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A plare acoustt wave is incidert upan an infinite, rough impenetrab# surfae S.

The aim is to find the scatterd field by deriving a bounday integrd equatio over
S, using Greens theoren ard the free-spae Greens function This requires careful
consideratia of certan integrak over a large hemispheg of radius r; it is known
tha thes integrabk vanih as r—« if the scatterd field satisfies the Sommerfeld
radiation condition but that is not the cae here—reflectd plane waves mug be
presentlt is shown that the well-known Helmholtz integrd equatian is nat valid in

all circumstancesFor exampleg it is nat valid when the scatterd field includes
plare waves propagatig away from S along the axis of the hemisphereln particu-
lar, it is nat valid for the simples$ possibé problen of a plare wave at normal
incidene to an infinite flat plane Sorre suggestioafor modified integrd equations
are discussed © 1998 American Institute of Physics. [S0022-24888)01302-4

I. INTRODUCTION

A boundel three-dimensioriaobstact with a smooh surfa@ S is surroundéd by a compress-
ible fluid. A plare time-harmont sourd wawe is incidert on the obstacle the problem is to
calculae the scatterd field u. In orde to hawe awell-posel boundary-vale problem (with exis-
tene and uniqueness one impose the Sommerfed radiatin condition,

u ik 0 1
rl o ~iku|—0 asr—e, (1)

uniformly in all directions Herer is a spheric& polar coordinatek is the wave number and the
time-dependeris e~ '“!. Physically the radiation condition ensurs tha the scatterd waves
propagag outwards away from the obstacle.

A well-known methal for solving the abo\e problem is to derive abounday integrd equation
for the bounday values of u on S. In the derivation Greens theoren is applied to u ard a
fundamenth solution G, in the region boundd internaly by S ard externaly by C,, a large
sphee of radiusr. It turns out tha the radiation condition implies tha the integral

dG au
I(u;C,)EfC (u——G—) ds—0 asr—oo, 2

and so only bounday integrak over S remain For more information see Colton ard Kress!
Assune tha S is a sound-had surfae@ (Neumam condition. Then the methal described
abowe leads to the following bounday integrd equation:

G IUjnc
u(p)— | u(a) -—(p,q)dsq= | ——G(p.q)dsq, peS, ()

s dng S dng
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here u;, is the given incidert wave One can also derive an equatiom for the bounday values of
the totd field u,,= u;,c+ U; this bounday integrd equatio is

9G
Utot(P) — Lumt(q)a—%(p.q)dsq=2umc(p), peS. (4)

We shal refear to Egs (3) ard (4) as standard Helmholtz integral equations. Similar equatiors can
be derived for sound-sdf surfacs (u,,;=0 on S).

Suppos now tha the obstace is unbounded. The prototypica problem is scatteriny (reflec-
tion) of a plane wave by an infinite flat plane S. Asis well known, the incidert wawe is reflected
speculary as a single propagatig plare wave More generally if Sisan infinite rouch surface an
incidert plare wawve will be scatterd into a spectrum of plare waves For sud problems the
Sommerfall radiation condition is definitely inappropria¢ as it is not satisfial by a plane wave.
Neverthelessit is customay to proceed assuming tha the scatterd field can be representa in
terms of plare waves at leag at sorre distane from S. Typically, this requires the discardirg of
anintegrd sud as (2), but with the large sphee C, replacel by alarge hemisphere H, . This paper
began as an attemp to justify this step.

In a previows paper? we derived bounday integrd equatios of Helmholz type for one-
dimensional rough surfaces We found that the standad Helmholtiz integrd equatiors are valid,
exceft that the right-hard side of Eq. (4) mug be replacel by u;,.(p) for grazirg incidence.

It is perhas surprisirg tha an analyss of this kind has not been given before mog authors
hawe been conter to write down an integrd equatian suc as Eq. (4), prior to extensive numerical
computations However it turns out tha the necessar analyss for scatterig by a two-
dimensional rouch surfa@ is nat straightforwad and moreover it yields sone surprises For
example the simples problem namey reflectian of a plare wave at normal incidene upon a flat
surface leads to divergert integrals the standad Helmholtz integrd equatia (3) is not valid for
this problem.

The pape is organizel as follows. Sectio Il is devotal to formulating the problem with
sonme background on angular-spectm representation and integrd representatio (using G).
Greenstheoren is applied inside avolume whos closel bounday is mack up of three piecesthe
large hemispheg H, ; alarge circular piece S, , of theroudh surface ard acylindricd surfae T, ,
joining S; ard H, . Estimatio of integrak over H, is carried out in Secs II1-V. Thus the method
of stationay pha® for multiple integrabk and an expansio methal are usal in Secs Il and 1V,
respectively but only for a single plane wave Resuls for | (u;H,) are obtainel in Sec V. The
contributian from integratirg over T, is considerd in Sec VI. Unlike in two dimensiors (one-
dimension& rough surface, this contribution may not be negligible it is evaluatel unde addi-
tional, but reasonablea priori assumptioa on the form of the scatterd field nea S. Thisis a
weaknes of the presem analysis Finally, bounday integrd equatiors of the Helmholtz type are
derived in Sec VII. Furthe work is needé to tighten up the analyss and to investigaeé the
numericé consequences.

