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The problem of three-dimensional potential flow past a thin rigid screen is reduced
to a hypersingular boundary integral equation. This equation is then projected onto
a flat reference screen, which is taken to be a circular disc. Solutions are obtained
for screens that are perturbations from the disc. Explicit results are obtained for
inclined elliptical screens and for spherical caps, correct to second order.
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1. Introduction

Potential flow past a rigid sphere of radius a is a textbook problem. It can be solved
exactly using the method of separation of variables. However, this method is not
immediately applicable when the sphere is perturbed so that the new boundary is
given by

S : r = a(1 + εf(θ, ϕ)), 0 6 θ 6 π, 0 6 ϕ < 2π,

where (r, θ, ϕ) are spherical polar coordinates, f is a given function and ε is a small
parameter. Nevertheless, such problems can be solved approximately, exploiting the
size of ε. Conventionally, this is done by the ‘boundary perturbation technique’,
in which the boundary condition on S is Taylor-expanded about the unperturbed
boundary r = a. Then, an expansion of the potential as

φ = φ0 + εφ1 + ε2φ2 + . . .

leads to a sequence of boundary-value problems for φn in the unperturbed domain
(r > a); φ0 is the unperturbed solution and subsequent φn are forced by φm with m <
n.

The boundary perturbation technique was used by Erma (1963) for the above
potential problem. However, the idea itself is much older. For example, it is used
in the theory of small-amplitude water waves, wherein the nonlinear boundary con-
ditions on the (unknown) free surface z = F (x, y) are ‘linearized’ about the mean
free surface z = 0 (Stoker 1957, ch. 2). Another example occurs in the theory of
scattering by rough surfaces, wherein an incident acoustic wave is reflected by a cor-
rugated surface z = F (x, y) (Ogilvy 1991, ch. 3). The work of G. H. Darwin is also
of interest. He wrote five papers in 1879 on the motions of an incompressible viscous
fluid inside a perturbed sphere (Darwin 1908). He neglected the inertia terms in the
Navier–Stokes equations (Stokes’s approximation) giving a linear interior boundary-
value problem, which he solved for ‘small deviations from sphericity’, to first order
in ε. He argued that one could take account of these deviations by imposing certain
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2210 P. A. Martin

tractions on r = a, and then solved the corresponding problem inside the sphere.
His method is applicable to any f although he was mainly interested in spheroidal
surfaces.†

Two remarks concerning the boundary perturbation technique are worth noting.
First, both the perturbed surface S and the given data on S are assumed to be
smooth. Second, the technique implicitly assumes that the unknown potential can be
continued analytically through S, as necessary, as far as the unperturbed boundary.
For further information, see the paper by Lebovitz (1982).

In this paper, we develop an alternative method. First, we reduce the boundary-
value problem to a boundary integral equation over S. We rewrite this equation by
projecting onto the unperturbed (reference) surface. At this stage, we have an exact
reformulation of the original boundary-value problem. Next, we introduce perturba-
tion expansions, leading to a sequence of boundary integral equations, Lφn = bn,
n = 0, 1, 2, . . . . Each integral equation involves the same operator L but different
forcing functions bn; L corresponds to the unperturbed boundary-value problem.
Any convenient method can be used to invert L.

Our development is concerned with problems where the obstacle is thin. Thus, we
replace the closed surface S by an open surface Ω. We suppose that Ω is a non-planar
perturbation of a circular disc D. The derivation of a sequence of boundary-value
problems for such geometries is difficult, due to the presence of the edge of Ω. This
approach has been attempted by Jansson (1996). He imagined Ω to be a piece of
an infinite interface separating two half-spaces, and then perturbed this transmission
problem about the flat interface. However, the edge behaviour of the solution induces
singularities at the edge of D, whose strength increases with the perturbation order.
(This is apparent in the terms involving ∂2un

0/∂z2 in his equation (8c).)
Another approach was taken by Beom & Earmme (1992). They considered axisym-

metric perturbations, and assumed that φ could be written as

φ(x, y, z) =

∫ ∞

0

A±(ξ)J0(ξr)e
∓ξz dξ for ± z > F, (1.1)

where r =
√

(x2+y2), the functions A± are to be determined, and J0 is a Bessel func-
tion. Such representations are commonly used for mixed boundary-value problems
involving flat circular discs (Sneddon 1966, ch. 3). However, if we suppose without
loss of generality that part of Ω is such that F < 0, then (1.1), with z > F , will
diverge for those z with 0 > z > F .

