ∈ S (32)
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with ũ ∈ X ′ and A′ :X ′ → Y ′, where X ⊂X ′ and Y ⊆Y ′; we require that A′ũ = Aũ whenever ũ

∈ X . Thus, the operator A′ acts on a larger space X ′, but it gives the same result as A if it is

restricted to act on the smaller space X .

For a speci�c example of (32), consider (29). Take X ′ to be the space of piecewise-C1;�

functions on S, where discontinuities of slope and/or function values are permitted when w ∈ E.

Thus, the right-hand side of (29) is de�ned for f ∈ X ′ and Z 6∈ E. For Z ∈ E, we proceed as

follows. Consider Zk ∈ E, where Zk is the junction between Sk and Sk+1. Then, as f(Zk) and

f′(Zk) may not be de�ned for f ∈ X ′, we suppose that (29) at Zk is replaced by

0 =
N
∑

j=1

Ij(Zk) (33)

where

Ik(Zk) =

∫

Sk

f(w)− f(Zk+)− (w − Zk)f
′(Zk+)

(w − Zk)2
dw

Ik+1(Zk) =

∫

Sk+1

f(w)− f(Zk−)− (w − Zk)f
′(Zk−)

(w − Zk)2
dw

Ij(Zk) =

∫

Sj

f(w)− fa(Zk)− (w − Zk)f
′
a(Zk)

(w − Zk)2
dw

for j 6= k; k + 1, and fa(Zk) and f
′
a(Zk) are ‘approximations’ to (the possibly unde�ned) f(Zk)

and f′(Zk), respectively; we could take the average values,

fa(Zk) =
1
2
{f(Zk+) + f(Zk−)} and f′

a(Zk) =
1
2
{f′(Zk+) + f

′(Zk−)}

but any other �nite quantities may be used without a�ecting the existence of the integrals over

those elements Sj which do not have Zk as an end-point. (However, our choices for fa and f
′
a

imply that we recover (29) if f′ is continuous at Zk .) Thus, we have de�ned (A
′ũ)(Z) for all

Z ∈ S.
Formally, the idea of ‘relaxed regularization’ amounts to solving (32) instead of (31). The

consequences of doing this are unclear, but the above simple framework highlights some features.

First, existence is not a problem: assuming that the forcing function d is unchanged, the sought

solution u will satisfy A′u = d. However, uniqueness may be lost: we have enlarged the solution

space (from X to X ′), so there may be more than one solution of (32). It seems to be di�cult

to answer this uniqueness question, in general, for the following reason. Typically, properties of

BIEs are deduced by exploiting the link with the associated BVP. Here, this link has been severed

explicitly by relaxing the smoothness assumptions, so that one has to face the BIE directly.

Informally, the idea of ‘relaxed regularization’ amounts to ‘assume su�cient smoothness, derive

an integral equation (such as (9)) via a valid LTB (in the sense (ii) of Section 2.1), and then

relax the smoothness requirements on f at chosen points Zk , requirements that are needed for a

valid LTB at such Zk (sense (i))’.

Note that if N = 2, (33) is the same as (23), the latter having been obtained as a pseudo-

LTB. (When N = 2, there are no integrals Ij involving fa and f
′
a.) Similar remarks could be

made for (27), as an example of (32); with N = 2, the relaxed-regularization process gives an

equation which is the same as (18). Thus (23) and (18), are relaxed-regularized versions of (9)

and (5), respectively, previously derived in Section 3 as pseudo-LTBs. This shows that relaxed

regularization and pseudo-LTBs are related ideas.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 885–906 (1998)



SMOOTHNESS–RELAXATION STRATEGIES 897

4.4. Relaxed regularization: numerical implementation

Let us consider numerical implementations next. Thus, we consider matrix approximants A and

A′ to the operators A and A′, respectively. In both cases, we suppose that f is approximated by a

low-order polynomial gj on each element Sj, collocate at a �nite number of points on S and then

evaluate some integrals (perhaps numerically) over the elements.