Il. FORMULATION
Conside the scatterig of a plare wave by a two-dimensionhrough surface S, describé by
z=5(X,y), —o<x<w, —owoly<n

with —h<s(x,y)<0 and sonme constah h=0. The acoustt mediun occupie z>s and for
definitenesswe assune tha S is a smooth sound-had surface Thus we can write the totd field
as

Ugot= Ujnct U,
wher u is the scatterd field. The incidert plare wave is

Uinc(T, 0, ) =explik;-x}, 0<6;< 3, (5)
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wher k; =k(siné,,0,— coss), 6; is the angk of incidene (it is the angle betwee the direction of
propagatioa and the negatiwe z-axis),

X=rX=r(sind cosp,sind sing,coss),

ard (r,6,¢) are sphericalpolar coordinatesx=r sinf cosp, y=r sindsing and z=r cosi. All
the fields uy, Uijnc, ard u satisly the Helmholtz equation,

(V2+k*»u=0
for z>s. The bounday condition is
Ju
-0 on S (6)
Jn

whered/ dn denotesnormal differentiationout of the acousticmedium.

A. Reflection by a flat surface

It is instructive to conside the very simple problem of reflection by a flat surface so that
s=0. The textbo solution for the scatterd field is

u(r,0,¢)=expliks-x} for 0< ;< 3m, (7)

where k,=k(sing ,0,co®%). When ¢,= 37 (“‘grazing incidence”), we hawe u=0: the incident
wave satisfies the bounday condition on S.
So, for 0< ;< 3,

U= 2 €M cos(kzcosd;)
solves the problem But consider
Utor= Uor Ug (8)
with
Ug= V(,B)e‘ k(xcos8+ ysinﬂ),

where 8 and V(B) are arbitrary, with — 7<gB=<. u/, alo “solves” the problem in tha it
satisfies the Helmholz equation and the bounday condition Of course we disallow this second
solution unles V=0: but why? The answe is becaus of the radiatian condition (which we have
yet to specify). For example take 5=0 andV(0)=1, sothatuy= e'k*: this gives an “outgoing”
grazirg wave at x=+ but it is an “incoming’’ grazirg wave at x=—o, we mug therefore
excluce it. Indeed we mud excluce all contributiors ug, for any g andV.

A similar condition is imposel on the two-dimensionh problem® However the three-
dimensionaproblem has anothe feature for we could conside replacirg ug in Eq. (8) by

1 (= . )
ik(xcosB+ysinB)
27TLTV(B)e ds,

wher V is a continuows function but, as Ug has bee excluded we mug alo excluck all linear
combinatiors of such plare grazirg waves In particulag by taking V(B)=(—i)"e'"?, we see that
we mug excluce the cylindricd standirg waves

Jn(kR)E"?, ©)

where J, is a Bessé function? R=r sin¢, and (R, ¢,z) are cylindrical polar coordinatesof the
point at x. On the othe hand the exad scatterd field, given by Eq. (7), when evaluatée on any
plare z= constanthas an azimuth& Fouria componeh proportiona to
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Jn(kiR)EM?, (10)

wherre k; =k sing <k. Thusif one wants to formulat aradiatian condition mathematicallyit must
be sud that fields (9) are excludel but fields (10) are permitted.

This discussio suggest that the specification of a mathematical radiation condition for the
presem class of problens (plane-wae scatterig by an infinite two-dimensionhrough surface
will nat be straightforwardHowever the physical purpo of aradiatian condition isclear itisto
excluce all “incoming’’ waves apat from the incidert wave We shal retum to radiatian condi-
tionsin Sec Il B.

B. Angular-spectrum representations

For ary rouch surfa@ S, the scatterd field in the half-spae z>0 may be written using an
angular-spectm representation,

du dv

U(X Y, Z)— f_xj_mF(M V)elk(,u,x+vy+mz) m(K)

- [ Ao 0,610,800 dp+evanescerterms. a1

Here F is the spectral amplitude, A(a,8) =F(sinacosB, sinasing), k=+/,2+ 2, and

J1—k2, 0=«k<1,
m(x)=1. —
ivekc—1, «k>1,
the function v is definal by
v(r,0,¢;a,B)=explik-x}, 0<a<—77 |B|<m, (12

where
k=kk=k(sina cos3,sina sing,cosx).

The integrak are superpositios of plare waves they are propagatinghomogeneasiplare waves
when 0= k<1, andtheyareevanesceninhomogeneouplanewaveswhenx>1. In Eq.(11), we

see the propagatig plane waves explicitly: they propagae in the direction of k, with an (un-
known) complex amplitude A(«,B); the “evanescentterms” decayexponentiallywith z. For
more information on angular-spectm representationses Clemmow and DeSant and Martin.®

In general the spectrh amplituce mug be considerd as a generalizd function Thus it is
convenien to extrad a continuos componehfrom F, writing the scatterd field as

U=Up+ UeyT Ucon, (13

where

N
upr<r,0,¢>=n§0 Aw(r,0,¢;an,Bn),

M
UeT, 6, ¢>=m§1 BmW(r,0,6; fhm, Vi), (14

d,u. dv

e (15

ucon(x Y, Z j J /(/“L V) elk ux+vy+mz) 7
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w(r,0,¢;u,v)=explikr sind [ u cosp+ vsing]—kr cosh /x2—1}, (16)

and k=Vu?+v?>>1 in Eq. (16). The first term in Eq. (13) is a sum of propagatig waves the
coefficiens A,, and the angles,a,, and 3,,, are unknown in general The secom tem in Eq. (13)
is a sum of evanescemwaves B,,, um, and v, are unknown in general The third tem in Eq.
(13) is a continuows spectrun of plare waves the unknown function #” is continuous See Sec V
for further comments.