We proceed by reducing the exact boundary-value problem to a hypersingular
integral equation for [φ], the discontinuity in the potential across Ω. After projection,
we obtain a sequence of hypersingular integral equations of the form Hwn = bn where
Ω is given by

Ω : z = ε f(x, y), (x, y) ∈ D,

[φ] = w0 + εw1 + ε2w2 + . . . ,

and H corresponds to potential flow past a rigid circular disc. We derive an explicit
closed-form expression for the first-order correction w1.

To verify the method, we derive explicit results for w0, w1 and w2 for two problems,
namely, an inclined flat elliptical screen and a spherical cap. In particular, we calcu-
late the added mass for these flows, and find agreement with known exact solutions.

† I am indebted to Professor G. F. Roach for drawing my attention to Darwin’s work.
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Moreover, our result for uniform flow past a shallow spherical cap in any direction
interpolates between the known results for axial flow and flow perpendicular to the
axis of the cap.

The use of hypersingular integral equations leads to a simpler formulation than
would follow from the use of regularized integral equations. This advantage should
make the treatment of crack problems in elasticity feasible. Xu et al . (1994) have
used a perturbation theory based on a regularized integral equation for a dislocation
density (analogous to the tangential gradient of [φ]), but they were only able to find
the first-order correction (w1) for a semi-infinite crack. We expect that our method
will extend to non-planar perturbations of a penny-shaped crack; this is the subject
of ongoing work. We have considered in-plane perturbations of a penny-shaped crack
elsewhere (Martin 1995, 1996).

2. Formulation

We consider potential flow past a thin rigid screen Ω; we model the screen as a smooth
simply connected bounded surface with a smooth edge ∂Ω. Thus, the problem is to
solve Laplace’s equation in three dimensions,

∇2φ ≡ ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0,

subject to

∂φ

∂n
+

∂φ0

∂n
= 0, on Ω, (2.1)

and φ = O(r−1) as r → ∞, where r2 = x2 + y2 + z2, φ0 is the velocity potential of
the given ambient flow, and ∂/∂n denotes normal differentiation.

Exact solutions for φ are known when Ω is a flat circular disc, a flat elliptical
screen and a spherical cap. These solutions will be mentioned later.

We shall be interested mainly in situations where the ambient flow is uniform, so
that

φ0(x, y, z) = U(x sinβ − z cos β), (2.2)

where U and β are given constants.

(a) The added mass

When a rigid body is in irrotational motion through an incompressible fluid of
density ρ, the kinetic energy of the fluid motion is given by (Lamb 1932, § 44)

T =
1

2
ρ

∫

S

φ
∂φ0

∂n
dS. (2.3)

Here, S is the surface of the body and ∂/∂n denotes normal differentiation on S, in
the direction from S into the fluid.

Now, suppose that S degenerates into a thin body with zero volume, namely Ω.
Denote the two sides of Ω by Ω+ and Ω−, and define the unit normal vector on Ω,
n, to point from Ω+ into the fluid. Finally, define the discontinuity in φ across Ω by

[φ(q)] = lim
Q→q+

φ(Q) − lim
Q→q−

φ(Q),
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where q ∈ Ω, q± ∈ Ω± and Q is a point in the fluid. Then, (2.3) becomes

T =
1

2
ρ

∫

Ω

[φ]
∂φ0

∂n
dS. (2.4)

For a body translating in a straight line with speed U , we can write

T = 1
2M ′U2, (2.5)

where M ′ is the added mass of the body: if its actual mass is M , the total kinetic
energy of the system (body plus fluid) is 1

2(M + M ′)U2.
The added mass is known for a few three-dimensional bodies. For example, if S

is an ellipsoid, one can obtain M ′ by applying the method of separation of variables
in ellipsoidal coordinates to Laplace’s equation. In particular, for a solid sphere of
radius a (Lamb 1932, § 92)

M ′ = 2
3πρa3, (2.6)

whereas for a circular disc of radius c, translating perpendicular to its plane (Lamb
1932, § 108)

M ′ = 8
3ρc3. (2.7)

Further results are known for a thin rigid spherical cap. In spherical polar coordi-
nates (r, θ, ϕ), the cap is defined by

r = a, 0 6 θ 6 α, 0 6 ϕ < 2π.

