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Reduction of free-edge stress intensities in anisotropic bimaterials
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Abstract. We investigate thefree-edgestressesin anisotropic bimaterials throughthe useof the free-edgestress
intensity factor, Kf . This requires a determination of thesingularity orderat the free-surfaceaswell asa calcu-
lation of thenear-field stresses.We determine theorderof thesingularity for arbitrary free-surfaceorientation of
theuppermaterial usinganeigenvalueanalysis for anisotropic bimaterials. Theinterfacial stressesaredetermined
usingaboundary elementcalculation basedonanisotropic, bimaterial Green’sfunctions.Thevariation of Kf with
free-surfaceorientation isdetermined.Wefindthatthefree-edgesingularity vanishesfor certain anglesdependent
on the anisotropic elastic constants.
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1. Introduction

Layeredmaterialsaresubject to failure initiation wherean interfacemeetsa free surfacein
thecompositesolid. Theinitiation of failureat thesesitescanbe interpretedmathematically
by thestresssingularity at sucha location.Thenatureof thesingularityhasbeeninvestigated
by many researchersincludingZwiers,Ting and Spilker (1982),Ting (1996),Bogy (1972),
Dundurs(1969),HeinandErdogan(1971),BakandKoenig(1994),Ding andKumosa(1994),
Tewary(1991),TewaryandKriz (1991)andReedy(1990).Theseinvestigationswereprimar-
ily concernedwith compositesolidswhosefreesurfaceswereorientedateither±90◦ or atan
arbitrarysymmetric anglewith respectto the interface.In this paper, we investigatesingular
stressesin anisotropicbimaterialswheretheinterfaceintersectsthefreesurfaceandtheangle
of the uppermaterialwith respectto the interfaceis varied. The free surfaceorientationof
thematerialbelow theinterfaceis maintainedat 90◦. Thegeometry of thegeneralproblemis
shown in Figure1.

In general,thereare two calculationsinvolved with assessingthe intensityof stressat the
intersectionof the interfacewith the free surface.The near-field stressesat such a point are
singular,

σij (r, θ) ≈ Kf rδ6ij (θ), (1)

where r, θ arepolarcoordinatessituatedat the intersectionwith the freesurfaceandδ is the
orderof thesingularity(Reδ < 0). Following Reedy(1990),thefree-surfacestressintensity
factorKf canbedefinedas

Kf = lim
r→0

{σ22(r, 0)r−δ}, (2)

where x2 = 0 and θ = 0 is theinterface.To investigatethestressintensityat thefreesurface
thereforerequirestwo calculations.First, wemustdeterminetheorderof thesingularity δ for
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166 J.R. Berger et al.

Figure 1. Anisotropic bimaterial with arbitrary free-surfaceorientation of theuppermaterial.

theparticularmaterial systemandfree-surfaceorientationof interest.Second,thestresseson
the interfacenearthe free surfacemust be accuratelycalculatedin order to obtainKf from
(2).

In thispaperwefirstreview theprocedureof Ting (1996)for thedeterminationof theorder
of thesingularity δ in anisotropicbimaterials.We next investigatethesingularityorderfor a
variety of free-surfaceangles.With referenceto Figure1, of specialinterestarethoseanglesφ
for whichthesingularityorderiszero.Fromapracticalviewpoint, this indicatesanonsingular
stateof stresswheredelaminationinitiation at thefreeedgeis suppressed.Theoretically, this
implies that(1) is incomplete atsuchspecialangles;a weaklogarithmic singularity may still
bepresent(Ting,1996,Section9.6).

Wenext describethedeterminationof thestateof stressontheinterfacethroughaboundary
element calculationwhere the kernelsof the boundaryintegrals are Green’s functions for
anisotropicbimaterials.The useof theseparticularGreen’s functionsallow us to only dis-
cretizetheremote boundaryof thespecimen. All i nterfacialboundaryconditionsaresatisfied
with theGreen’s functionso nointerfacediscretizationisnecessary. Finally, weprovidesome
example calculationsfor the free-edgestressintensity factor as a function of free-surface
orientationanglesφ for copper-silicon, nickel-copper, andsolder-copperbimaterialsystems.

