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A plane acoustic wave is incident upon an infinite, rough, impenetrable surface S.
The aim is to find the scattered field by deriving a boundary integral equation over
S, using Green’s theorem and the free-space Green’s function. This requires careful
consideration of certain integrals over a large hemisphere of radius r; it is known
that these integrals vanish as r→` if the scattered field satisfies the Sommerfeld
radiation condition, but that is not the case here—reflected plane waves must be
present. It is shown that the well-known Helmholtz integral equation is not valid in
all circumstances. For example, it is not valid when the scattered field includes
plane waves propagating away from S along the axis of the hemisphere. In particu-
lar, it is not valid for the simplest possible problem of a plane wave at normal
incidence to an infinite flat plane. Some suggestions for modified integral equations
are discussed. © 1998 American Institute of Physics. @S0022-2488~98!01302-4#

I. INTRODUCTION

A bounded three-dimensional obstacle with a smooth surface S is surrounded by a compress-
ible fluid. A plane time-harmonic sound wave is incident on the obstacle; the problem is to
calculate the scattered field u. In order to have awell-posed boundary-value problem ~with exis-
tence and uniqueness!, one imposes the Sommerfeld radiation condition,

rS ]u

]r
2iku D→0 as r→`,  ~1!

uniformly in all directions. Here r is a spherical polar coordinate, k is the wave number, and the
time-dependence is e2ivt. Physically, the radiation condition ensures that the scattered waves
propagate outwards, away from the obstacle.

A well-known method for solving the above problem is to derive aboundary integral equation
for the boundary values of u on S. In the derivation, Green’s theorem is applied to u and a
fundamental solution G, in the region bounded internally by S and externally by Cr , a large
sphere of radius r. It turns out that the radiation condition implies that the integral

I~u;Cr![E
Cr

S u
]G

]r
2G

]u

]r D ds→0 as r→`,  ~2!

and so only boundary integrals over S remain. For more information, see Colton and Kress.1

Assume that S is a sound-hard surface ~Neumann condition!. Then, the method described
above leads to the following boundary integral equation:

u~p !2E
S
u~q !

]G

]nq
~p,q !dsq5E

S

]u inc

]nq

G~p,q !dsq , pPS, ~3!

JOURNAL OF MATHEMATICA L PHYSICS VOLUME 39, NUMBER 2 FEBRUARY 1998

8940022-2488/98/39(2)/894/19/$15.00 © 1998 American Institute of Physics

Copyright ©2001. All Rights Reserved.



here, u inc is the given incident wave. One can also derive an equation for the boundary values of
the total field u tot5u inc1u; this boundary integral equation is

u tot~p !2E
S
u tot~q !

]G

]nq
~p,q !dsq52u inc~p !, pPS. ~4!

We shall refer to Eqs. ~3! and ~4! as standard Helmholtz integral equations. Similar equations can
be derived for sound-soft surfaces (u tot50 on S).

Suppose now that the obstacle is unbounded. The prototypical problem is scattering ~reflec-
tion! of a plane wave by an infinite flat plane, S. As is well known, the incident wave is reflected
specularly as a single propagating plane wave. More generally, if S is an infinite rough surface, an
incident plane wave wil l be scattered into a spectrum of plane waves. For such problems, the
Sommerfeld radiation condition is definitely inappropriate as it is not satisfied by a plane wave.
Nevertheless, it is customary to proceed, assuming that the scattered field can be represented in
terms of plane waves, at least at some distance from S. Typically, this requires the discarding of
an integral such as ~2!, but with the largesphere Cr replaced by a large hemisphere Hr . This paper
began as an attempt to justify this step.

In a previous paper,2 we derived boundary integral equations of Helmholtz type for one-
dimensional rough surfaces. We found that the standard Helmholtz integral equations are valid,
except that the right-hand side of Eq. ~4! must be replaced by u inc(p) for grazing incidence.

It is perhaps surprising that an analysis of this kind has not been given before: most authors
have been content to write down an integral equation such as Eq. ~4!, prior to extensive numerical
computations. However, it turns out that the necessary analysis for scattering by a two-
dimensional rough surface is not straightforward and, moreover, it yields some surprises. For
example, the simplest problem, namely reflection of a plane wave at normal incidence upon a flat
surface, leads to divergent integrals: the standard Helmholtz integral equation ~3! is not valid for
this problem.

The paper is organized as follows. Section II is devoted to formulating the problem, with
some background on angular-spectrum representations and integral representations ~using G).
Green’s theorem is applied inside avolume whose closed boundary is made up of three pieces: the
large hemisphere Hr ; a large circular piece, Sr , of the rough surface; and a cylindrical surface Tr ,
joining Sr and Hr . Estimation of integrals over Hr is carried out in Secs. II I–V. Thus the method
of stationary phase for multiple integrals and an expansion method are used in Secs. II I and IV,
respectively, but only for a single plane wave. Results for I(u;Hr) are obtained in Sec. V. The
contribution from integrating over Tr is considered in Sec. VI . Unlike in two dimensions ~one-
dimensional rough surface!, this contribution may not be negligible; it is evaluated under addi-
tional, but reasonable, a priori assumptions on the form of the scattered field near S. This is a
weakness of the present analysis. Finally, boundary integral equations of the Helmholtz type are
derived in Sec. VII . Further work is needed to tighten up the analysis and to investigate the
numerical consequences.