Then, for the axisymmetric problem of a cap translating along its axis, Collins (1959)
has shown that

M ′ = ρa3(2α − sin 2α + 4
3 sin3 α). (2.8)

One can check that (2.8) reduces to (2.7) when α → 0 and a → ∞ in such a way
that aα → c (see (6.5)). When α → π, the cap closes up and (2.8) gives

M ′ = 2πρa3 = 4
3πρa3 + 2

3πρa3;

the first term is the mass of the enclosed fluid whereas the second term gives the
added mass for a solid sphere, in agreement with (2.6).

Collins (1961) has also obtained M ′ for a cap moving perpendicular to its axis, in
the direction ϕ = 0. For this non-axisymmetric problem, he finds that

M ′ = ρa3

{

(2α − sin 2α)(2α + 4 sinα + sin 2α)

2(α + sinα)
− 8

3 sin3 α

}

. (2.9)

3. Governing integral equation

(a) Integral representation

For any harmonic function φ, satisfying φ = O(r−1) as r → ∞, we have the
integral representation

φ(P ) =
1

4π

∫

S

{

φ(q)
∂

∂nq
G(P, q) − G(P, q)

∂φ

∂n

}

dSq (3.1)

Proc. R. Soc. Lond. A (1998)
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where G(P, q) = |r − q|−1, q ∈ S has position vector q with respect to an origin O,
and P has position vector r and spherical polar coordinates (r, θ, ϕ). Then

φ =
1

4πr

∫

S

∂φ0

∂n
dS +

1

4πr3
r ·

∫

S

(

φn +
∂φ0

∂n
q

)

dSq + O(r−3),

as r → ∞. The first integral on the right-hand side vanishes as ∇2φ0 = 0 inside S.
Hence

φ(r, θ, ϕ) ∼ r−2(g0 cos θ + g1 sin θ cos ϕ + g2 sin θ sinϕ) as r → ∞, (3.2)

where g0, g1 and g2 do not depend on θ or ϕ. In particular,

g0 =
1

4π

∫

S

{

φ(n · ẑ) +
∂φ0

∂n
(q · ẑ)

}

dS,

where ẑ is a unit vector along the positive z-axis.
Next, apply Green’s theorem to φ and φ0 in the region between S and S∞, a large

sphere of radius r and centre O. In the limit as r → ∞, this gives

M ′ + Md = −4πρg0/U, (3.3)

where Md is the mass of fluid displaced by the body. This result is general, being
valid for uniform flow past an arbitrary body S. It is a special case of results given by
Lamb (1932, § 121a); see also Newman (1977, § 4.14). In particular, when S degener-
ates into a thin body with zero volume, Md = 0. Thus, we see that the added mass
is simply related to the far-field coefficient g0.

Now, for a thin screen Ω, (3.1) reduces to

φ(P ) =
1

4π

∫

Ω

[φ(q)]
∂

∂nq
G(P, q) dSq. (3.4)

To be more explicit, we suppose that the surface Ω is given by

Ω : z = F (x, y), (x, y) ∈ D,

where D is the unit disc in the xy-plane. We define a normal vector to Ω by

N = (−∂F/∂x,−∂F/∂y, 1),

and then n = N/|N | is a unit normal vector. Suppose that P and q ∈ Ω are
at (x0, y0, z0) and (x, y, z), respectively. Let

[φ(q)] = w(x, y).

Then, we find that (3.4) becomes

φ(x0, y0, z0) =
1

4π

∫

D

w(x, y)N(q) · R2
dA

R3
2

,

where dA = dxdy, R2 = (x0 − x, y0 − y, z0 − F (x, y)) and R2 = |R2|.