2. Determination of the singularity order δ

The order of the singularity at a free edge in an anisotropicbimaterial problemmay either
bedetermined throughthe eigenvalue analysisof Zwiers,Ting andSpilker (1982)andTing
(1996) or with a Green’s function techniqueusedby Tewary (1991) and Tewary and Kriz
(1991). For this investigation, we selectedthe eigenvalue approachsince we were inves-
tigating problems with a variableangle of the upper free surfaceφ. The Green’s function
method asdevelopedin Tewary (1991) is specifically for the caseof φ = 90◦. TheGreen’s
function techniquehasthe distinct advantageover the eigenvalueapproachof not requiring
the determinationof complex rootsof a high-order, complex polynomial. However, thereis
addedcomplexity with theGreen’s functionapproachdueto thenecessityof solvingaHilbert
problem. For theproblemunderconsiderationhere,theeigenvalue approachprovidesadirect
methodfor determining thesingularity orderδ.
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Reduction of free-edge stress intensities in anisotropic bimaterials 167

The eigenvalue analysis for the singularity order δ is basedon the techniqueof Stroh
(1958).FollowingTing(1996,Section9.6), thedisplacementsandstressfunctionin an aniso-
tropic bimaterialcanbewritten as

u(n) = rδ+1{A(n)〈ζ (n)δ+1
(θ)〉q(n) + A

(n)
〈ζ

(n)δ+1

(θ)〉q̃(n)}, (3)

F(n) = rδ+1{B(n)〈ζ (n)δ+1
(θ)〉q(n) + B

(n)
〈ζ

(n)δ+1

(θ)〉q̃(n)}, (4)

wherethesuperscriptn = 1, 2 indicateseithertheupperor lowermaterial,A andB are3× 3
complex matrices,q andq̃ are3 × 1 complex vectors,theangledbracketsdenotea diagonal
matrix, and anoverbar indicatesa complex conjugate.If δ is real,q̃ is thecomplex conjugate
of q. If δ is complex, q̃ is not necessarilythe complex conjugateof q. The elementsof the
diagonalmatricesappearingin (3)–(4)are

〈ζ(θ)〉α = ζα(θ); α = 1, 2, 3, (5)

wherewehaveomittedthesuperscriptn for clarity. Thecomplex variableζα isdefinedthrough
thepolarform of thevariablezα as

zα = r(cosθ + pα sinθ) = rζα(θ), (6)

where

zα = x1 + pαx2. (7)

The determinant |D| neededfor calculatingthe rootspα canbe conveniently written in the
form usedby Ting (1996)

|D| = |Q + p(R + RT ) + p2T| = 0, (8)

where the3 × 3 matricesQ, R, and T are,in termsof theanisotropicelasticconstants,

Qik = ci1k1, Rik = ci1k2, Tik = ci2k2. (9)

The rootspα of the sextic equation,(8), occur in complex conjugatepairs.The remaining
termsappearingin (3) and(4) aredefinedwith theright eigenvaluesa,

Da = {Q + p(R + RT ) + p2T}a = 0, (10)

b = (RT + pT)a. (11)

ThematricesA andB in (3) and (4) are then

A(n) = [a(n)
1 a(n)

2 a(n)
3 ], (12)

B(n) = [b(n)

1 b(n)

2 b(n)

3 ]. (13)

The componentsof thestressfunctionin (4) arerelatedto theCartesianstresscomponentsas

σi1 = −Fi,2, σi2 = Fi,1. (14)
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168 J.R. Berger et al.

Equations(3) and (4) canbe written for continuity of displacementand traction acrossthe
bimaterial interfaceandat thetraction-freesurfacesshown in Figure1, (r, θ) = (r,−1

2π) and
(r, θ) = (r, φ). This yieldsasetof 12 equationswhich canbesolvedfor thesingularityorder
δ. However, a more efficient solutioncanbeobtainedby using theorthogonalityandclosure
relations(ManticandParis,1996;Ting,1996)which relatethematricesA andB as

BT A + AT B = B
T

A + A
T

B = I, (15)

BT A + AT B = B
T

A + A
T

B = 0, (16)

ABT + AB
T

= BAT + BA
T

= I, (17)

AAT + AA
T

= BBT + BB
T

= 0. (18)

The vectorsa and b must be properly normalized (Ting, 1996) for theserelationsto hold.
Equations(3) and (4) written for continuity of tractionand displacementacrossthe interface
arethen

A(1)q1 + A
(1)

q̃1 = A(2)q2 + A
(2)

q̃2 = h, (19)

B(1)q1 + B
(1)

q̃1 = B(2)q2 + B
(2)

q̃2 = g, (20)

usingthefactthatζ (n)
α (0) = 1 byour choiceof coordinatesystem. Theboundaryconditionat

thetraction-freesurfaceat θ = φ is then(cf. Ting,1996,Equation(9.6-6))