II. FORMULATION

Consider the scattering of a plane wave by a two-dimensional rough surface, S, described by

z5s~x,y !, 2`,x,`, 2`,y,`

with 2h,s(x,y)<0 and some constant h>0. The acoustic medium occupies z.s and, for
definiteness, we assume that S is a smooth, sound-hard surface. Thus we can write the total field
as

u tot5u inc1u,

where u is the scattered field. The incident plane wave is

u inc~r,u,f !5exp$iki•x%, 0<u i<
1
2 p,  ~5!
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where ki5k(sinui ,0,2cosui), u i is the angle of incidence ~it is the angle between the direction of
propagation and the negative z-axis!,

x5r x̂5r~sinu cosf,sinu sinf,cosu !,

and (r,u,f) are sphericalpolar coordinates:x5r sinu cosf, y5r sinu sinf and z5r cosu. All
the fields u tot , u inc , and u satisfy the Helmholtz equation,

~¹2
1k2!u50

for z.s. The boundary condition is

]u tot

]n
50 on S,  ~6!

where]/]n denotesnormaldifferentiationout of the acousticmedium.

A. Reflection by a flat surface

It is instructive to consider the very simple problem of reflection by a flat surface, so that
s50. The textbook solution for the scattered field is

u~r,u,f !5exp$iks•x% for 0<u i,
1
2p, ~7!

where ks5k(sinui ,0,cosui). When u i5
1
2p ~‘‘grazing incidence’’!, we have u[0: the incident

wave satisfies the boundary condition on S.

So, for 0<u i,
1
2p,

u tot52 e ikxsinu i cos~kzcosu i!

solves the problem. But consider

u tot8 [u tot1ug ~8!

with

ug5V~b !e ik~xcosb1ysinb !,

where b and V(b) are arbitrary, with 2p,b<p. u tot8 also ‘‘solves’’ the problem, in that it
satisfies the Helmholtz equation and the boundary condition. Of course, we disallow this second
solution, unless V[0: but why? The answer is because of the radiation condition ~which we have
yet to specify!. For example, takeb50 andV(0)51, so thatug5e ikx; this gives an ‘‘outgoing’’
grazing wave at x51` but it is an ‘‘incoming’ ’ grazing wave at x52`, we must therefore
exclude it. Indeed, we must exclude all contributions ug , for any b andV.

A similar condition is imposed on the two-dimensional problem.3 However, the three-
dimensional problem has another feature, for we could consider replacing ug in Eq. ~8! by

1

2p
E

2p

p

V~b !e ik~xcosb1ysinb !db,

where V is a continuous function; but, as ug has been excluded, we must also exclude all linear
combinations of such plane grazing waves. In particular, by taking V(b)5(2i)ne inb, we see that
we must exclude the cylindrical standing waves

Jn~kR !e inf, ~9!

where Jn is a Bessel function,4 R5r sinu, and (R,f,z) are cylindrical polar coordinatesof the
point at x. On the other hand, the exact scattered field, given by Eq. ~7!, when evaluated on any
plane z5constant, has an azimuthal Fourier component proportional to
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Jn~k iR !e inf, ~10!

where k i5k sinui,k. Thus if one wants to formulate a radiation condition, mathematically, it must
be such that fields ~9! are excluded but fields ~10! are permitted.

This discussion suggests that the specification of a mathematical radiation condition for the
present class of problems ~plane-wave scattering by an infinite two-dimensional rough surface!
wil l not be straightforward. However, the physical purpose of a radiation condition is clear: it is to
exclude all ‘‘incoming’ ’ waves apart from the incident wave. We shall return to radiation condi-
tions in Sec. II B.

B. Angular-spectrum representations

For any rough surface S, the scattered field in the half-space z.0 may be written using an
angular-spectrum representation,

u~x,y ,z !5E
2`

` E
2`

`

F~m,n !e ik~mx1ny1mz !
dm dn

m~k !

5E
0

p/2E
2p

p

A~a,b !v~r,u,f;a,b !da db1evanescentterms. ~11!

Here F is the spectral amplitude, A(a,b)5F(sina cosb, sina sinb), k5Am2
1n2, and

m~k !5HA12k2, 0<k,1,

iAk2
21, k.1,

the function v is defined by

v~r,u,f;a,b !5exp$ik•x%, 0<a<
1

2
p, ubu<p, ~12!

where

k5kk̂5k~sina cosb,sina sinb,cosa !.

The integrals are superpositions of plane waves; they are propagating, homogeneous plane waves
when 0<k,1, andtheyareevanescent,inhomogeneousplanewaveswhenk.1. In Eq. ~11!, we
see the propagating plane waves explicitly: they propagate in the direction of k̂, with an ~un-
known! complex amplitude, A(a,b); the ‘‘evanescentterms’’ decayexponentiallywith z. For
more information on angular-spectrum representations, see Clemmow5 and DeSanto and Martin.6

In general, the spectral amplitude must be considered as a generalized function. Thus it is
convenient to extract a continuous component from F, writing the scattered field as

u5upr1uev1ucon, ~13!

where

upr~r,u,f !5 (
n50

N

Anv~r,u,f;an ,bn!,

uev~r,u,f !5 (
m51

M

Bmw~r,u,f;mm ,nm!, ~14!

ucon~x,y ,z !5E
2`

` E
2`

`

C ~m,n ! e ik~mx1ny1mz !
dm dn

m~k !
, ~15!
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w~r,u,f;m,n !5exp$ikr sinu @m cosf1n sinf#2kr cosu Ak2
21%, ~16!

and k5Am2
1n2

.1 in Eq. ~16!. The first term in Eq. ~13! is a sum of propagating waves; the
coefficients An and the angles,an andbn , are unknown in general. The second term in Eq. ~13!
is a sum of evanescent waves; Bm , mm , andnm are unknown in general. The third term in Eq.
~13! is a continuous spectrum of plane waves; the unknown function C is continuous. See Sec. V
for further comments.