(b) Integral equation

Application of the boundary condition (2.1) to (3.4) gives

1

4π
×
∫

Ω

[φ(q)]
∂2

∂np∂nq
G(p, q) dSq = −∂φ0

∂np
, p ∈ Ω, (3.5)
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where the integral must be interpreted in the finite-part sense. Equation (3.5) is the
governing hypersingular integral equation for [φ]; it is to be solved subject to the
edge condition

[φ(q)] = 0 for all q ∈ ∂Ω.

Projecting onto D, (3.5) becomes

1

4π
×
∫

D

K(x0, y0;x, y)w(x, y) dA = b(x0, y0), (x0, y0) ∈ D, (3.6)

where

K = R−3
1 {N(p) · N(q)} − 3R−5

1 (N(p) · R1)(N(q) · R1),

R1 = (x − x0, y − y0, F (x, y) − F (x0, y0)), R1 = |R1|
b(x, y) = −∂φ0/∂N = U(cos β + (∂F/∂x) sinβ), (3.7)

when φ0 is given by (2.2). Equation (3.6) is to be solved subject to the edge condition

w(x, y) = 0 for r =
√

(x2 + y2) = 1.

Let

F1 = ∂F/∂x and F2 = ∂F/∂y evaluated at (x, y), (3.8)

with F 0
1 and F 0

2 being the corresponding quantities at (x0, y0). Then N(q) = (−F1,
−F2, 1) and N(p) = (−F 0

1 ,−F 0
2 , 1). Let R = {(x − x0)

2 + (y − y0)
2}1/2 and Λ =

{F (x, y) − F (x0, y0)}/R. Also, define the angle Θ by

x − x0 = R cos Θ and y − y0 = R sinΘ,

whence R1 = R(cos Θ, sinΘ, Λ). Hence

K =
1

R3

{

1 + F1F
0
1 + F2F

0
2

(1 + Λ2)3/2

− 3
(F1 cos Θ + F2 sinΘ − Λ)(F 0

1 cos Θ + F 0
2 sinΘ − Λ)

(1 + Λ2)5/2

}

. (3.9)

This formula is exact. If we expand K for small R about p, we find that

K ∼ R−3σ(p;Θ),

where

σ(p;Θ) =
1 + (F 0

1 )2 + (F 0
2 )2

1 + (F 0
1 cos Θ + F 0

2 sinΘ)2
.

In particular, σ ≡ 1 when F is constant. Thus, for non-constant F , the singularity
in the kernel of the integral equation (3.6) is essentially different from that occurring
in the integral equation for constant F . A similar phenomenon was noted previously
(Martin 1995, 1996) when the integral equation for a flat but non-circular Ω was
mapped onto the unit disc D. In that case, the difficulty was resolved by using a
conformal mapping. Here, we are projecting onto D, so that the mapping from Ω
onto D is prescribed. However, we can make progress by supposing that Ω is almost
flat.

It is worth remarking that the situation described above does not arise with two-
dimensional problems leading to one-dimensional hypersingular integral equations
over smooth curves. When the curve is parametrized, one obtains an equation iden-
tical to the equation for a straight line-segment, apart from an additional weakly
singular kernel.
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4. Wrinkled discs

Suppose that

F (x, y) = εf(x, y),

where ε is a small dimensionless parameter and f is independent of ε. Setting

Λ = ελ, with λ = {f(x, y) − f(x0, y0)}/R, (4.1)

we find that

K = R−3{1 + ε2K2 + O(ε4)} as ε → 0,

where

K2 = f1f
0
1 + f2f

0
2 − 3

2λ2 − 3(f1 cos Θ + f2 sinΘ − λ)(f0
1 cos Θ + f0

2 sinΘ − λ)
(4.2)

and fj , f0
j are defined similarly to Fj , F 0

j (see (3.8)).
We expand b similarly. Assuming that φ0 does not depend on ε, we have

b(x, y) = b0(x, y) + εb1(x, y)

exactly; indeed, for uniform ambient flow, (3.7) gives

b0 = U cos β and b1 = Uf1 sinβ.