[B(1)〈ζ (1)d+1
(φ)〉B(1)T + B

(1)
〈ζ (1)d+1

(φ)〉B
(1)T

]h

+[B(1)〈ζ (1)δ+1
(φ)〉A(1)T + B

(1)
〈ζ (1)δ+1

(φ)〉A
(1)T

]g = 0. (21)

Theboundaryconditionat thetraction-freesurfaceat θ = −π/2 is

[B(2)〈ζ (2)δ+1
(−1

2π)〉B(2)T + B
(2)

〈ζ (2)δ+1
(−1

2π)〉B
(2)T

]h

+[B(2)〈ζ (2)δ+1
(−1

2π)〉A(2)T + B
(2)

〈ζ (2)δ+1
(−1

2π)〉A
(2)T

]g = 0. (22)

In matrix form, (21) and(22) canbewritten as

M(δ)

{

h

g

}

= 0, (23)

where the matrix M is formed through the coefficientsappearingin (21) and (22). For a
nontrivial solution,we requirethedeterminantof the6 × 6 matrix M to vanish,

|M(δ)| = 0. (24)

Equation (24) is a 6th order equation whoseroots are the singularity order δ. In general,
the rootsof (24) may be real or complex. For the problemunderconsiderationherewe are
concernedwith stresssingularitieswith boundedstrain energy, so−1 < Re(δ) < 0. Roots
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Table 1. Elastic constants for thematerials studied (GPa)

c11 c12 c44 H

Solder 130.8 107.0 11.9 0.0

Copper 168.4 121.4 75.4 103.8

Nickel 246.5 147.3 124.7 150.2

Silicon 165.7 63.9 79.6 57.4

with imaginarypartsgive riseto oscillatorysingularitiescommonly associatedwith interface
crackproblems. For mostcommon materialsystems, the imaginarypartsof therootsof (24)
areverysmall in comparisonto therealpartsof theroots(Tewary, 1991a).Therefore,ourgoal
is to find the rootsof (24) with −1 < Re(δ) < 0 as a function of theorientationof the free
surfacein theuppermaterialfor several bimaterialsystems.

3. Singularities in cubic bimaterials

Wenow solve (24) numerically for thesingularityorderδ for threebimaterial systems whose
componentshave cubic materialsymmetry. For eachof thematerialsystems investigatedwe
will determine the variation of the singularity orderwith the free surfaceorientationof the
uppermaterial.Thegeometry of thematerialsystemunderconsiderationis shown in Figure1.
The elasticconstantsof theanisotropiccrystalsconsideredherearegivenin Hirth and Lothe
(1982)andsummarized in Table 1. The elasticconstantsof solder will be specified so that
thematerialis nearly isotropic.The isotropicelasticconstantsfor high tin-contentsolderare
taken from Berger (1994) andconverted to the equivalent cubic elastic constantsshown in
Table1. Alsogivenin thetableis theanisotropy factorH from Hirth andLothe(1982)which
is definedas

H = 2c44 + c12 − c11, (25)

wherethecontractednotationfor anisotropicstif fnesseshasbeenused(Ting, 1996;Hirth and
Lothe,1982).The anisotropy factorprovidesa measureof the strengthof the anisotropy in
cubicmaterials.

Equation (24) was solved numerically with a secantmethodfor a variety of free-edge
orientationanglesφ for nickel-copper, solder-copper, andcopper-silicon bimaterials.Because
of thecomplicationsinvolvedwith findingthecomplex rootsof (24), contourplotswerefirst
generatedfor themagnitudeof thedeterminantasa functionof therealandimaginary parts
of therootδ. Suchplotsarehelpful in findingcomplex rootswith iterativenumericalschemes
sincetheinitial estimatesfor therealandimaginarypartsof therootsmayeasilybeobtained.
A contourplot for thecopper-silicon bimaterial is shown in Figure2 for thecaseφ = 170◦. As
indicatedin thefigure,for this particularorientationthe rootsare approximately at Re(δ) ≈

−0.45,−0.2,−0.1. Note that Im(δ) = 0 for theseroots.For comparison,thecontourplot of
thedeterminantfor φ = 100◦ in thesamebimaterialsystemis shown in Figure3. Notein the
figurethat theonly root with −1 < Re(δ) < 0 is very closeto Re(δ) = 0. This indicatesthe
expectedresult that the order of the singularity is decreasingas the free-surfaceorientation
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170 J.R. Berger et al.