Let us now return to the radiation condition. Having chosen an origin O, arbitrarily, we
consider a large hemisphere Hr , with radius r and center O. We then require that all propagating
plane-wave components v(r,u,f;an ,bn) in u propagate outwards through Hr , away from O.
This is almost built into the decomposition ~13!: we have to be careful with grazing waves

@an5
1
2p; see the discussion following Eq. ~8!#. A simple way to impose our radiation condition

is to split the half-space z.0 and the hemisphere Hr into four parts. Thus with

Hr
m

5H ~r,u,f !:0<u<
1

2
p,

1

2
~m23!p<f,

1

2
~m22!pJ , m51,2,3,4,

being the surfaces of four octants of a sphere, we require the following conditions for the regions
specified:

m51: in x,0, y<0, use 2p<bn,2
1
2p,

m52: in x>0, y,0, use 2
1
2p<bn,0,

m53: in x.0, y>0, use0<bn,
1
2p,

m54: in x<0, y.0, use 1
2p<bn,p.

~17!

This partitioning makes it easy to ensure that only plane waves propagating out through Hr
m are

included. This is the form of radiation condition used to derive boundary integral equations.

C. Boundary integral equations

One way to determine the scattered field is to derive a boundary integral equation over the
rough surface S. An appropriate fundamental solution is the free-space Green’s function

G~P,Q !5G~y,x!5

21

2p

exp$ikux2yu%
ux2yu

,

where x and y are the position vectors of Q and P, respectively, with respect to the origin O.
Apply Green’s theorem to u and G in the region Dr with boundary]Dr5HrøSrøTr , where Hr

is a large hemisphere Hr of radius r and center O,

Sr5$~x,y ,z !:z5s~x,y !, 0<x2
1y2

,r2%

is a truncated rough surface, and

Tr5$~x,y ,z !:x2
1y2

5r2, s~x,y !<z<0% ~18!

is the surface of a truncated circular cylinder joining Hr and Sr . The result is

2u~P !5E
]Dr

H u~q !
]G

]nq

~P,q !2

]u

]n
G~P,q !J dSq ,

where PPDr , qP]Dr , and ]/]nq denotes normal differentiation at q. Use of the boundary
condition ~6! yields
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2u~P !5E
Sr
H u~q !

]G

]nq

~P,q !1

]u inc

]n
G~P,q !J dSq1I~u;Hr!1I~u;Tr!, ~19!

where

I~u;S !5E
S
H u~q !

]G

]nq

~P,q !2

]u

]n
G~P,q !J dSq

and normal differentiation is taken in a direction away from the origin @so that]/]n5]/]r on Hr ,
consistent with Eq. ~2!#.

The next step is to estimate I(u;Hr) and I(u;Tr) for large r. Before estimating I(u;Hr), using
Eq. ~13!, we consider a single propagating plane-wave component in Eq. ~13!. Thus we shall
evaluate I(v;Hr) as r→`, where v is defined by Eq. ~12!. In fact, as
v(r,u,f;a,b)5v(r,u,f2b;a,0), we canassumewithout lossof generalitythatb50; we write

v~r,u,f;a,0!5v~r,u,f;a !5v~x;a !, 0<a<
1

2
p.

Indeed, we shall evaluate the limi t using two different methods; these are the method of stationary
phase ~Sec. III ! and an expansion method ~Sec. IV !. The reasons for this twofold evaluation are ~i!
the results are surprising, and ~ii ! the expansion method is natural but it is complicated and it leads
to some subtle nonuniform behavior. We shall discuss the evaluation of I(u;Hr) itself for large r
in Sec. V. We then consider the contribution from I(u;Tr) to Eq. ~19! in Sec. VI . Finally, we will
derive boundary integral equations from Eq. ~19! in Sec. VII.

III. THE METHOD OF STATIONARY PHASE

We use the method of stationary phase7 to estimate I(v;Hr). It turns out that there are three
cases, depending on the anglea.

We are interested in large values of r5uxu, for fixed y and k. We have

G~P,q !.~B/r ! exp$ik~r2y• x̂!%, ~20!

where B52
1
2/p. Hencefor larger,

v

]G

]r
2G

]v

]r
.ik

B

r
~12k̂• x̂! exp$ikr~11k̂• x̂!% exp$2iky• x̂%

and then

I~v;Hr!.iB e ikr L~kr !,

where

L~l !5lE
D

g~u,f ! e ilF~u,f ! du df, ~21!

g~u,f !5~12k̂• x̂! exp$2iky• x̂% sinu, ~22!

F~u,f !5k̂• x̂ and D5$~u,f !:0<u<u0,p,2p<f<p%

is the rectangular domain of integration; this corresponds to integrating over a spherical cap

subtending an angle of 2u0 at the origin, for the hemisphere Hr , we setu05
1
2p.

We now examine three cases in turn. These area50, 0,a,
1
2p, anda5

1
2p.
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A. The method of stationary phase: a50

Consider the special casea50, correspondingto a plane wave v propagatingalong the
z-axis. Then we have F(u,f)5cosu, which meansthat theonly dependenceon f is throughy• x̂:

L~l !5lE
0

u0
~12cosu ! b~u;y! e ilcosu sinu du, ~23!

where

b~u;y!5E
2p

p

exp$2iky• x̂% df.

Introducing spherical polar coordinates for y,

y5r ŷ5r~sinQ cosF,sinQ sinF,cosQ !, ~24!

we can integrate over f to obtain

b~u;y!52p e2ikrcosu cosQ J0~kr sinu sinQ !.

Now, the integral ~23! can be estimated for large l using the ~one-dimensional! method of
stationary phase. The only stationary-phase point is at u50; astheintegrandvanishesat u50, we
deduce that L(l)5O(1) as l→`. In fact, an integration by parts shows that

L~l !;i~12cosu0! b~u0 ;y! e ilcosu0 as l→`,

in particular, for the hemisphere (u05
1
2p), we obtain

I~v;Hr!5e ikr J0~kr sinQ !1O~~kr !21/2! as kr→`, for a50. ~25!