Let us now retum to the radiatimn condition Having chosea an origin O, arbitrarily, we
conside a large hemispheg H, , with radiusr ard cente O. We then require tha all propagating
plane-wae componerg v (r,6,¢;«,,B,) in u propaga¢ outwards throuch H,, away from O.
This is almog built into the decompositia (13): we hawe to be carefu with grazirg waves
[ a,= 3; see the discussio following Eq. (8)]. A simple way to impose our radiatian condition
is to split the half-spae z>0 and the hemisphes H, into four parts Thus with

1 1
H'=1(r,0,¢):0< < w,z(m—S)ws¢<§(m—2)w , m=1,2,3,4,

N| =

being the surface of four octans of a spherewe requite the following conditiors for the regions
specified:

m=1: inx<0, y<0, use —7<p,<-— 3,

m=2: inx=0,y<0, use —ir<p,<0,

m=3: inx>0,y=0, use0<p,<im, 47
m=4: inx<0,y>0, useir<p,<.

This partitioning makes it eay to ensue tha only plare waves propagatig out throuch H;" are
included This is the form of radiatin condition used to derive bounday integrd equations.

C. Boundary integral equations

One way to determire the scatterd field is to derive abounday integrd equatio over the
rough surfa@ S. An appropria¢ fundamenthsolution is the free-spae Greens function

—1 explik|x—
G(P,Q>=G<y.x>=ﬁw

wher x ard y are the position vectoss of Q and P, respectively with respet to the origin O.
Apply Greens theoren to u and G in the region D, with boundarydD,=H,US,UT,, where H,
is a large hemisphee H, of radius r and cente O,

S ={(x,y,2):z=5s(x,y), 0=x?+y?<r?
is atruncate rough surface and

T, ={(X,y,2):x?+y?=r?, s(x,y)<z=<0} (18

is the surfa® of atruncata circular cylinder joining H, and S, . The resut is

2 P—f % pa-Zep.q | ds
u(P)= . u(q) anq( Q) — o5 G(P.q) 1 dSy,

where PeD,, qedD,, and d/dn, denots normd differentiation a g. Use of the boundary
condition (6) yields
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auinc
an

dG
2U(P)=Lr[u(Q)a—(P,Q)+ G(P,Q)] dSy+1(uiH) +1(u;Ty), (19

Ng

where

= [ Luw 22— cp.a | os
u;. )= u(q) —(P,gq)— — ,
. d ang D™ on a d
and normd differentiatian is taken in a direction away from the origin [so thatd/an=a/dr onH, ,
consistenwith Eg. (2)].

The nex stepisto estimae | (u;H,) and I (u; T,) for large r. Before estimatimg | (u;H,), using
Eqg (13), we conside a single propagatig plane-wae componenin Eq (13). Thus we shall
evaluate I(v;H,) a r—owo, where v is defined by Eqg. (12. In fact, as
v(r,0,¢;a,B8)=uv(r,0,¢— B;a,0), we canassumeawithout lossof generalitythat 8= 0; we write

=

v(r,0,¢;a,00=v(r,0,¢,a)=v(X;a), O<a<_w.

N

Indeed we shal evaluaé the limit using two differert methodsthes are the methal of stationary
pha® (Sec 1) and an expansio methal (Sec 1V). The reasos for this twofold evaluatia are (i)
the resuls are surprising and (ii) the expansio methal is natura but it is complicatel and it leads
to sone subtk nonunifom behavior We shal discus the evaluatio of | (u;H,) itsef for large r
in Sec V. We then conside the contributian from I (u; T,) to Eq. (19) in Sec VI. Finally, we will
derive bounday integrd equatios from Eq. (19) in Sec VII.

Ill. THE METHOD OF STATIONARY PHASE

We use the methal of stationay phasé to estimae I (v;H,). It turns out that there are three
casesdependig on the anglea.
We are intereste in large values of r=|x|, for fixed y and k. We have
G(P,q)=(B/r) expik(r—y-x)}, (20

where B= — }/ 7. Hencefor larger,

G Jov B ~ A ) n A ) ~
v a_r_G &—rzlk? (1—-k-x) explikr(1+k-x)} exp{—iky-x}
ard then
I(v;H,)=iB e L(kr),
where
L(x):xf 9(0,4) €09 dg de, (21)
Z
g(6,¢)=(1—k-x) exp{—iky-X} sing, (22

F(0,¢)=k-x and Z={(0,¢):0<0<6,<m,—7<d=<m}

is the rectangula doman of integration this correspond to integratirg over a spherich cap
subtendiy an angk of 246, at the origin, for the hemispheg H, , we set 8,= 3.
We now examire three case in turn. Thee area=0, 0<a< 3w, anda= 3.
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TABLE |. Stationary-phaspoints for L(\).

C1 C C3 Ca Cs Ce G
[4 0 0 T T @ T T
1 1
¢ > — 57 5™ — 57 0 w -7

A. The method of stationary phase: a=0

Conside the specid casea=0, correspondingto a plane wave v propagatingalong the
z-axis Then we hawe F (6, ¢) = cosd, which meanghatthe only dependencen ¢ is throughy- X:

L(A)=)\fao(1—cos9) b(8;y) e’ sing do, (23
0
where

b(a;y)=f_w exp{—iky-X} dg.

Introducirg spherica polar coordinats for vy,
y=py=p(sin® cosb,sin® sind,cod), (24)
we can integrak over ¢ to obtain
b(0;y) =27 e 'kpeo c0O 3k sing sin®).

Now, the integrd (23) can be estimaté for large A using the (one-dimensionalmethal of
stationay phase The only stationary-phaspoint is at = 0; astheintegrandvanishesat =0, we
dedue tha L(A\)=0(1) as A—<o. In fact, an integration by parts shows that

L(N)~i(1—cosy) b(by;y) €*°%0  as\—o»,
in particulat for the hemispheg (6,=37), we obtain

l(v;H) =€ Jo(kpsin®)+O((kr)"Y?) askr—ow, for a=0. (25)

B. The method of stationary phase: O<a<3m

Retun to the integrd L(\), definel by Eq. (21). We estimaé L(\) for large \, usirg the
methal of stationay phag for two-dimensionkintegrals® Thus we look for stationary-phase
points c=(6,¢) e & at which gradF=0; such points may be in the interior of & or on the
boundary,0Z. Eachc contributesa termto L(\) proportionalto

g(c) eMF©),

the nex tem being O(\ ~1).° In general,d contributestermsof O(\ ~*/?), wherea cornes of
d< contribue terms of O(A~1); all these contributiors are smalle than those from stationary-
pha® points.