For (31) in the form (29), our approximate BIE is

0 =
N
∑

j=1

∫

Sj

gj(w)− gj(Z)− (w − Z)g′j(Z)

(w − Z)2
dw; Z ∈ S\E (34)

We cannot collocate at Z ∈ E and remain on �rm theoretical ground, because our approxima-

tion to f is not smooth at such Z , in general. This leads naturally to the use of non-conforming

elements. With such elements, every entry in the corresponding A is well de�ned, and no incon-

sistent reasoning is needed anywhere. Furthermore, if one wishes to go back to the representation

integral from which (31) is derived, the LTBs associated with the collocation points, leading to

the individual entries in A, exist and are well de�ned.

Next, consider (32). Again, we use gj on Sj, and permit discontinuities only at the element

junctions Zj ∈ E, j = 1; 2; : : : ; N . Assume further that any such discontinuities, having ‘physical’

or ‘real’ origin, are modelled exactly with the element representation (so that modelling-induced

and ‘other’ discontinuities, if any, are indistinguishable at this stage). Then, if only the same

collocation points previously used for A are chosen when �nding the matrix approximant A′, all

other representations, integrations, etc., being identical, it must be true that A′=A. This means

that if we collocate away from points of discontinuity, with boundary element representations, we

can have, as has been known for many years, a rational, approximate, numerical scheme. Errors

are only those associated with �nite approximation of continuous operators, piecewise polynomial

representations of smooth functions, quadrature errors, and the like. But there is (usually) no

ambiguity in the governing integral equation itself.

On the other hand, suppose we insist on collocating at the element junctions. This gives the

following equations (amongst others, as needed, obtained by collocation at other points):

0 =
N
∑

j=1

Ĩ j(Zk); k = 1; 2; : : : ; N (35)

where

Ĩ k(Zk) =

∫

Sk

gk(w)− gk(Zk+)− (w − Zk)g
′
k(Zk+)

(w − Zk)2
dw

Ĩ k+1(Zk) =

∫

Sk+1

gk+1(w)− gk+1(Zk−)− (w − Zk)g
′
k+1(Zk−)

(w − Zk)2
dw

Ĩ j(Zk) =

∫

Sj

gj(w)− ga(Zk)− (w − Zk)g
′
a(Zk)

(w − Zk)2
dw

for j 6= k; k + 1, and we may make any desired de�nitions for ga(Zk) and g
′
a(Zk), such as

ga(Zk) =
1
2
{gk(Zk+) + gk+1(Zk−)} and g′a(Zk) =

1
2
{g′k(Zk+) + g

′
k+1(Zk−)} (36)

It is interesting to note that if gj is a quadratic function, then

Ĩ k(Zk) =
1
2
(Zk − Zk−1) g

′′
k and Ĩ k+1(Zk) =

1
2
(Zk+1 − Zk) g

′′
k+1
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whereas if gj is a linear function, then Ĩ k(Zk) = Ĩ k+1(Zk) = 0. Also, if the approximation to f is

continuous everywhere (conforming elements), the expressions for Ĩ j(Zk) simplify somewhat, as

we can take

gk(Zk+) = gk+1(Zk−) = ga(Zk) (37)

Furthermore, note that collocating at element junctions, as above, implies that the assumed

discontinuous behaviour at the collocation point Zk contributes to every entry in the k-th row of

the matrix A′. This feature of A′ seems to be quite new in boundary-element modelling. Despite

this, under assumptions like (36) and (37) (or similar ones), it is known that good numerical

results may be obtained from equations like (32).3; 4 It is even possible that convergence proofs

(as N → ∞) for speci�c classes of BVPs might be found in the future. In a sense, (33) allows
more computational possibilities than (9) does—some more useful than others, no doubt—despite

the questionable link that (33) has with the BVP to be solved, and the shortcomings noted in

References 5 and 6.