B. The method of stationary phase: 0<a<
1
2p

Return to the integral L(l), defined by Eq. ~21!. We estimate L(l) for large l, using the
method of stationary phase for two-dimensional integrals.8 Thus we look for stationary-phase
points c5(u,f)PD at which gradF50; such points may be in the interior of D or on the
boundary,]D . Eachc contributesa term to L(l) proportionalto

g~c! e ilF~c!,

the next term being O(l21).9 In general,]D contributestermsof O(l21/2), whereas corners of
]D contribute terms of O(l21); all these contributions are smaller than those from stationary-
phase points.

We have

F~u,f !5sinu cosf sina1cosu cosa.

Elementary calculations show that grad F50 at seven points cj ( j51,2, . . . ,7) in the range
0<u<p, ufu<p ~which is larger thanD); seeTableI. Substitutinginto Eq. ~22!, we seethat

g~c1!5g~c2!5g~c3!5g~c4!5g~c5!50

TABLE I. Stationary-phase points for L(l).

c1 c2 c3 c4 c5 c6 c7

u  0 0 p p a p2a p2a
f 1

2p 2
1
2p

1
2p 2

1
2p 0 p 2p
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and

g~c6!5g~c7!52 sina exp$ik•y%.

So, if we integrate over a region D that does not include c6 and c7, then L(l)5o(1) as l→`.
This wil l be the case if

a,u0,p2a,

in particular, for the hemisphere, we obtain

I~v;Hr!5O~~kr !21/2! as kr→`, for 0,a,
1
2p.

C. The method of stationary phase: a5
1
2p

For the hemisphere, with a5u05
1
2p, we find that c6 and c7 are on ]D . Their contributioncan

be found;10 the result is

I~v;Hr!52 exp$ik•y%1O~~kr !21/2! as kr→`, for a5
1
2p.

D. Summary

The axis of symmetry of the hemisphere Hr is the z-axis. We have considered plane waves v

propagating out of the hemisphere, at an anglea to the z-axis.We haveseenthat I(v;Hr)→0 as

r→`, for 0,a,
1
2p. For a5

1
2p ~‘‘grazing waves,’’ with respect to the plane z50),

I(v;Hr)→2 exp$ik•y%, a finite quantity, as r→`. For a50 ~‘‘normal waves,’’ with respectto
z50), I(v;Hr);e ikr J0(kr sinQ), which meansthat I(v;Hr) does not have alimi t ~in this case!
as r→`. This unpleasant result can be verified directly whenr50; in this specialcase,we have

L~l !52plE
0

p/2

~12cosu ! e ilcosu sinu du

52pi$12il21~12e il!%

exactly, after an integration by parts. In fact, in this special case, we can evaluate I exactly,
without using the approximation ~20!; the result is

I~v;Hr!5e ikr, r5a50. ~26!

As in the two-dimensional case,2 it is possible to derive auniform approximation for a near
1
2p.11 The situation for smalla is morecomplicated.12 We shall not pursue these nonuniformities
here.

IV. AN EXPANSION METHOD

We shall evaluate the integral over the hemisphere, I(v;Hr), using suitable expansions of v

and G in spherical polar coordinates. Thus

v~x;a !5exp$ik•x%5 (
n50

`

~2n11! in jn~kr ! Pn~cosu1!,

where jn(x)5( 1
2p/x)1/2 Jn11/2(x) is a spherical Bessel function,

cosu15k̂• x̂5sinu sina cosf1cosu cosa

and Pn is a Legendre polynomial. Similarly,
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G~P,q !5G~y,x!5

2ik

2p (
n50

`

~2n11! jn~kr ! hn~kr ! Pn~cosu2!

for r.r, where

cosu25 ŷ• x̂5sinu sinQ cos~f2F !1cosu cosQ,

hn(x)[hn
(1)(x)5( 1

2p/x)1/2 Hn11/2
(1) (x) is a spherical Hankel function and Hn

(1) is a Hankel func-
tion. Hence

I~v;Hr!5(
l50

`

(
s50

`

~2l11!~2s11! is j l~kr ! W ls~kr ! A ls ,

where

W ls~w !52iw2$ j s~w !h l8~w !2 j s8~w !h l~w !%  ~27!

and

A ls5
1

2p
E

2p

p E
0

p/2

P l~cosu2! Ps~cosu1! sinu du df.

Note that W ll is essentially a Wronskian, given by W ll51.
Let us evaluate A ls . The addition theorem for Legendre polynomials gives

Ps~cosu1!5 (
m50

s

emcs
mPs

m~cosu ! Ps
m~cosa ! cosmf,

P l~cosu2!5 (
n50

l

enc l
nP l

n~cosu ! P l
n~cosQ ! cosn~f2F !,

where Pn
m is an associated Legendre function, e051, em52 for m>1, and

cs
m

5@~s2m !! #/@~s1m !! #.

Hence, integrating over f, we obtain

A ls5 (
m50

s

emc l
mcs

mP l
m~cosQ ! Ps

m~cosa ! B ls
m cosmF, ~28!

where

B ls
m

5E
0

p/2

P l
m~cosu ! Ps

m~cosu ! sinu du5E
0

1

P l
m~m ! Ps

m~m ! dm.

@Actually, the upper limi t on the summation in Eq. ~28! should be min$l,s%, but this is of no
consequence as Pn

m[0 for m.n.# B ls
m has been evaluated by Hulme.13 It turns out that

B2l1m,2s1m11
m

5

22m~21! l1s11G~ l1m1
1
2!G~s1m1

3
2!

p~2l22s21!~ l1s1m11! l! s!
, ~29!