We have

F(0,$)=sind cosp sina+cos cos.

Elementay calculatiors shov tha grad F=0 at seven points ¢; (j=1,2,...,7) in the range
0< 0=, |¢p|<m (whichis largerthan &); seeTablel. Substitutinginto Eqg. (22), we seethat

9(c1)=9(c2)=g(c5)=g(cs) =9(C5)=0
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and

g(cg)=g(cy)=2sina exgfik-y}.

Saq if we integrake over aregion & tha does not include c; ard ¢;, then L(A)=0(1) as A — .
This will be the cas if

a<fp<7—«,
in particular for the hemisphergwe obtain
l(v;H,)=0((kr) Y askr—w, for0<a<is.
C. The method of stationary phase: a=3m

For the hemisphergwith a = 6= 3, we find that ¢ and ¢, are on 9. Their contributioncan
be found?® the resut is

I(v;H,)=2explik-y}+O((kr)"¥?) askr—o, for a=3w.

D. Summary

The axis of symmety of the hemispheg H, is the z-axis We hawe considerd plane waves v
propagatig out of the hemisphergat an angle« to the z-axis. We haveseenthat! (v;H,)—0 as
r—o, for 0O<a<sw. For a=3m (“grazing waves,’ with respet to the plare z=0),
I(v;H,)—2explik-y}, afinite quantity, as r—o. For a=0 (“normal waves,” with respectto
z=0), I(v;H,)~e'*" Jo(kp sin®), which meansthat | (v;H,) does not hawe alimit (in this case
asr—oo. This unpleasanresut can be verified directly whenp=20; in this specialcase we have

/2 .
L()\)=27-r)\f (1—cos9) e'*¥ sing do
0

=2mi{l1—-iNn"Y1-eM)

exactly after an integration by parts In fact, in this specid case we can evaluae | exactly,
without using the approximatio (20); the resut is

l(v;H)=€¥, p=a=0. (26)
As in the two-dimensionhcasé? it is possibe to derive auniform approximatim for a near

171 The situatian for small « is more complicated:? We shal not purste thes nonuniformities
here.

IV. AN EXPANSION METHOD

We shal evaluag the integrd over the hemispherel (v;H,), using suitabk expansios of v
and G in spherich polar coordinatesThus

u(x;a):exp{ik.x}=20 (2n+1) i" j,(kr) P,(cosdy),

wher j (X) = (3m/x)Y? J,. 1(X) is a spherich Bessé function,

co; =k-X=siné sina cosp+cosh cosy

ard P,, is a Legende polynomial Similarly,
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G(P,a)=G(y.x)= ;—:‘;0 (2n+1) jn(kp) ha(kr) Py(cost;)
for r>p, where
cosf,=y-x=sind sin® cog ¢—P)+cosh coMd,
ha(X)=h(x) = (3a/x) Y2 HY, (x) is a spherich Hanke function ard H(Y is a Hanke func-

tion. Hence

l(v;Hr>=|§O 520 (214+1)(25+1) i° ji(kp) Wis(kr) Ay,

where
Wis(w) = —iw?{js(w)h{ (w) = j&(w)h(w)} (27)

and
1 (= 2
A'S:ﬁf f P\(cos,) P(cosdy) sind do de.
-7J0

Note that W, is essentialf a Wronskian given by W, =1.
Let us evaluaé A;5. The addition theoren for Legende polynomiak gives

S
Py(cost;)= >, encTPT(cosd) PM(cosy) cosme,
m=0

|
Pi(cosf,)= > e,clPl(cosd) P](codd) cosn(p— D),
n=0
where P is an associatd Legende function, e,=1, €,,=2 for m=1, and
cl'=[(s—m)!]/[(s+m)!].

Hence integratirg over ¢, we obtain

S

Ais= D enclcMP"(co®d) PM(cosy) BT cosmd, (28)
m=0
where
w2 . 1
m— fo P"(cost) PT(cosd) sind do= fo P"(w) Pa'(w) du.

[Actually, the uppe limit on the summatia in Eq. (28) shoull be min{l,s}, but this is of no
consequergas P'=0 for m>n.] B[? has been evaluate by Hulme® It turns out that

22— )FSHIP (I + m+ HT(s+m+ )

BYI = , (29
Amzstmil ™ 2l—2s—1)(I1+s+m+1) I! 8!

22M(— 1) (1+m+ DT (s+m+ 3)

B _ , 30
2l+m+1,25+m 7.r(25_2|_:|_)(|—|—s—|—m+1) Il sl ( )

B'=[(21+1) ¢"]"* and B]2=0 if || —s| is a positive even integer.
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Now, returnirg to |, we see tha it can be expresseé in the form

l(w;H) =2 2 > enQl cosmd,

=0 s=0 m=0
where
Q=(214+1)(2s+1) i® j(kp) Ws(kr) ¢"cl' BT P"(co$d) P{(cosx).

Interchangig the summatios over s and m, we obtain

I(v;H,)=|Z0 mZ:O szm €mQM cosmd E: [2 > Q{‘Q}cosm(l).