Figure 2. Contour plot of |M(δ)| vs. therealandimaginary parts of theroot, δ for φ = 170◦ in copper-silicon.

Figure 3. Contour plot of |M(δ)| vs. therealandimaginary parts of theroot, δ for φ = 100◦ in copper-silicon.

angleφ is decreased.Similar resultswere obtainedfor the nickel-copperand solder-copper
bimaterials.

A summary plot of the magnitudeof the determinant as the free-edgeorientationangle
φ wasvaried in the copper-silicon, nickel-copperand solder-copperbimaterialsis shown in
Figures4–6.The maximum singularity orderoccursat φ = 180◦ asexpected.As the free-

Figure 4. Plot of |M(δ)| vs. therealpart of the root, δ for several orientationsφ in copper-silicon.
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Figure 5. Plot of |M(δ)| vs. therealpart of the root, δ for several orientationsφ in nickel-copper.

Figure 6. Plot of |M(δ)| vs. therealpart of the root, δ for several orientationsφ in solder-copper.

Figure 7. Finerscaleplot of |M(δ)| vs. therealpart of the root, δ for 82◦ < φ < 90◦ in copper-silicon.
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Figure 8. Theorderof the free-edgesingularity, δ, vs.free-surfaceorientation,φ in copper-silicon,nickel-copper,
andsolder-copperbimaterials.

surfaceorientationangle φ is reducedthe singularity order moves smoothly towardszero.
There is evidencein Figures4–6 that the negative root disappearsentirely somewherefor
φ < 90◦ in eachof the bimaterials.A finer-scaleversionof Figure4 is shown in Figure 7
for the magnitudeof thedeterminant in copper-silicon asφ is varied from 90◦ to 82◦. From
Figure 7 we seethat the singularity disappearsfor free-edgeorientationangles in copper-
silicon of φ < 88◦. For thenickel-copperbimaterial,wefind thatthesingularityis eliminated
if φ < 85◦ andfor thesolder-copperbimaterial,we find thatφ < 82◦ for elimination of the
singularity. A summary plot of thevariationof thesingularityasa functionof theorientation
of the free-surfacefor eachbimaterial is shown in Figure 8. Note in the figure the smooth
behavior of the order of the singularity asφ is relaxed. We have plotted the most negative
Re(δ) in −1 < Re(δ) < 0 for thosecaseswhich have multiple rootsin this range.

As evident from the analysis,the critical anglebelow which the stressstateis nonsingu-
lar is dependenton the elastic constantsof the bimaterial.This can be illustratedwith the
generalizedDundursconstants(Ting,1995)ϕ, κ for eachof thebimaterials,

ϕ =
ν(1) − ν(2)

ν(1) + ν(2)
, (26)

κ =
ω(1) − ω(2)

ν(1) + ν(2)
, (27)

where

ν(n) = −1
2(p

(n)

1 − p
(n)

2 )(p
(n)

2 − p
(n)

1 )s′
11, (28)

ω(n) = s
′(n)

12 − s
′(n)

11 [Re(p(n)

1 p
(n)

2 )] (29)

and s′
ij are the reducedelastic compliances.For the bimaterial systems studiedhere, the

generalizedDundursconstantsare given in Table 2. Shown in Figure 9 is the maximum
upperfree surfaceorientationangle for a nonsingularstressstateas a function of the ratio
of generalizedDundursconstantsfor eachof thebimaterialsstudiedhere.Thedependenceon
elasticconstantsof this angle is clearly indicatedin the figure,althoughit could be argued
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Table 2. Generalizeddundurs constants for thebimaterial systems

Bimaterial ϕ κ ϕ/κ

Copper-Silicon 0.323 0.158 2.042

Nickel-Copper −0.342 −0.092 3.727

Solder-Copper −0.731 −0.239 3.060

Figure 9. Maximum upper free surfaceorientation angle for nonsingular stressesvs. the ratio of generalized
Dundurs constants.

that thedependenceis weakasthevariationin this angleonly rangesfrom 82◦ to 87◦ for the
bimaterialsstudiedhere.