In summary, then, we can choose to use non-conforming or conforming boundary elements. If

we use non-conforming elements, our theoretical arguments are sound, but such elements have

some undesirable features when compared to conforming elements; for example, they lead to a

much larger system matrix. On the other hand, if we use conforming elements, we have to make

an intuitive step, relaxing the assumed smoothness at the collocation points in order to obtain a

numerical algorithm which, despite theoretical shortcomings, seems to perform well.

5. ELASTICITY

Consider a bounded, three-dimensional domain D with smooth boundary S. (Non-smooth bound-

aries are discussed in Appendix II.) We suppose that D is �lled with a homogeneous elastic

material. Let a typical interior point p ∈ D have Cartesian co-ordinates (x1; x2; x3); we also denote
these by xi(p), i = 1; 2; 3. In the absence of body forces, the components of the displacement

at p, ui(p), satisfy

@i�ij(p) = 0; p ∈ D; j = 1; 2; 3 (38)

where @i ≡ @=@xi, the usual summation convention has been adopted, the stresses �ij are given

by Hooke’s law as �ij(p) = cijkl@kul, and cijkl are the elastic constants; for an isotropic material,

cijkl = ��ij�kl + �(�ik�jl + �il�jk), where � and � are the Lam�e moduli and �ij is the Kronecker

delta.

The Somigliana representation for the displacement at p ∈ D can be written as

uj(p) =

∫

S

{Gjk(p;Q) tk(Q)− Tjk(p;Q) uk(Q)} dsQ ; p ∈ D (39)

Here, Gij is the usual fundamental solution for a point load acting in an unbounded solid,

ti(Q) = �ij(Q) nj(Q) (40)

are the traction components; n(Q) is the outward unit normal vector at Q,

Tji(p;Q) = nk(Q)
[

ciklm(@=@yl)Gjm(p; q)
]

q→Q

are the traction components at Q corresponding to Gij; and q ∈ D has co-ordinates (y1; y2; y3).
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Now, let P ∈ S. Assume that ui is H�older-continuous at P (for i = 1; 2; 3). Then, letting p→ P

in (39), we obtain

1
2
uj(P) =

∫

S

Gjk(P;Q) tk(Q) dsQ − −

∫

S

Tjk(P;Q) uk(Q) dsQ ; P ∈ S (41)

This gives the standard direct BIEs for elastostatics.

We can di�erentiate (39) to calculate the stresses at p ∈ D; the result can be written as

�ij(p) =

∫

S

{tk(Q)Dkij(p;Q)− uk(Q) Skij(p;Q)} dsQ ; p ∈ D (42)

where Dkij = cijlm@lGmk and Skij = cijlm@lTmk . Equation (42) is known as the Somigliana stress

identity. If we assume that ui has H�older-continuous tangential derivatives at P, we can let p→ P

in (42); the result can be written in terms of �nite-part integrals. Usually, of course, we compute

the tractions on S, using (40).

5.1. The regularized Somigliana displacement identity

Take u=a in (39), where a is an arbitrary constant vector, giving

aj = − ak

∫

S

Tjk(p;Q) dsQ ; p ∈ D (43)

hence
∫

S

Tjk(p;Q) dsQ = − �jk ; p ∈ D

Subtract (43) from (39) to give

uj(p)− aj =

∫

S

{Gjk(p;Q) tk(Q)− Tjk(p;Q) [uk(Q)− ak ]} dsQ ; p ∈ D (44)

So, choosing aj = uj(P), where P ∈ S, we obtain

uj(p)− uj(P) =

∫

S

{Gjk(p;Q) tk(Q)− Tjk(p;Q) [uk(Q)− uk(P)]} dsQ ; p ∈ D (45)

This is called the regularized Somigliana displacement identity. Letting p→ P, we �nd that

0 =

∫

S

{Gjk(P;Q) tk(Q)− Tjk(P;Q) [uk(Q)− uk(P)]} dsQ ; P ∈ S (46)

This equation holds provided that u(p) is continuous in D and u(Q) is H�older-continuous at P.