But Q[i=0 for m>1, whence

©

l(v:H)= > €Ay, cosmd,
0

m=

where

oo o
:IZ Z I+ms+m

This shows tha | can be expresseé as a Fouria series in the azimuth4 coordinae of the obser-
vation point y, which is as expected.

A. A special case: p=0 (y=0)

The expressia for A, is complicated To gain sorre insight into its evaluation we stat with
the speci& cae of p=0. Then,only Qgs is not identically zerq whence

(wiH) = 2, Qo
=140 2, (4n+3)(=1)" Won1(Kr) Bgns1 Pansa(cos),

where we hawe usel BJy=Wgo=1 and B ,,=0; also

(=" T(n+3)
Bg,2n+l JP2n+1(,U~) dM—Z\/——Z

n+1)!
Given the definition (27), we define
S<x;a>:go (4n+3)(=1)" BY ays1 j2n+1(N) Pany1(cos) (31)
so that
l(v;H)=1+\ eMS+iS' +irn 1S}, (32

where we hawe simplified using ho(A) =€/ (i)).
Proceedig formally, we substitué the known asymptott approximation
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. 71 . 1
im(A)~N"" sin )\—Emw as\— oo, (33

into Eq. (31), giving S(\;a)=—C(a) N\~ ! cos\, where

C(a):n}::o (4n+3) Bg,m+1 Paont1(cosa).
Hence from Eq. (32),
[(v;H,)=1—-C(a) askr—w.
But C(«) is a known FourieLegendreexpansion:

( 1
1, 0<a<§77

1
Cla)=4 —1, §7T<a{<77,

\ 0, a=0, 5T

ard is definal by periodicity for othe values of «. Hencewe deducethat
I(v;H,)=0(1) askr—o, for p=0 and 0<a< 3,

which is correct but
I(v;H,)=1+0(1) askr—x, for p=0anda=03m,

which is incorrect This lag resut follows from C(0)=0, giving S(\;0)=0(\A 1) asA—x. In
fact, we have

“ (4n+3)I(n+3) 1—-cos\
3()\,0)—20m12n+1()\)— N (34

exactly This can be shown eithe by using a formula due to Gegenbauet? namely

2/

with y=— 3, or by an applicatio of the Mellin transfom with respetto A (the resultirg series
can be summei using the known formula for F(a,b;c;1) wher F is the Gaus hypergeometric
function; the sun can be inverted using the Mellin convolutian theoren).

The formd calculation abowe shows tha we canna expet to obtan the corred resut if we
simply repla@ the sphericd Bessé functiors by their large-argumenasymptott approximations,
at leag in the speci# case of grazirg (= 37) and normd (a=0) planewaves We examinethe
latter ca® next.

“ (2n+7) F(n+ )
2 _ Jans (M)

B. Another special case: a=0

When a=0, only thosetermswith m=0 contribute,giving

©

|(v;H,):|§ 2 2 21+1) i' by(kr) j,(kp) P,(co®),

where
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b.<x>:s§0 (2s+1) i Wig(\) B,

=1+N4h/(N) S(M)—h(N) STV}, (35

am):;() (2s+1)(—D)'ST1 B js(N),

s#l

ard we hawe usa Eq. (27). It remairs to evaluaé S(\), and thene b;(\) for large \. Before
doing this, let us conside the expectd final answer namey Egq. (25). From anothe formula due
to Gegenbauel® we have

7 _ _ 2(—=1)"2Py(0) jn(w), neven,
fo Jo(wsing) P,(cosd) singd do= 0. nodd,

whence

Jo(wsina>=n§0 (4n+1)(—1)" Ppn(0) jon(W) Pay(cOS).
Thus we are expectimg to find that
(—1'T(1+3)

Ja !

Now, conside S, ;. From Eq. (30) with m=0, we have

ba(A)=e™ Py (0)=€™ and by, ;=0. (36)

ra+32  (4n+1) T'(n+3)

2m | n=0(n+l+1)(n—l—%)n!12n

Sy+1(N)= (N). (37)

Using
[T(n+a))/[T(n+b)]~n?®? asn—oo, (39
we see that for large n, the terms in the series (37) behae like n=?j,,(\). Given that
|3,(\)|<1 for all red \ ard for all positive »,® we dedue tha the series (37) is absolutey and
uniformly convergentThus we can repla@ j,,(\) by its large-argumenasymptott approxima-
tion (33) to obtain
Sos1(N)~. N " Lsinh as N —oe,

where

T+HE @n+HT(n+dH (—1y

SOl =

7l 350 (n+1+1)(n—1-%) n!
isared constantSubstitutirg into Eq. (35), using h,(A\)~\"1(—i)"*! e'* as\—x, wefind that
bos1(N)=1+(—1). 4 +0(1) asA—x. (39

Finally, we evaluaé . 7, using a contour-integramethod Splitting into partid fractions the
series can be written as
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5 T(n+3) (—1)" i +3) (—1)"

n—I— 5 n!
Then conside integratirg the function I'(3— z) I'(2)/(1 — z+ 1) arourd alarge circular contour in
the complex z-plane I'(z) has simple poles at z=—n, n=0,1,2 ..., with reside (—1)"/n!.