B2l1m11,2s1m
m

5

22m~21! l1s11G~ l1m1
3
2!G~s1m1

1
2!

p~2s22l21!~ l1s1m11! l! s!
, ~30!

B ll
m

5@(2l11) c l
m#21 and B ls

m
50 if ul2su is a positive even integer.
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Now, returning to I, we see that it can be expressed in the form

I~v;Hr!5(
l50

`

(
s50

`

(
m50

s

emQ ls
m cosmF,

where

Q ls
m

5~2l11!~2s11! is j l~kr ! W ls~kr ! c l
mcs

m B ls
m P l

m~cosQ ! Ps
m~cosa !.

Interchanging the summations over s and m, we obtain

I~v;Hr!5(
l50

`

(
m50

`

(
s5m

`

emQ ls
m cosmF5 (

m50

`

emH (
l50

`

(
s5m

`

Q ls
mJ cosmF.

But Q ls
m[0 for m.l, whence

I~v;Hr!5 (
m50

`

emLm cosmF,

where

Lm5(
l50

`

(
s50

`

Q l1m,s1m
m .

This shows that I can be expressed as a Fourier series in the azimuthal coordinate of the obser-
vation point y, which is as expected.

A. A special case: r50 „y50…

The expression for Lm is complicated. To gain some insight into its evaluation, we start with
the special case of r50. Then,only Q0s

0 is not identically zero, whence

I~v;Hr!5(
s50

`

Q0s
0

511i (
n50

`

~4n13!~21!n W0,2n11~kr ! B0,2n11
0 P2n11~cosa !,

where we have used B00
0

5W0051 and B0,2n
0

50; also

B0,2n11
0

5E
0

1

P2n11~m ! dm5

~21!n G~n1
1
2!

2Ap ~n11!!
.

Given the definition ~27!, we define

S~l;a !5 (
n50

`

~4n13!~21!n B0,2n11
0 j2n11~l ! P2n11~cosa ! ~31!

so that

I~v;Hr!511l e il$S1iS81il21S%, ~32!

where we have simplified using h0(l)5e il/(il).
Proceeding formally, we substitute the known asymptotic approximation
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jm~l !;l21 sinS l2

1

2
mp D as l→`, ~33!

into Eq. ~31!, giving S(l;a).2C(a) l21 cosl, where

C~a !5 (
n50

`

~4n13! B0,2n11
0 P2n11~cosa !.

Hence, from Eq. ~32!,

I~v;Hr!.12C~a ! askr→`.

But C(a) is a known Fourier–Legendreexpansion:

C~a !55
1, 0,a,

1

2
p,

21,
1

2
p,a,p,

0, a50,
1

2
p,p,

and is defined by periodicity for other values of a. Hencewe deducethat

I~v;Hr!5o~1! as kr→`, for r50 and 0,a,
1
2p,

which is correct, but

I~v;Hr!511o~1! askr→`, for r50 anda50,1
2p,

which is incorrect. This last result follows from C(0)50, giving S(l;0)5o(l21) as l→`. In
fact, we have

S~l;0!5 (
n50

`
~4n13!G~n1

1
2!

2Ap ~n11!!
j2n11~l !5

12cosl

l
, ~34!

exactly. This can be shown either by using a formula due to Gegenbauer,14 namely

S 1

2
l D g

5 (
n50

`
~2n1g ! G~n1g !

n!
J2n1g~l !

with g52
1
2, or by an application of the Mellin transform with respect to l ~the resulting series

can be summed using the known formula for F(a,b;c;1) where F is the Gauss hypergeometric
function; the sum can be inverted using the Mellin convolution theorem!.

The formal calculation above shows that we cannot expect to obtain the correct result if we
simply replace the spherical Bessel functions by their large-argument asymptotic approximations,

at least in the special cases of grazing (a5
1
2p) and normal (a50) planewaves.We examinethe

latter case next.

B. Another special case: a50

Whena50, only thosetermswith m50 contribute,giving

I~v;Hr!5(
l50

`

(
s50

`

Q ls
0

5(
l50

`

~2l11! i l b l~kr ! j l~kr ! P l~cosQ !,

where
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b l~l !5(
s50

`

~2s11! is2l W ls~l ! B ls
0

511l2$h l8~l ! S l~l !2h l~l ! S l8~l !%, ~35!

S l~l !5(
s50
sÞl

`

~2s11!~2i ! l2s11 B ls
0 j s~l !,

and we have used Eq. ~27!. It remains to evaluate S l(l), and thence b l(l) for large l. Before
doing this, let us consider the expected final answer, namely Eq. ~25!. From another formula due
to Gegenbauer,15 we have

E
0

p

J0~w sinu ! Pn~cosu ! sinu du5H 2 ~21!n/2 Pn~0! jn~w !, n even,

0, n odd,

whence

J0~w sinu !5 (
n50

`

~4n11!~21!n P2n~0! j2n~w ! P2n~cosu !.

Thus we are expecting to find that

b2l~l !5e il P2l~0!5e il
~21! l G~ l1 1

2!

Ap l!
and b2l1150. ~36!

Now, consider S2l11. From Eq. ~30! with m50, we have

S2l11~l !5

G~ l1 3
2!

2p l! (
n50

`
~4n11! G~n1

1
2!

~n1l11!~n2l2 1
2!n!

j2n~l !. ~37!

Using

@G~n1a !#/@G~n1b !#;na2b as n→`, ~38!

we see that, for large n, the terms in the series ~37! behave like n23/2 j2n(l). Given that
uJn(l)u<1 for all real l and for all positiven,16 we deduce that the series ~37! is absolutely and
uniformly convergent. Thus we can replace j2n(l) by its large-argument asymptotic approxima-
tion ~33! to obtain

S2l11~l !;All
21sinl as l→`,

where

Al5
G~ l1 3

2!

p l! (
n50

`
~2n1

1
2! G~n1

1
2!