Then, if we expand w as

w(x, y) = w0 + εw1 + ε2w2 + . . . ,

we find from (3.6) that

Hw0 = b0, Hw1 = b1, and Hw2 = −K2w0,

where

(Hw)(x0, y0) =
1

4π
×
∫

D

w(x, y)
dA

R3

is the basic hypersingular operator for potential flow past a rigid circular disc and

(K2w)(x0, y0) =
1

4π
×
∫

D

K2(x, y;x0, y0)w(x, y)
dA

R3
.

For uniform ambient flow, b0 = U cos β is a constant, and so we can determine w0

immediately by solving Hw0 = b0:

w0(x, y) = −(4/π)b0
√

(1 − r2).

Next, we calculate w1. For w2, we can foresee that the most difficult part of the
calculation will involve the evaluation of K2w0. The simplest results are obtained
when f is a polynomial. We shall illustrate this subsequently using two examples,
namely linear and quadratic surfaces.
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(a) The first-order correction

General methods for solving Hw = b are available (see Martin 1996 and references
therein), and these can be used to solve for w1 for any ambient flow and any disc
perturbation f . Thus, introduce plane polar coordinates on D, so that x = r cos θ
and y = r sin θ, and then expand b as

b(r, θ) = B0(r) +

∞
∑

n=1

{Bn(r) cos nθ + B̃n(r) sinnθ}.

Then the solution of Hw = b is given by

w(r, θ) = W0(r) +

∞
∑

n=1

{Wn(r) cos nθ + W̃n(r) sinnθ},

where

Wn(r) = − 4

π
rn

∫ 1

r

1

t2n
√

(t2 − r2)

∫ t

0

Bn(s)sn+1 ds√
(t2 − s2)

dt, (4.3)

with a similar relation between W̃n and B̃n. These formulae are convenient, although
the summation over n can be evaluated to give

w(r, θ) = − 2

π2

∫ 1

r

1√
(t2 − r2)

∫ t

0

s(t4 − r2s2)√
(t2 − s2)

∫ 2π

0

b(s, ϕ) dϕ dsdt

t4 + r2s2 − 2t2rs cos (θ − ϕ)
.

All these formulae have been derived by Guidera & Lardner (1975). In particular,
replacing b by b1 gives the first-order correction w1. For example, if the disc is rippled
so that f(x, y) = f(r), and the ambient flow is uniform, then

w1(r, θ) = − 4

π
Ux sinβ

∫ 1

r

1

t2
√

(t2 − r2)

∫ t

0

s2f ′(s) ds√
(t2 − s2)

dt. (4.4)

(b) The added mass

From (2.4) and (3.7), we obtain

T = −1
2ρU

∫

D

w(x, y){cos β + F1 sinβ} dA.

So, writing T = T0 + εT1 + ε2T2 + . . . gives

T0 = −1
2ρU cos β

∫

D

w0 dA = 1
243ρU2 cos2 β,

T1 = −1
2ρU

∫

D

{w1 cos β + f1w0 sinβ} dA, (4.5)

T2 = −1
2ρU

∫

D

{w2 cos β + f1w1 sinβ} dA. (4.6)

T0 is the kinetic energy of the flow around a flat circular disc of unit radius. Note
that if the disc is rippled (f = f(r)), then T1 ≡ 0.
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5. Example 1: inclined ellipse

Suppose that Ω is an ellipse on the plane z = x tan γ. Let X and Y be Cartesian
coordinates on this plane, so that

X = x cos γ + z sin γ, Y = y and Z = z cos γ − x sin γ,

where Z is a coordinate perpendicular to the plane. Then, the ellipse Ω with ∂Ω
given by

X2 cos2 γ + Y 2 = 1

can be specified by

z = F (x, y) = x tan γ, (x, y) ∈ D.