Thus the residue at the poles of I'(z) and I'(3—2) give rise to the first and secom sums,
respectivelyin Eq. (40). The residie from the pole at z=1+1 is

“T(=3-DHTU+D=0+H U ri-n.
Combinirg Eq. (38) with the formula
I'(3+2) I'(3-2)=mseerz (42)

shows that the contribution from integrating arourd the large circular contou vanishe as the
circle expand to infinity. Hene the calculws of residus gives

A G-
N I
r'{+3) I+ 3

whene .7 =(—1)""1, using Eq. (41). Henee Eq, (39) gives by, ;(A\)—0 as A\ — o, as predicted
by Eq. (36).
Next, conside S,,. From Eq. (29) with m=0, we have

ri+3 < (4n+3) I'(n+ )

_ s (M), 42
== 0 (nl+1)(n—1+ o 2" 1) “3

The terms in this series decy liken™ 2 j,,, ;(\) asn—o, which is not fag enoudn to guarantee

uniform convergenceHowever we have
So(M)=S(N;0)=\"1(1—cos\)

from Eq. (34), so that

) s (M) +T(N)
N)= N+ N),
Sal( N So 21(
where
F(|+ Z (4n+3) T'(n+ ) 1 1 _
TZI( 2 J N 1 12n+1()\)’
27 11 =0 n! [(n+1+D)(—-1+ 3 (n+D)(n+ D)
this series is absolutey and uniformly convergentwhen@ T, (\)~. %\ ~cos\ as \— o, where
F(I 1 1 1 (="
E L(n+ %) - -
P = n+1 +1i n+l+1l o4 i o
is ared constant Substitutirg bad into Eq. (35), we find that
(-1'T(+3) (-1'Td+3
ba(N) = = et 1— ———————+(~1)' % +0(1) (43)

NI - NEST
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as A — . The first term on the right-hard side is in accod with the predictian (36). The nex three
terms sum to zerg as expected This can be shown by evaluatiry .%, using a contour-integral
methal (as for . 7)): use

3
F(E_Z) r2{(1-2—-z+1)"1.

This completa the prod for a=0 using an expansionmethod. It demonstrateghat the
expansio methal is much more complicatel to use (and more subtle due to nonunifom conver-
gene of one of the componehseries than an approab base on the methal of stationay phase.

V. ASYMPTOTIC BEHAVIOR OF /(u; H,)

When a plare wavwe is reflectel by a rough surfae S, we can use the angular-spectrum
representatio (13) for the reflectal field in z>0. Thus we have

I(U;Hr):I(upr;Hr)+I(uev;Hr)+|(ucon;Hr)-

For I (ugy;H,), with ug, defined by Eq. (14), we have
I(w;H,)=iB\ eiﬂf 9(0,¢) eF"? do dg,

where w is definal by Eq. (16), \=kr, B=— 3/,
F(0,¢)=[ucosp+ vsing]sind+icodd Vx’—1,

9(0,6)=[1—F(0,¢)] exp{—iky-X} sine,
and & is definad belov Eq. (22) with 6,=37. As k> 1, gradF+#0 in &, whencethe vector
f(8,4)=g(gradF)/|gradF|?
is well defined Then use of the identity
ge™ =(in) " Ydiv (e*Ff)— e div f},
toge(the; with the divergene theoren in &, shows tha | (w;H,)=0(1) as kr—».” Hene from
Eq. (14),

[(Ugy;H;)—0 asr—oo.

As # in Eqg. (15 is continuous we know tha u.,, satisfies the Sommerfedl radiation
condition?® It follows that

[(Ugon;H)—0 asr—oo.

Finally, conside | (uy;H,). If O0<a,< 37, the resuls of the previols sectiors are immedi-
ately applicable For a typicd grazing-wae componeh v, propagatig at sone angle 8, our
radiatian condition implies tha we conside | (v;H"), with m chos@ accordimg to Eq. (17). The
stationary-phasanalyss of Sec Il shows tha |(v;H")—0 asr—c. For the othe three values
of m, v will eithe be incoming through the correspondig H{", and so its contribution mug be
discarded or the contribution is negligible using the methal of stationay pha® again.

Thus in summary let us extra¢ the normd waves (a=0) from u,, and write

Updr,0,¢0)=A e'kreod 4 othea propagatig waves with 0< a < 37, (44

whetre the coefficiert Ay is unknown Then
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l(u;H,)~Aq €K 225(P) asr—oo, (45)
where

2o(P)=7o(p,0,®)=Jo(kp sin®). (46)
VI. ASYMPTOTIC BEHAVIOR OF I(u; T,)

The truncatel cylindricd surfae T, is definal by Eq. (18). A point ge T,, with position
vecta x, has cylindricd pola coordinats (r,¢,z). Then,for larger,

x—y|=r—psin® cog ¢—®),

whete the fixed point P has position vecta y and spherica polar coordinats (p,0,®) definedby
Eq (24). Hene asd/dn=4dldr on T,

G Gau B m Jdu ko SIn® ®
U—o—Go=_e"iku—— exp{—ikpsin® cog¢— D)},

whete B=— 3/ 7. Let
A —fo u iku| d
ar,d)= ar iku| dz,

whete the lower limit is s(r cosp, r sing). Then

I(u;T,)~%e”‘rﬁ Z(r,¢) exp{—ikpsin® cod ¢p—®)} dp asr—oo.

When is it true tha | (u;T,)—0 as r—o? One sufficiert condition is that
s—0 as r—ow, forall ¢,

this mears tha the rough surfae approachsthe flat plane z=0 at large distancesin all direc-
tions.
Anothe sufficiert condition is that

Ju
0—r—iku:o(1) asr—o, forall ¢ and s<z=0,

so that u satisfies aform of radiation condition in directiors parallé to z=0. In particular this will
be the cas if u comprise outgoirg cylindricd or spherich waves.
Next, conside a typicd plare wave v, definel by Eq. (12); thus let

v= ei kr sina cosp ei kz cosw with O< a< %ﬂ..