~n1l11!~n2l2 1
2!

~21!n

n!

is a real constant. Substituting into Eq. ~35!, using hn(l);l21(2i)n11 e il as l→`, we find that

b2l11~l !511~21! l
Al1o~1! as l→`. ~39!

Finally, we evaluate Al using a contour-integral method. Splitting into partial fractions, the
series can be written as
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(
n50

`
G~n1

1
2!

n1l11

~21!n

n!
1 (

n50

`
G~n1

1
2!

n2l2 1
2

~21!n

n!
. ~40!

Then, consider integrating the function G( 1
22z) G(z)/(l2z11) around a large circular contour in

the complex z-plane. G(z) has simple poles at z52n, n50,1,2, . . . , with residue (21)n/n!.

Thus the residues at the poles of G(z) and G( 1
22z) give rise to the first and second sums,

respectively, in Eq. ~40!. The residue from the pole at z5l11 is

2G~2
1
2 2l ! G~ l11!5~ l1 1

2!
21l! G~ 1

2 2l !.

Combining Eq. ~38! with the formula

G~ 1
2 1z ! G~ 1

22z !5p secpz ~41!

shows that the contribution from integrating around the large circular contour vanishes as the
circle expands to infinity. Hence the calculus of residues gives

pl!

G~ l1 3
2!

Al1
l! G~ 1

2 2l !

l1 1
2

50

whence Al5(21)l11, using Eq. ~41!. Hence Eq. ~39! gives b2l11(l)→0 as l→`, as predicted
by Eq. ~36!.

Next, consider S2l . From Eq. ~29! with m50, we have

S2l~l !5

G~ l1 1
2!

2p l!
(
n50

`
~4n13! G~n1

3
2!

~n1l11!~n2l1 1
2! n!

j2n11~l !. ~42!

The terms in this series decay like n21/2 j2n11(l) as n→`, which is not fast enough to guarantee
uniform convergence. However, we have

S0~l !5S~l;0!5l21~12cosl !

from Eq. ~34!, so that

S2l~l !5

G~ l1 1
2!

Ap l!
S0~l !1T2l~l !,

where

T2l~l !5

G~ l1 1
2!

2p l!
(
n50

`
~4n13! G~n1

3
2!

n! H 1

~n1l11!~n2l1 1
2!

2

1

~n11!~n1
1
2!
J j2n11~l !,

this series is absolutely and uniformly convergent, whence T2l(l);B ll
21cosl as l→`, where

B l5
G~ l1 1

2!

p l!
(
n50

`

G~n1
3
2!H 1

n11
1

1

n1
1
2

2

1

n1l11
2

1

n2l1 1
2
J ~21!n

n!

is a real constant. Substituting back into Eq. ~35!, we find that

b2l~l !5

~21! l G~ l1 1
2!

Ap l!
e il

112

~21! l G~ l1 1
2!

Ap l!
1~21! l

B l1o~1! ~43!
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as l→`. The first term on the right-hand side is in accord with the prediction ~36!. The next three
terms sum to zero, as expected. This can be shown by evaluating B l using a contour-integral
method ~as for Al): use

GS 3

2
2z D G~z !$~12z !21

2~ l2z11!21%.

This completes the proof for a50 using an expansionmethod. It demonstratesthat the
expansion method is much more complicated to use ~and more subtle, due to nonuniform conver-
gence of one of the component series! than an approach based on the method of stationary phase.

V. ASYMPTOTIC BEHAVIOR OF I„u;H r…

When a plane wave is reflected by a rough surface S, we can use the angular-spectrum
representation ~13! for the reflected field in z.0. Thus we have

I~u;Hr!5I~upr ;Hr!1I~uev;Hr!1I~ucon;Hr!.

For I(uev;Hr), with uev defined by Eq. ~14!, we have

I~w;Hr!.iBl e ilE
D

g~u,f ! e ilF~u,f ! du df,

where w is defined by Eq. ~16!, l5kr, B52
1
2/p,

F~u,f !5@m cosf1n sinf#sinu1i cosu Ak2
21,

g~u,f !5@12F~u,f !# exp$2iky• x̂% sinu,

and D is defined below Eq. ~22! with u05
1
2p. As k.1, gradFÞ0 in D , whencethe vector

f~u,f !5g~gradF !/ugradFu2

is well defined. Then, use of the identity

ge ilF
5~ il !21$div ~e ilFf!2e ilFdiv f%,

together with the divergence theorem in D , shows that I(w;Hr)5o(1) as kr→`.17 Hence from
Eq. ~14!,

I~uev;Hr!→0 as r→`.

As C in Eq. ~15! is continuous, we know that ucon satisfies the Sommerfeld radiation
condition.18 It follows that

I~ucon;Hr!→0 as r→`.

Finally, consider I(upr ;Hr). If 0<an,
1
2p, the results of the previous sections are immedi-

ately applicable. For a typical grazing-wave component v, propagating at some angle b, our
radiation condition implies that we consider I(v;Hr

m), with m chosen according to Eq. ~17!. The
stationary-phase analysis of Sec. II I shows that I(v;Hr

m)→0 as r→`. For the other three values
of m, v wil l either be incoming through the corresponding Hr

m , and so its contribution must be
discarded; or the contribution is negligible, using the method of stationary phase again.

Thus, in summary, let us extract the normal waves (a50) from upr , and write

upr~r,u,f !5A0 e ikrcosu
1other propagating waves with 0,a,

1
2p, ~44!

where the coefficient A0 is unknown. Then
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I~u;Hr!;A0 e ikr
U0~P !  as r→`, ~45!

where

U0~P ![U0~r,Q,F !5J0~kr sinQ !. ~46!