The choice aj = uj(p) in (44) may also be made; see Reference 12.

5.2. The regularized Somigliana stress identity

Next, consider the Somigliana stress identity (42). The most general linear displacement �eld

is

uLi (p) = ai + Cij(xj − bj)
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where ai, bi and Cij are constants. The corresponding stresses are constant, and are given by

�Lij(p) = cijkl@k{al + Clm(xm − bm)} = cijklClk

Hence, substituting these �elds into (42), we obtain

�Lij = �
L
kl

∫

S

nl(Q)Dkij(p;Q) dsQ −

∫

S

uLk (Q) Skij(p;Q) dsQ ; p ∈ D (47)

In particular, taking Cij ≡ 0 implies that
∫

S

Skij(p;Q) dsQ = 0; p ∈ D

whence (47) simpli�es somewhat.

Now, let us make the choices ai = ui(P), bi = xi(P) and Cij = @jui(P), whence �
L
ij = �ij(P).

Emphasising the dependence on P ∈ S, we write

uLi (q;P) = ui(P) + [xj(q)− xj(P)] @jui(P) and �Lij(q;P) = �ij(P)

Note that uL(q;P)− u(P) is the directional derivative of u at P in the direction from P to q. In

particular, uL(Q;P)− u(P) is the tangential derivative of u at P in the direction from P to Q

when Q is close to P. Furthermore, note that (@ju)(P) can be expressed in terms of the tangential

derivatives of u at P and the traction at P.

Subtracting (47) from (42), we obtain

�ij(p)− �ij(P) =

∫

S

{[

tk(Q)− t
L
k (Q;P)

]

Dkij(p;Q)−
[

uk(Q)− u
L
k (Q;P)

]

Skij(p;Q)
}

dsQ (48)

for p ∈ D, where tLk(Q;P) = nj(Q)�jk(P). Equation (48) is known as the regularized Somigliana
stress identity. It is regularized provided that

|u(Q)− uL(Q;P)| = O(R1+�) and |t(Q)− tL(Q;P)| = O(R�) as R = |x(Q)− x(P)| → 0

where � ¿ 0. As we have assumed that S is smooth at P, these conditions will be met if u has

H�older continuous tangential derivatives at P, and the tractions are H�older continuous at P.

With the above assumptions, together with the assumption that the stresses are continuous in D,

we can let p→ P in (48) to give

0 =

∫

S

{[

tk(Q)− t
L
k (Q;P)

]

Dkij(P;Q)−
[

uk(Q)− u
L
k (Q;P)

]

Skij(P;Q)
}

dsQ ; P ∈ S (49)

Equations (48) and (49) have been used extensively by Cruse and his co-workers; see

References 2–4 and references therein. Closely related equations can also be found in the lit-

erature; see Reference 8 for a review.

The integrals in (49) are all ordinary improper integrals. This means that, just as in Section 4.2,

we can partition S into elements exactly, approximate the unknowns on each element, and then

integrate over each element. Such schemes lead to well-de�ned integrals, with bounded integrands,

even when collocating along element boundaries; the use of conforming elements will lead to

a H�older-continuous displacement �eld on S, but this �eld will have discontinuous tangential

derivatives across element boundaries.
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In Section 5.3, we shall consider some relaxed-regularization strategies for Somigliana’s identi-

ties, much as was done in Sections 4.2–4.4, but �rst let us review the underlying assumptions for

the validity of (49), supposing here that S is smooth at P. Then, we require the following:

(i) u satis�es the equilibrium equations (38) in D;

(ii) the stresses �ij are continuous in D;

(iii) u has H�older-continuous tangential derivatives at P; and

(iv) t is H�older-continuous at P.