Then a Fourig expansio in ¢ leads to Fourier componentsinvolving J,(kr sine) and
J/ (kr sina). As J,(w)=0(w~?) as w—x», we dedue tha I(v;T,)—0 as r—=. This result
includes grazirg waves but not normd waves for which a=0. When =0, v=¢€'k¥* whence
dvldr=0 andtheintegrationoverz in £ is trivial. The resultis

m

I(v;Tr)~% e”“f (e’*s—1) exp{—ikpsin® cogp— )} do

1 T )
=5 e'krf e’k exp{—ikp sin® cog p— D)} dgp—e'k" Jy(kpsin®) asr—oo.

Thus in summary suppos tha for s<z=<0 ard large r,
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U:AO eikz‘l‘a’,
where the coefficiert A, is the sane asin Eq, (44) and U is sud tha 1(u;T,)—0 asr—o. Then
(U T ~Ag €K {7(r;P) = 7(P)}  asr—, (47)

wher 7/, is defina by Eq. (46) and
1 (= . o
W, P)=%(r;p,0,D)= P J e'ks exp{—ikp sin® cog ¢p— D)} do; (49

the dependeneon r comes from the exponem s=s(r cosp, r sing).

VIl. BOUNDARY INTEGRAL EQUATIONS

In Sec Il, we usal Greens theoren to obtan the integrd representation

2u(P)=fSr

when P e D, , the region boundel by the hemispheg H, , the truncate rough surfae S, , ard the
truncatel circular cylinder T, . Note tha the left-hard side of this equatio does not depem on'r,
so tha the right-hard side of the equatimn mug hawe alimit as r —oo. Before taking this limit, it
is instructive to conside a very simple example.

G IUjne
u(q) —(P,q)+
ang an

G(P,q); dSg+1(u;H)+1(u;Ty), (49

A. An example
Conside a plare wave normally incidert upon a flat surfae at z= —h. Thus
Unc=e " and u=A, €'** with Ay=e?".

Thisis the exad solution Let us see how this solution is reconstructe by the representatio (49).
For simplicity, we take P at the origin; this will permt all the integrak to be evaluate exactly
(without any asymptott approximations Thus from Eq. (26), we have

I(u;H)=Ag 't (50)
onS,, we hawe u=A, e ¥ gu/on=—iku,
G=BR, R+, §G/on=hR,%(ik—R,HG

ard R, = \/g2+ h2, whene the integrd over S, is

Lo d
[(u;S)=27A,B e—'khf e*Rolik+hR; Y(ik— Rgl)}%
0

(R
=-A, e*'k“f e'*ik+ht Y(ik—t~1)}dt
h
— _AO efikh [eikt+ htfl eik'[]tR:h

=2A,— A g'kR=h) (59)

l+h
R

where R=/r21+h2.

On T,, we hawe u=A, €'* and gu/dn= gu/ 9r =0, whence
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I(u;T,)=2 ABJO 154 et
u, =217 r e —| —
r 0 h ar R,

=—Ag[(1-2zR; ") ekRer20_

h\ .
1+ o e, (52)

= _Ao eikr+A0

wher R,= \/r2+ 2.
Adding Eqgs (50)—(52), we see that their sum is exacty 2A,, which is 2u(P) evaluatd at the
origin. Note that asr—o,

1(U;S,)~2Ag— A ek~
(U T~ —Ag e +A, e,

ard I(u;H,) does nat simplify further. Thus the bounday integrd over the truncatel rough
surfae does nat hawe alimit asr— . Moreover the integrd over the truncatel cylinder T, does
not hawe alimit asr —, ard it isnaot negligible Thisis a genuire three-dimensioraffect which
is not sea in the two-dimensionhcase?

B. Taking the limit: A new finite-part integral

Letting r — in Eq. (49), we obtain

JG OUjnc
2U(P)=f;; u(q) —(P.ag)+ G(P,q) dS;, PeD., (53
S Ny on
where D., is the unboundd region z>s,
j(; -dS= |im” <-dS+A, e %S] (54)
S r—o| JS

ard 7z is defina by Eq. (48). Note tha the ternms involving 77, in Eqs (45) ard (47) cancel.

The definition (54) is a nonstandat form of finite-pat integral It reduce to the standard
definition of a principal-valie integrd at infinity if the coefficiert Ay vanishesin othe words the
standad definition is only appropria¢ if the scatterd field does not include adiscree plane wave
propagatig up the z-axis For agenerarough surface we do nat know a priori whethe Ay=0 or
not.

We can expres A, in terms of the values of u(r,6,¢) on z=0 (#=3m). Thus write

o

1 _
u(r,—w,¢)= > uy(r) €.
2 n=—w
Hence as a plane wave propagatig along the z-axis is constam on planes of constah z, we have
Ao= | S JW Lo d
0= |mu0(r)—zrm wu r,iq-r,qb ¢.

r—o

However this formula is not useful as we do not know u on z=0. Wha we would like is a
similar formula, involving the bounday values of u on S.
Let us combire the identity

2 (r 2 (r
A0=—f Ug(o) o do+ —f [Ag—Ug(o)]o do
r2Jo r2Jo
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with an assumptia tha ug(r)=Ag+O(r %) asr—o, wheres >0. Then,the secondintegralis
0(1) asr—o, whence

2 (r
Ag=lim —2f Ug(o) o do

r—o 0

1 1 1
=—Ilim _ny U(O’,E’JT,(f)) o do do, (55

T ol

wher 7 isthe circular disk on z=0 with x2+ y2<r?2. Thisis anothe formula for A, in ternms of
u on z=0. However this formulainvolves u everywhee on &, , so we can relak it to an integral
ove S, using Greens theorem.