VI. ASYMPTOTIC BEHAVIOR OF I„u;T r…

The truncated cylindrical surface Tr is defined by Eq. ~18!. A point qPTr , with position
vector x, has cylindrical polar coordinates (r,f,z). Then,for larger,

ux2yu.r2r sinQ cos~f2F !,

where the fixed point P has position vector y and spherical polar coordinates (r,Q,F) definedby
Eq. ~24!. Hence as]/]n5]/]r on Tr ,

u
]G

]n
2G

]u

]n
.

B

r
e ikrS iku2

]u

]r D exp$2ikr sinQ cos~f2F !%,

where B52
1
2/p. Let

E~r,f !5E
s

0S ]u

]r
2iku D dz,

where the lower limi t is s(r cosf, r sinf). Then

I~u;Tr!;
1

2p
e ikrE

2p

p

E~r,f ! exp$2ikr sinQ cos~f2F !% df asr→`.

When is it true that I(u;Tr)→0 as r→`? One sufficient condition is that

s→0 as r→`, for all f,

this means that the rough surface approaches the flat plane z50 at large distances, in all direc-
tions.

Another sufficient condition is that

]u

]r
2iku5o~1! as r→`, for all f and s<z<0,

so that u satisfies a form of radiation condition in directions parallel to z50. In particular, this will
be the case if u comprises outgoing cylindrical or spherical waves.

Next, consider a typical plane wave v, defined by Eq. ~12!; thus let

v5e ikr sina cosf e ikz cosa with 0,a< 1
2p.

Then, a Fourier expansion in f leads to Fourier componentsinvolving Jn(kr sina) and
Jn8(kr sina). As Jn(w)5O(w21/2) as w→`, we deduce that I(v;Tr)→0 as r→`. This result
includes grazing waves, but not normal waves for which a50. When a50, v5e ikz whence
]v/]r50 andthe integrationover z in E is trivial. The result is

I~v;Tr!;
1

2p
e ikrE

2p

p

~e iks
21! exp$2ikr sinQ cos~f2F !% df

5

1

2p
e ikrE

2p

p

e iks exp$2ikr sinQ cos~f2F !% df2e ikr J0~kr sinQ ! asr→`.

Thus, in summary, suppose that for s<z<0 and large r,
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u5A0 e ikz
1 ũ ,

where the coefficient A0 is the same as in Eq. ~44! and ũ is such that I( ũ ;Tr)→0 as r→`. Then

I~u;Tr!;A0 e ikr$Us~r;P !2U0~P !%  as r→`, ~47!

where U0 is defined by Eq. ~46! and

Us~r;P ![Us~r;r,Q,F !5

1

2p
E

2p

p

e iks exp$2ikr sinQ cos~f2F !% df; ~48!

the dependence on r comes from the exponent s5s(r cosf, r sinf).

VII. BOUNDARY INTEGRAL EQUATIONS

In Sec. II , we used Green’s theorem to obtain the integral representation

2u~P !5E
Sr
H u~q !

]G

]nq

~P,q !1

]u inc

]n
G~P,q !J dSq1I~u;Hr!1I~u;Tr!, ~49!

when PPDr , the region bounded by the hemisphere Hr , the truncated rough surface Sr , and the
truncated circular cylinder Tr . Note that the left-hand side of this equation does not depend on r,
so that the right-hand side of the equation must have alimi t as r→`. Before taking this limit , it
is instructive to consider a very simple example.

A. An example

Consider a plane wave normally incident upon a flat surface at z52h. Thus

u inc5e2ikz and u5A0 e ikz with A05e2ikh.

This is the exact solution. Let us see how this solution is reconstructed by the representation ~49!.
For simplicity, we take P at the origin; this wil l permit all the integrals to be evaluated exactly
~without any asymptotic approximations!. Thus, from Eq. ~26!, we have

I~u;Hr!5A0 e ikr. ~50!

On Sr , we have u5A0 e2ikh, ]u/]n52iku,

G5BRs
21e ikRs, ]G/]n5hRs

22~ ik2Rs
21!G

and Rs5As2
1h2, whence the integral over Sr is

I~u;Sr!52pA0B e2ikhE
0

r

e ikRs$ik1hRs
21~ ik2Rs

21!%
sds

Rs

52A0 e2ikhE
h

R

e ikt$ik1ht21~ ik2t21!%dt

52A0 e2ikh @e ikt
1ht21 e ikt# t5h

R

52A02A0S 11

h

R D e ik~R2h !, ~51!

where R5Ar2
1h2.

On Tr , we have u5A0 e ikz and]u/]n5]u/]r50, whence
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I~u;Tr!52pA0BrE
2h

0

e ikz
]

]rS e ikRz

Rz
D dz

52A0 @~12zRz
21! e ik~Rz1z !#z52h

0

52A0 e ikr
1A0S 11

h

R D e ik~R2h !, ~52!

where Rz5Ar2
1z2.

Adding Eqs. ~50!–~52!, we see that their sum is exactly 2A0, which is 2u(P) evaluated at the
origin. Note that, as r→`,

I~u;Sr!;2A02A0 e ik~r2h !,

I~u;Tr!;2A0 e ikr
1A0 e ik~r2h !,

and I(u;Hr) does not simplify further. Thus the boundary integral over the truncated rough
surface does not have alimi t as r→`. Moreover, the integral over the truncated cylinder Tr does
not have alimi t as r→`, and it is not negligible. This is a genuine three-dimensional effect, which
is not seen in the two-dimensional case.2

B. Taking the limit: A new finite-part integral

Letting r→` in Eq. ~49!, we obtain

2u~P !5E
S

` H u~q !
]G

]nq

~P,q !1

]u inc

]n
G~P,q !J dSq , PPD` , ~53!

where D` is the unbounded region z.s,

E
S

` •••dS5 lim
r→`

H E
Sr

•••dS1A0 e ikr
UsJ ~54!

and Us is defined by Eq. ~48!. Note that the terms involving U0 in Eqs. ~45! and ~47! cancel.
The definition ~54! is a nonstandard form of finite-part integral. It reduces to the standard

definition of a principal-value integral at infinity if the coefficient A0 vanishes; in other words, the
standard definition is only appropriate if the scattered field does not include adiscrete plane wave
propagating up the z-axis. For a general rough surface, we do not know a priori whether A050 or
not.