Two further observations can be made. First, if t is discontinuous at P (as is often the case in

applications), then we should expect that (at least one component of) u will have a logarithmically-

singular tangential derivative at P; this was shown by Heise, Reference 13, p. 310.

Second, the conditions (iii) and (iv) are not equivalent to

(v) the stresses �ij are H�older-continuous at P.

Indeed, (iii) and (iv) imply that all components of the displacement-gradient tensor G must be

H�older-continuous at P whereas (v) implies that all components of the strain tensor E must be

Holder-continuous. Since E is only the symmetric part of G, (v) represents a weaker condition

than (iii) and (iv).

5.3. The regularized Somigliana identities: relaxed regularization

We begin by noting that the regularized Somigliana displacement identity (45) for the elastic

displacement u(p) is the (vector) analogue of (3) for the scalar function f(z). Regarding pos-

sible pseudo-LTBs, vector analogues of all of the expressions (10)–(18) are obtainable for u. In

particular, the analogue of (18), perhaps the most useful of the pseudo-LTBs, is

0 =

∫

S1

{

Gjk(P;Q) t
1
k (Q)− Tjk(P;Q) [u

1
k(Q)− uk(P+)]

}

dsQ

+

∫

S2

{

Gjk(P;Q) t
2
k (Q)− Tjk(P;Q) [u

2
k(Q)− uk(P−)]

}

dsQ (50)

where S = S1 ∪ S2, u
j
k is uk evaluated on Sj, t

j
k is tk evaluated on Sj, and P is a point on the

frontier between S1 and S2. All of the stated di�erences and concerns between (18) and (5) pertain

to (50) and (45). The main point is that (50) does not have meaning as a well-de�ned LTB, like

(45) does, unless both (a) the displacement is continuous in D, and (b) the boundary displacement

is H�older continuous at P.

We do not pursue here the ambiguities associated with computing with (50) if (a) and (b) are

not satis�ed (cf. Section 4.4). Rather we consider the comparable issues surrounding equation (51)

below. These issues are the more important ones in applications.

Toward this end, note that the regularized Somigliana stress identity (48) is the vector analogue

of (8). If we now allow relaxation of the stated smoothness required for the well-de�ned LTB (48),

that is, only (i) and (ii) in Section 5.2 above are satis�ed but (iii) and (iv) are not, we may write

0 =

∫

S1

{[

t1k (Q)− t
L
k k(Q;P+)

]

Dkij(P;Q)−
[

u1k(Q)− u
L
k (Q;P+)

]

Skij(P;Q)
}

dsQ

+

∫

S2

{[

t2k (Q)− t
L
k (Q;P−)

]

Dkij(P;Q)−
[

u2k(Q)− u
L
k (Q;P−)

]

Skij(P;Q)
}

dsQ (51)
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as the vector analogue of (23). Again, all of the stated di�erences and concerns about (23) and (9)

pertain to (51) and (49).

Note especially that the ‘zero’ on the left-hand sides of (49) and (51) presumes that ‘the stresses

are continuous at P’. However, as noted above, allowing tLk and/or u
L
k to have discontinuities at P

in (51) is generally inconsistent with the assumption of continuous stresses on which that zero is

based. Indeed (51) does not have meaning as a well-de�ned LTB, like (49) does, unless both (iii)

and (iv) as well as (i) and (ii) in Section 5.2 are satis�ed.

5.4. Discussion

When Cruse and Richardson3 speak of an existing LTB for continuous stresses, but discontinuous

tractions and/or displacement gradients, they are speaking of speci�c versions of (51) (for various

prescriptions of known boundary data). Equation (51) represents a pseudo-LTB; it is obtained

under assumptions and reasoning which are inconsistent, so that it is not a well-de�ned genuine

LTB—contrary to the claims in.3 With this inconsistency goes ambiguity and doubt, theoretically,

about what (51) actually means as a legitimate model for the BVP to be solved, and what one

might expect in computations with (51).