From (3.9), we have

K =
1

R3

1 + tan2 γ

(1 + tan2 γ cos2 Θ)3/2

exactly.
For small inclinations of the ellipse to the plane z = 0, set ε = tan γ and f(x, y) =

x, whence

K2 = 1
4(1 − 3 cos 2Θ),

b1 = U sinβ, w1 = −(4/π)b1
√

(1 − r2) and

T1 = 4
3ρU2 sin 2β.

Next, define operators H0, Hc and Hs by

H0u =
1

4π
×
∫

D

√
(1 − r2)

u

R3
dA,

Hcu =
1

4π
×
∫

D

√
(1 − r2)

u cos 2Θ

R3
dA,

Hsu =
1

4π
×
∫

D

√
(1 − r2)

u sin 2Θ

R3
dA.

Then

−K2w0 = (b0/π){H01 − 3Hc1}.

We have

H01 = −1
4π and Hc1 = 0

from Martin (1996) and Martin (1995), respectively. (The operators Hc and Hs occur
in the coupled integral equations for the shear loading of a penny-shaped crack.)
Hence Hw2 = −1

4b0 and so w2 = −1
4w0. Substituting into (4.6) then gives

T2 = ρU2(1
2 − 5

6 cos 2β).

Thus, combining the above results with (2.5), we find that the added mass is given
by

M ′ = 8
3ρ{cos2 β + ε sin 2β + ε2(3

4 cos2 β − cos 2β)} + O(ε3). (5.1)

This agrees with the known exact solution (see the appendix).
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6. Example 2: spherical cap

Consider a spherical cap given by

z = F (x, y) = a − √
(a2 − x2 − y2), (x, y) ∈ D,

where a is the radius of the sphere. The cap subtends a solid angle of 2π(1 − cos α)
at the centre of the sphere, where sinα = a−1. For the uniform ambient flow (2.2),
the added mass is given by (2.8) and (2.9) for β = 0 and β = 1

2π, respectively.
We shall consider a shallow spherical cap, given approximately by z = ε f(x, y)

with

f(x, y) = 1
2(x2 + y2) = 1

2r2 and ε = a−1 = sinα.

This is an example of a rippled surface. We have f1 = x, f2 = y, b1 = Ux sinβ and

w1(x, y) = −8
3π−1Ux sinβ

√
(1 − r2).

Thus, from (4.5),

T1 = 5
3ρ

U2

π
sin 2β

∫

D

x
√

(1 − r2) dA = 0,

as expected. So, T = T0 + O(ε2), for all β.
The second-order correction is given by (4.6); write it as

T2 = T
(1)
2 + T

(2)
2 ,

where

T
(1)
2 = −1

2ρU sinβ

∫

D

f1w1 dA

=
4

3π
ρU2 sin2 β

∫

D

x2√(1 − r2) dA

= 4
3ρU2 sin2 β

∫ 1

0

r3√(1 − r2) dr = 8
45ρU2 sin2 β

and

T
(2)
2 = −1

2ρU cos β

∫

D

w2 dA. (6.1)

Next, we solve Hw2 = −K2w0 for w2. From (4.1), we obtain

λ = 1
2{(x + x0) cos Θ + (y + y0) sinΘ},

whence

f1 cos Θ + f2 sinΘ − λ = 1
2R.

Then, substituting from (4.2), we obtain

K2 = P0 + Pc cos 2Θ + Ps sin 2Θ,

where P0, Pc and Ps are quadratic polynomials:

P0 = 9
16(x2 + y2 + x2

0 + y2
0) − 7

8(xx0 + yy0),

Pc = − 3
16(x2 − y2 + 2xx0 − 2yy0 + x2

0 − y2
0),

Ps = −3
8(xy + xy0 + yx0 + x0y0).
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Hence

−K2w0 = (4b0/π){H0P0 + HcPc + HsPs}.

Next, we use known results for penny-shaped cracks (Martin 1995, 1996) to evaluate
the following integrals:

H01 = −1
4π, Hc1 = Hs1 = 0,

H0x = −3
8πx0, H0y = −3

8πy0,

Hcx = − 1
16πx0, Hcy = + 1

16πy0,

Hsx = − 1
16πy0, Hsy = − 1

16πx0,

H0(x
2 + y2) = 1

16π(2 − 9r2
0),

H0(x
2 − y2) = −15

32π(x2
0 − y2

0), H0(xy) = −15
32πx0y0,

Hc(x
2 − y2) = 1

16π(1 − 5
2r2

0), Hc(xy) = 0,

Hs(xy) = 1
32π(1 − 5

2r2
0), Hs(x

2 − y2) = 0.