We can express A0 in terms of the values of u(r,u,f) on z50 (u5
1
2p). Thus write

uS r,
1

2
p,f D5 (

n52`

`

un~r ! e inf.

Hence, as a plane wave propagating along the z-axis is constant on planes of constant z, we have

A05 lim
r→`

u0~r !5

1

2p
lim
r→`

E
2p

p

uS r,
1

2
p,f D df.

However, this formula is not useful, as we do not know u on z50. What we would like is a
similar formula, involving the boundary values of u on S.

Let us combine the identity

A05

2

r2E0

r

u0~s ! s ds1

2

r2E0

r

@A02u0~s !#s ds
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with an assumption that u0(r)5A01O(r2d) as r→`, whered .0. Then,the secondintegral is
o(1) as r→`, whence

A05 lim
r→`

2

r2E0

r

u0~s ! s ds

5

1

p
lim
r→`

1

r2E
Dr

uS s,
1

2
p,f D s ds df, ~55!

where D r is the circular disk on z50 with x2
1y2

,r2. This is another formula for A0 in terms of
u on z50. However, this formula involves u everywhere on D r , so we can relate it to an integral
over Sr , using Green’s theorem.

Consider the truncated circular cylinder Vr with axis along the z-axis and radius r, between
z50 and z5s. Thus one end of Vr is Sr and the other is the circular disk D r . Apply Green’s
theorem in Vr to u and sinkz, giving

kE
Dr

u dS1E
Sr
H u

]

]n
~sinkz !2

]u

]n
sinkzJ dS2E

Tr

]u

]n
sinkz dS50,

where Tr , defined by Eq. ~18!, is the curved part of Vr on which x2
1y2

5r2. The third integral is
O(r) as r→`, as it is bounded by 2prMmax(s), where M is a bound on u]u/]ru. Hence,
comparing with Eq. ~55!, and making use of Eq. ~6!, we see that

A05 lim
r→`

A~r ! where A~r !5

21

pkr2ESr
H u

]

]n
~sinkz !1

]u inc

]n
sinkzJ dS, ~56!

which is a formula for A0 in terms of the boundary values of u.
For the example in Sec. VI I A, one can check that Eq. ~56! does produce the correct value for

A0.

C. A boundary integral equation for the scattered field

Letting P→pPS in Eq. ~53! gives

u~p !5E
S

` H u~q !
]G

]nq

~p,q !1

]u inc

]n
G~p,q !J dSq , pPS. ~57!

This would be a boundary integral equation for u on S if we knew A0. A0 is defined by the
formula ~56!, which requires u(q) for qPS; but we can only find u(q) by solving Eq. ~57!.

Two possible ways to proceed are as follows. First, one could assume that A050. In that case,
the integral in Eq. ~57! becomes an ordinary principal-value integral at infinity. However, the
integral wil l diverge if it turns out that A0Þ0; see the example in Sec. VI I A.

Second, from Eq. ~56!, we could replace the constant A0 by A(r), where r is the radius of the
truncated rough surface. This gives

u~p !5E
Sr
H u~q !

]G̃

]nq

~r;p,q !1

]u inc

]n
G̃~r;p,q !J dSq , pPSr , ~58!

where

G̃~r;P,Q !5G~P,Q !2~pkr2!21 e ikr
Us~r;P ! sinkz, ~59!
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Q5(x,y ,z) and Us is defined by Eq. ~48!. Thus we have aplausible boundary integral equation
for u on Sr . Note that, in any numerical treatment, the rough surface would have to be truncated
to Sr , so our ‘‘plausible’’ integral equation seems to be optimal in some sense. It remains to carry
out numerical experiments.

VIII. CONCLUSION

In this paper we have considered the three-dimensional problem of the reflection of a plane
wave by an infinite two-dimensional rough surface, defined by z5s(x,y) with 2h<s<0. We
have shown that the derivation of a boundary integral equation for this problem, akin to the
Helmholtz integral equation for scattering by a bounded obstacle, is by no means straightforward.
In particular, if the scattered field includes a plane wave propagating along the z-axis away from
the rough surface ~‘‘normal waves’’!, then the usual Helmholtz integral equation is not valid: the
boundary integral diverges. We have offered a modified integral equation which reduces to the
standard Helmholtz integral equation when normal waves are absent.

The situation just described is unsatisfactory, even though the mathematical difficulty may be
overcome. Indeed, this difficulty is due entirely to the unphysical problem posed at the outset:
plane-wave reflection by an infinite rough surface. Clearly, we can realize neither a plane wave nor
an infinite rough surface. Moreover, the mathematical difficulty disappears if we consider either
point-source insonification or a finite patch of roughness on an otherwise flat surface.2

Several papers have been written in which a Helmholtz integral equation was used to provide
‘‘exact’’ or ‘‘benchmark’’ numerical solutions for plane-wave reflection by an infinite one-
dimensional rough surface, the purpose being to validate various approximate theories.19 We have
shown here that the same integral equation cannot be used for two-dimensional surfaces, in
general, unless one changes the problem, as suggested in the previous paragraph.
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