It is tempting to blur this matter of the meaning of (51), for discontinuous tractions or displace-

ment gradients, by perhaps arguing as follows. Forget (51), and simply derive (49) assuming all

the smoothness necessary to do so. Next, introduce element approximations; relax the smoothness

assumptions accordingly, collocate at nodes, and introduce average values of discontinuous func-

tions as best you can, at nodes, according as the element approximations introduce discontinuities.

Then, as has been done with BIEs of a less controversial nature for decades, go ahead and com-

pute. This process seems innocent enough, and reasonable, in that most numerical approximations,

not only in BIE analysis, involve representation functions which are not as smooth, perhaps, as the

function to be approximated. When challenged on this, you can respond that the ‘real’ problem is

the one of interest, and we know its solution is (often) smooth. Of course, we must allow some

inaccuracies in making approximations.

The subtle di�culty with the preceding quite-plausible argument, when applied to (49), is this.

If you insert functions such as u and t with relaxed smoothness characteristics into an equation

like (49), and then you wish to collocate at points of discontinuity, (49) becomes (51), whether

the ‘insu�cient smoothness’ comes from an element representation or from a problem wherein

these characteristics have some ‘reality’. The equation cannot tell the di�erence! However, if you

collocate with (49) only at points P where (iii) and (iv) are satis�ed, you may insert a host

of functions with a variety of relaxed smoothness characteristics, as long as these characteristics

are consistent with the ‘well-de�nedness’ conditions (iii) and (iv) at P. It makes no di�erence

whether such functions are element-based or ‘real’ in the sense just mentioned. The equality in

such equations, even with ‘well-de�ned’ collocation points, may not be satis�ed exactly because of

the approximate representations. Nevertheless, such equations re
ect rational and well-understood

approximations associated with piecewise polynomial approximations of smooth functions. There

is no ambiguity of meaning in the equation itself as to how it is related to a well-de�ned BIE

with good representation of the underlying BVP. There is no inconsistency in reasoning regarding

terms which appear in such an equation and terms which have been discarded. With (51) though,

none of the things in the last three sentences are true.

Having said all this, we wish to emphasize that we have no doubt whatsoever about the integrity

of the numerical data reported in the literature.2–6 In particular, the numerical data obtained by
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Cruse and his co-workers,2–4 using equations like (51), suggest that the e�ects of the inconsis-

tencies based on smoothness–relaxation can be small or even negligible, depending on the type

of BVP. Further, in References 5 and 6 collocation was done under similar smoothness–relaxation

inconsistencies, for some scalar hypersingular integral equations. Considerable caution was ex-

pressed in Reference 5 regarding data obtained there for a plane 
uid-
ow problem and similarly

in Reference 6 for a three-dimensional acoustic scattering problem, because the logical inconsisten-

cies of smoothness relaxation were recognized and acknowledged. On reading5; 6 again, however,

we notice that good data were, in fact, obtained and convergence was observed, once average

values of �rst derivatives were introduced to remove scale dependence. Convergence seemed to

be somewhat problem dependent, and it was at a slower rate than with more logically consistent

collocation practices, but good data were obtained nonetheless.

We suspect now that reasonable discontinuities, modelled in violation of theoretical requirements

for a well-de�ned LTB, which contribute to the ‘known-data column’ in computations, will usually

have a small detrimental e�ect, if any. Further, if modelling discontinuities in unknown functions

are limited to discontinuities in �rst derivatives, rather than the functions themselves, equation

(51) apparently works rather well, especially if one uses assumed averages for �rst derivatives,

as suggested in Section 4. This equation probably ‘tries very hard’ to yield a function, as smooth

as possible, in order to be ‘faithful to the zero’ on the left-hand side of (51). Even though (51)

ostensibly allows discontinuities at the collocation points, this is inconsistent with that ‘zero’, as

we have argued extensively in this paper.