The singularity orderdatapresentedin Figure8 is smooth so a polynomial canbe fitted
to the data in a leastsquaresense.A fifth-orderpolynomial provided a goodfit to the data
over therangeof φ consideredhere.For free-surfaceorientationangles80◦ < φ < 180◦ the
polynomial hastheform

Re(δ) =

5
∑

k=0

Ckφ
k. (30)

The coefficientsCk for eachof thebimaterialsaregiven in Table 3. Thesecoefficientsyield
correlationcoefficientsof r = 0.99977, 0.99983,and0.99986for thecopper-silicon, nickel-
copper, andcopper-solderbimaterials,respectively. Forany given free-edgeorientationangle
φ wecanthereforeobtainthecorrespondingsingularityorderfrom (30).

4. Boundary element analysis for anisotropic bimaterials

SpecialGreen’s functionsfor anisotropicbimaterialsprovide an idealtool for accuratelycal-
culatingthestressdistribution nearabimaterialinterface.Here,weusetheboundaryelement
formulation of Berger (1994)which is basedon theanisotropic,bimaterial Green’s function
of Tewary, Wagoner, andHirth (1989).Theboundaryelement formulation allows us to ana-
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.

Table 3. Polynomial coefficients for thebimaterials

Bimaterial C0 C1 C2 C3 C4 C5

(×10−2) (×10−4) (×10−6) (×10−8) (×10−11)

Copper-Silicon 11.396 −47.472 78.556 −63.917 25.238 −38.683

Nickel-Copper 1.5777 −5.2001 8.4746 −8.009 3.6726 −6.3361

Copper-Solder −1.0717 6.5702 −1.2266 9.8416 −3.6752 5.6269

lyze thegeneralanisotropicbimaterialshown in Figure1 wherewe vary φ. Theanisotropic,
bimaterial Green’s functionis of thegeneral form

U(zα, ρα) =
∑

α

A(pα) ln(zα − ρα) +
∑

αβ

B(pα) ln(zα − ρβ), (31)

wherezm andρn arecoordinatesof thesourceandfieldpointsexpressedascomplex variables,
A andB arematriceswhich dependson theanisotropicelasticconstantsand therootsof (8).
The Green’s function containsboth free-space,singularterms as well as region-dependent,
regular terms which satisfytheinterfacial boundaryconditions.We notethat therearein fact
four partsto the Green’s function dependingon the relative positionof the sourceandfield
pointswith respectto the interface.The full detailsof thedisplacement and tractionGreen’s
functionsfor anisotropicbimaterialscanbefoundin Berger (1994).

In Berger (1994)theGreen’s functionof (31) wasusedin aboundaryintegral formulation
to analyzeanisotropicbimaterials.It wasalsoshown that the Green’s function degenerated
to a homogeneous,anisotropic fundamental solution as well as a homogeneous,isotropic
solution(theKelvin solution) providedonewascarefulin dealingwith thedegeneratecaseof
isotropicmaterialbehavior. The Green’s function of (31) thereforerepresentsa very general
fundamental solutionwhichcanbeappliedto awidevariety of materialsandproblems in two
dimensions.

The discretizedboundaryintegral equationused in Berger (1994) with this particular
Green’s function isof theform

cklul(z
m
α ) =

J
∑

j=1

ti(z
j
α)

1

B
j
α

∫ z
j

2

z
j
1

Uik(z
j
α, ρ

m
α ) dzα −

J
∑

j=1

ui(z
j
α)

1

B
j
α

∫ z
j

2

z
j
1

Tik(z
j
α, ρ

m
α ) dzα, (32)

whereonly the remote boundaryof the solid is discretized.The interfacebetweenthe two
materialsdoesnotrequirediscretizationsincetheconditionsof tractionanddisplacementcon-
tinuity aresatisfied exactlyby theGreen’s function.Theintegrationover theremoteboundary
of thebimaterialis performedin thecomplex zα-planeusingthemappingof Cruse(1988),

Bj
α = n

j

1pα − n
j

2, (33)

which mapsa differentialboundarysegment to thecomplex zα-plane.In (33), nj

1 andn
j

2 are
componentsof the local normal vectorat the j th integrationelement,pα is the root of (8),
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andz
j

1, z
j

2 aretheendpointsin thecomplex planeof thej th integrationelement.In (32), the
multiplier ckl is δkl for internalcomputationpointsand 0.5δkl for boundarypoints,andthe
kernels Tik andUik arethetractionand displacementGreen’s functions,respectively. Further
detailsconcerningtheimplementationof (32) for stressanalysisis givenin Berger (1994).