Conside the truncat@ circular cylinder V, with axis along the z-axis ard radius r, between
z=0 ard z=s. Thus one erd of V, is S, and the othe is the circular disk &, . Apply Green'’s
theoren in V, to u and sinkz, giving

J au au
kf u ds+f ru —(smkz)——smkz] ds—f — sinkz dS=0,
yr s | an an 70N

where T, , defina by Eq. (18), is the curved patt of V, on which x?>+y?=r?2. The third integrd is
O(r) as r—oo, as it is bounde by 27rMmax(), where M is a bound on |du/dr|. Hence,
comparig with Eq. (55), and making use of Eq. (6), we see that

Ao=lim. Z(r) wher () 1J ﬁ('k)+‘9u‘”°
=[im._2(r where . Z(r)= U —(SINKZ
0 o akrils | dn an

which is a formula for Aq in terms of the bounday values of u.
For the exampé&in Sec VII A, one can chedk that Eq. (56) does produe the corred value for
Ao.

sin kz] ds, (56)

C. A boundary integral equation for the scattered field

Letting P—pe Sin Eq. (53 gives

G (9Umc
U(p)=j£ u(q) —(p,q)+
S &nq an

G(p,q)| dSy, peS. (57)

This would be abounday integrd equatim for u on S if we knew Ag. Aq is definad by the
formula (56), which requires u(q) for qe S; but we can only find u(q) by solving Eq. (57).
Two possibe ways to proceel are as follows. First, one could assume that Ag=0. In tha case,
the integrd in Eqg. (57) becoms an ordinay principal-vale integrd at infinity. However the
integrd will diverge if it turns out that Ay# 0; see the exampe in Sec VII A,
Secondfrom Eq, (56), we could replae the constatn Ag by .4(r), wherer isthe radius of the
truncatel rouch surface This gives

u( >=f u()ﬁu- )+ 2 rp.g) | dS S (58)
p s q&nc| Pt — 'p.q ¢ PES,

where
G(r;P,Q)=G(P,Q)—(wkr?)~t % 2/(r:P) sinkz, (59
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Q=(x,y,z) ard 7 is definad by Eq. (48). Thus we hawe aplausibe bounday integrd equation
for u on S, . Note that in any numericé treatmentthe rough surfa@ would hawe to be truncated
to S, so our “plausible” integrd equatian seens to be optimd in sone senselt remairs to carry
out numericé experiments.

VIIl. CONCLUSION

In this pape we hawe considerd the three-dimensiorigproblem of the reflection of a plane
wawve by an infinite two-dimensionhrough surface definal by z=s(x,y) with —h=<s<0. We
hawe shown tha the derivation of a bounday integrd equatim for this problem akin to the
Helmholtz integrd equatia for scatterig by a boundel obstacleis by no mears straightforward.
In particular if the scatterd field includes a plane wave propagatig alorng the z-axis away from
the rouch surfae (“normal waves”), then the usud Helmholiz integrd equatia is nat valid: the
bounday integrd diverges We hawe offered a modified integrd equatian which reduce to the
standad Helmholtz integrd equatian when nhormd waves are absent.

The situatio just describé is unsatisfactoryeven though the mathematichdifficulty may be
overcome Indeed this difficulty is due entirely to the unphysicé problem posel at the outset:
plane-wave reflectian by an infinite rough surface Clearly, we can realize neithe a plare wave nor
an infinite rouch surface Moreover the mathematichdifficulty disappeas if we conside either
point-soure insonification or a finite patc of roughnes on an otherwi flat surface?

Severapapes hawe bee written in which a Helmholiz integrd equatian was usal to provide
“exact” or “benchmark’ numericd solutiors for plane-wae reflection by an infinite one-
dimension&rough surface the purpo being to validae various approximag theories:® We have
shown here tha the same integrd equation cannd be usal for two-dimensionk surfaces in
general unles one changs the problem as suggeste in the previows paragraph.

ACKNOWLEDGMENTS

This work was begun while P.A.M. was on sabbatichleawe at the Colorad Schod of Mines.
He is gratefu to the Departmeh of Mathematichand Compute Sciencs for its hospitality, and
acknowledgs receip of a Fulbright Scholarshp Grant.

1D. Colton and R. Kress Integral Equation Methods in Scattering Theory (Wiley, New York, 1983.

2J. A. DeSant ard P. A. Martin, “On the derivatim of bounday integrd equatiors for scatterily by an infinite
one-dimensiorlarough surface,” J. Acoust Soc Am. 102, 6777 (1997).

3Sec | A of Ref. 2.

4G. N. Watson A Treatise on the Theory of Bessel Functions (Cambridg Universiy Press Cambridge 1944, 2nd ed.

5P. C. Clemmow The Plane Wave Spectrum Representation of Electromagnetic Fields (PergamonOxford, 1966.

6J. A. DeSanb and P. A. Martin, “O n angular-spectm representatiomifor scatteriig by infinite rough surfaces;” Wave
Motion 24, 421-433 (1996.

N. Bleisteh and R. A. HandelsmanAsymptotic Expansions of Integrals (Dover, New York, 1986.

8Sec 84 of Ref 7.

°Eqs 42, 44, ard 46 in Sec 8.4 of Ref. 7.

10Eq, (8.4.46 of Ref. 7.

1Sec 9.6 of Ref. 7.

125 Exercie 9.15b) in Ref 7.

BA. Hulme, “Th e wave forces acting on a floating hemisphee undergoimy forced periodic oscillations,” J. Fluid Mech.
121, 443-463 (1982.

14g5ec 5.2 of Ref 4.

15Eq 2 on p. 379 of Ref. 4, with v=13 and y/= 3.

165ee p. 406 of Ref. 4.

See Sec 8.2 of Ref. 7 for details.,

18G. C. ShermanJ. J. Stamnesard E. Lalor, “Asymptotic approximatios to angular-spectma representations,J. Math.
Phys 17, 760-776 (1976.

193ee Ref. 2 for a discussio ard references.

Copyright ©2001. All Rights Reserved.