More speci�cally, consider the key matrix A′ (Section 4.4) which governs a discretized version

of (51). Without free terms, however, inconsistent the reasoning to discard them may be, equa-

tion (51) gives to the diagonal terms of A′ the same character as the diagonal terms of A. The

o�-diagonal terms, in both A′ and A, have similar character, as well. Thus, if discontinuities are

replaced by averages of neighbouring values, one would expect to obtain reasonable results from

using A′, compared with A. Di�erences in these matrices, if the averages are introduced, are due

to little, if anything, more than di�erences in quadrature results from di�erent collocation-point-

with-respect-to-element geometries. Moreover, one would also expect convergence of ũ to u, with

�ner and �ner discretizations, since with any reasonable piecewise (polynomial) representation over

elements, neighbouring slopes will approach each other. Ultimately, since the elements used in A′

are more desirable than elements needed for A, even though the convergence rates of ũ to u and ũ

to u may be di�erent, A′ looks like a good modelling choice, indeed! In turn then, (51), and its

cousins (23) and (18) from which respective A′ are derived, all look like acceptable BIEs for com-

putational purposes, despite the disparaging remarks we have made about them on logical grounds.

We remark in closing that the bulk of boundary-element work over the years, including the more

recent work with hypersingular equations, to our knowledge, has been based on BIEs derived from

well-de�ned LTBs. Most element modelling with those BIEs has not been in violation of the needs

of a well-de�ned LTB. None of the ambiguities of meaning considered in this paper have thus

been present. Questions of accuracy and convergence in numerical computations have therefore

been of a rather familiar nature. But possible loss of contact with the underlying BVP, with

equations like (51) is relatively new, and this idea is more than a matter of numerical accuracy—

notwithstanding the fact that some workers are interested in the idea, if at all, only insofar as

numerical matters are concerned.

Understanding all this in such detail now, perhaps we have been overly conservative regarding

the numerical dangers of this matter of smoothness for many, even most, problems. However,

we are not aware of any theorems to quantify numerical accuracy and convergence issues with
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equations like (51). Perhaps BIEs, derivable from ill-de�ned LTBs, are more robust and forgiv-

ing of inconsistencies than we think. For the sake of those in the boundary-element community,

including ourselves on occasion, who wish to use boundary elements in violation of theoretical

demands, we genuinely hope that this is the case.

APPENDIX I: POTENTIAL THEORY

If we write f = u+ iv, where u and v are real, and take the real part of (1), we obtain

2u(p) =

∫

S

{

u(Q)
@

@nQ
G(p;Q)−

@u

@nQ
G(p;Q)

}

dsQ ; p ∈ D (52)

where G(p;Q) = (1=�) log |p − Q| and @=@nQ denotes normal di�erentiation at Q ∈ S out of D;
the term involving @u=@nQ arises from the Cauchy–Riemann equations and an integration by parts.

(Note that we have identi�ed the points p ∈ D and Q ∈ S with the complex variables z ∈ D and

w ∈ S, respectively.) Equation (52) is the familiar integral representation for a harmonic function
in terms of its boundary values and its normal derivative on S. This representation is usually

obtained by applying Green’s theorem in D to u(q) and G(p; q).

If we write f = u + iv and take the real part of (2), we obtain the standard direct BIE of

potential theory, connecting u and @u=@n on S, namely

u(P) =

∫

S

{

u(Q)
@

@nQ
G(P;Q)−

@u

@nQ
G(P;Q)

}

dsQ ; P ∈ S

This equation is usually derived by letting p→ P in (52).

APPENDIX II: NON-SMOOTH S

In this Appendix, we discuss the modi�cations required to treat non-smooth S.