Thespecimen illustratedin Figure1 wasdiscretizedinto 96boundaryelements.Theupper
horizontalsurfaceof the specimen wassubjectedto a uniform displacement u2 = 1.0, and
the traction t1 = 0. The lower horizontal surface was fixed againstdisplacement in both
coordinatedirectionsandthe remaining surfaceswere prescribedasstressfree.For eachof
the bimaterialsstudiedhere,the boundaryelement analysiswasperformed for free-surface
orientationanglesof φ = 70◦–120◦ in 10◦ increments.For all bimaterialsandall free-surface
orientationanglesthesame boundaryconditionswere imposed.

5. Free-edge stress intensities

Wenow determinethefree-edgestressintensityfactorKf asdefinedby (2). The orderof the
singularity canbe calculatedfrom (30) for the free-surfaceorientationanglesof φ = 70◦–
120◦ in eachof thebimaterialsystems. We determine thefree-edgestressintensityfactorby
performingaleast-squarescollocationonKf from (1). To performthecollocation,weusethe
σ22 componentof stressalongthe interfacedetermined from theboundaryelementanalysis.
As canbe shown from a development of the eigenfunctionsfor 6ij (θ) in (1), 622(0) = 1.
The σ22 stressactingon theinterfacein thenear-field of thefreeedgeis thengiven by (1) as
σ22(r, 0) = Kf rδ . The free-edgestressintensity factor is thencalculatedby a least-squares
collocationof theσ22 datafrom theboundaryelementanalysisas

Kf =
6N

k=1r
δ
kσk

6N
k=1(r

δ
k )

2
, (34)

where σk = σ22(rk). The critical assumptionbeing madehereis that the stressesusedfor
thecollocationare in thenearfield wheretheasymptoticstressgiven by (1) is valid. For the
material systems andgeometriesstudiedhere,theauthorsareunawareof any detailedstudies
of the extent of the singularity-dominatedzonefor the stressesgiven by (1). For guidance,
singularity dominatedzonesizesfrom studiesof crack-tip fields in chevron-notchedspeci-
mens were usedfrom SanfordandChona(1984). In thesestudies,the singularasymptotic
expressionsfor stresseswerefoundto bevalid in theregion r/W < 0.5 whereW is thewidth
of thechevron-notchedspecimen. The datausedin thecollocationby (34) for thebimaterial
specimens was obtainedin the region 0.04 < r/W < 0.09 where W is the width of the
specimen shown in Figure1. This is well within the size of the singularity-dominated zone
for crack-tipfields in chevron-notchedspecimens; futureresearchwill focuson a more exact
determination of thesingularity-dominated zonein materialsand specimens similar to those
studiedhere.

The collocationfor Kf wasperformedwith (34)using10–20datapointsdistributedevenly
along the interfacewith 0.04 < rk/W < 0.09. We obtain the resultsfor free-edgestress
intensityfactorsshown in Figure10. We seetheexpectedincreasein Kf asthe freesurface
orientationangle is increased.Note that Kf is simply the local value of σyy for the case
φ = 70◦ sinceδ = 0 for this particularangle.The stressintensityis approachingan asymp-
totic limit for eachbimaterial systemunderthe particularloadingstudiedheresincewe are
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Figure 10. Free-edge stress intenstiy factor Kf vs. upper free surface orientation angle, φ in copper-silicon,
nickel-copper, andsolder-copperbimaterials

imposingadisplacementboundaryconditionacrosstheuppersurfaceof thespecimen shown
in Figure1.

6. Summary

We have studiedfree-edgesingularitiesand stressintensitiesin a variety of anisotropicbi-
materials.The calculationfor theorderof thesingularity wasperformedwith theeigenvalue
analysisof Ting(1996).Theorderof thesingularitywasshown to dependon thefree-surface
orientationas well as the elasticconstantsof the bimaterial. Free-surfaceorientationangles
were determined below which the stressstate was nonsingular. Thesecritical angleswere
shown to beweaklydependentontheelasticconstantsfor thebimaterialsystemsstudiedhere.
Free-edgestress-intensityfactorswerecalculatedwith a local collocationmethodusingthe
σyy componentof stressalongtheinterface.Thesestressesweredeterminedfrom aboundary
elementanalysisbasedon Green’s functionsfor anisotropicbimaterials.It wasnotedthatan
assumption wasmadeconcerningthesizeof thesingularitydominatedzonefor thedatato be
valid in thecollocationfor Kf . Singularity dominatedzonesizesin fracturespecimenswere
usedasguidancefor determining theregionof validity of thefree-edgeasymptoticstressfield.
Futureresearchwill investigatethis aspectof free-edgestressfields in moredetail.
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