Here, r2
0 = x2

0 + y2
0 . After some simplification, we find that

Hw2 = −K2w0 = 3
32b0(2 − r2

0). (6.2)

Solving this equation then gives

w2 = −1
6(b0/π)(4 − r2)

√
(1 − r2)

for the second-order solution. Integrating over the unit disc D, (6.1) gives

T
(2)
2 = 1

5ρU2 cos2 β.

Finally, we find that

M ′ = ρ{8
3 cos2 β + ε2(16

45 sin2 β + 2
5 cos2 β)}, (6.3)

correct to second order in ε.
For the axisymmetric problem (β = 0), we find that

M ′ ≃ ρ(8
3 + 2

5ε2). (6.4)

The exact solution is given by (2.8); for small α, this formula gives

M ′ ≃ ρ(aα)3(8
3 − 14

15α2). (6.5)

But 1 = a sinα ∼ aα(1 − 1
6α2), whence aα ∼ 1 + 1

6α2 and (aα)3 ∼ 1 + 1
2α2. Also,

ε = sinα whence α ∼ ε + 1
6ε3. Hence

M ′ ≃ ρ(1 + 1
2α2)(8

3 − 14
15α2),

and this agrees with (6.4).
For flow perpendicular to the axis of the cap (β = 1

2π), we find that

M ′ ≃ 16
45ρε2. (6.6)

The exact solution is given by (2.9); for small α, this formula gives

M ′ ≃ 16
45ρ(aα)3α2,

and this agrees with (6.6).
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7. Discussion

In this paper, we have presented a perturbation method for calculating potential
flow past a wrinkled disc. The method is general and takes proper account of the
edge behaviour. At each perturbation order, one has to solve a hypersingular integral
equation, Hwn = bn, over the unperturbed (flat) disc. The basic solution (w0) is the
solution for flow past a flat disc. The first-order correction (w1) is easily obtained
for any smooth disc perturbation f , as the forcing function b1 is simple. For the
second-order correction (w2), the main difficulty is in calculating b2; this, in turn, is
centred on the calculation of

λ =
f(x, y) − f(x0, y0)√

((x − x0)2 + (y − y0)2)
.

It seems that λ can be calculated for polynomial f , although we have not attempted
to delimit this class. (Our explicit calculations are for f(x, y) = x and f(x, y) =
1
2(x2 + y2).) We have devised special techniques for concentric (axisymmetric) per-
turbations (Martin 1998). It should be worthwhile to extend these methods to non-
planar perturbations of a penny-shaped crack under mixed-mode loadings.

Appendix A. Elliptical disc

Consider the elliptical disc (X/A)2 + (Y/B)2 6 1 on the plane Z = 0. The incident
flow is given by

φ0(X, Y, Z) = U(X sinβ0 − Z cos β0).

Then, it is known (see, for example, Martin 1986) that the potential jump across the
ellipse is

[φ] = −(2/E)BU cos β0{1 − (X/A)2 − (Y/B)2}1/2,

where E(k) is the complete elliptic integral of the second kind and k = {1 −
(B/A)2}1/2. Hence, the added mass is given exactly by (2.4) and (2.5) as

M ′ = 4
3πρ cos2 β0 AB2/E(k). (A 1)

This result includes (2.7) as a special case (A = B = c, β0 = 0).
To compare with Example 1, we take

A = sec γ ∼ 1 + 1
2ε2, B = 1 and β0 = β − γ,

whence k ∼ ε and cos2 β0 ∼ cos2 β+ε sin 2β−ε2 cos 2β using γ = ε+O(ε3) as ε → 0.
Also, E(k) ∼ 1

2π(1 − 1
4k2) as k → 0. Substituting these approximations into (A 1),

we obtain (5.1).
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