II.1. Contour integrals

We assume that S is a simple Jordan contour, so that S can have corners. Then, Cauchy’s

integral formula, (1), is valid. However, (2) is not valid: if Z is at a corner of S, the left-hand

side of (2) must be multiplied by a factor of (�=�), where � is the (interior) angle at Z , Reference

9, Appendix II. Nevertheless, it turns out that the regularized equation (5) is valid at corners. This

interesting property can be established using the following ‘extension argument’.

II.1.1. An ‘extension argument’. Suppose that S has a corner at Z . Partition S into three pieces,

S = S1 ∪ S2 ∪ S
′, where Z is at the junction of S1 and S2, which are themselves smooth, and S

′

includes any other corners. We can write (3) as

2�i{f(z)− f(Z)} =

∫

S1

f1(w; Z)

w − z
dw +

∫

S2

f2(w; Z)

w − z
dw +

∫

S′

f(w)− f(Z)

w − z
dw; z ∈ D (53)

where fj(w; Z) = f(w) − f(Z), w ∈ Sj, j = 1; 2. Clearly, the third integral is continuous as

z → Z , since Z 6∈ S ′. Now, consider the �rst integral. Extend S1 smoothly beyond Z , giving a
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longer curved piece T1 = S1 ∪ E1, where E1 is the curved extension. De�ne g1 on T1 by

g1(w; Z) =

{

f1(w; Z); w ∈ S1
0; w ∈ E1

Hence,
∫

S1

f1(w; Z)

w − z
dw =

∫

T1

g1(w; Z)

w − z
dw; z ∈ D

Moreover, as f1 is H�older continuous on S1 and vanishes as w → Z (with w ∈ S1), the extension
by zero ensures that g1 is itself H�older continuous at Z . Hence, as T1 is smooth at Z , we can

use standard results to let z → Z . A similar extension argument succeeds for the integral over S2
in (53), whence we can let z → Z to obtain (5) for non-smooth S.

II.1.2. Further comments. Let us begin by noting that the regularized form of Cauchy’s integral

formula for f′, namely (9), is valid when S has corners, provided that f′(Z) is H�older-continuous

for all Z ∈ S; this is a stringent condition at the corners. On the other hand, the hypersingular
equation (7) must be modi�ed at corners.

The discussion of relaxed regularization and discretization in Section 4 is largely independent

of whether S has corners or not. Thus, if S does have corners, we merely arrange that they are

in E, so that each element Sj is smooth.

II.2. Elasticity

Suppose that S is not a smooth surface, so that it may have corners and edges. Then, the

Somigliana representation (39) is still valid. However, the left-hand side of (41) must be modi�ed

if P is at a non-smooth point of S; see Hartmann.14

If we assume that u(p) is continuous in D and u(Q) is H�older-continuous at P, the extension

argument of Section II.2.1 can be adapted to show that (46) is valid when S is a non-smooth

surface. The extension argument can also be used to show that (49) is valid when S is a non-

smooth surface. However, the underlying assumptions are stringent if one wants to use (49) at a

corner or edge. For example, one cannot use (49) along an edge where the stresses are in�nite,

as occurs typically along the edges of a cubical cavity.

Next, let us review the discussion in Section 5.2 when S is not smooth. Let Sm (m = 1; 2; : : : ; M)

be smooth pieces of S meeting at P, where there is an edge or a corner. Then, we need condi-

tions (i) and (ii). We need @juk to be de�ned at P. This implies that the tangential derivatives

of u at Qm ∈ Sm must have a limit as Qm → P, for each m, and, moreover, these M limits must be

connected through the unique values of @juk at P. These conditions replace (iii), and ensure that

|u(Qm)− u
L(Qm;P)| = O(R

1+�
m ) as Rm → 0

where Rm = |x(Qm) − x(P)| and Qm ∈ Sm. Similarly, condition (iv) should be replaced by the
condition that

nj(Qm) [�jk(Qm)− �jk(P)] = O(R
�
m) as Rm → 0

for each m (no sum). Note that this condition does not require that n(P) be de�ned.
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