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Abstract. Time-harmonic electromagnetic waves are scattered by a homogeneous chiral ob-
stacle. The corresponding transmission problem is reduced to a pair of coupled integral equations
over S, where S is the interface between the obstacle and the surrounding medium. This is done
using a generalization of the Stratton–Chu representation that is valid for chiral media. The integral
equations obtained are a generalization of those obtained by Müller for a homogeneous dielectric
obstacle. Finally, we develop approximations for low-chirality obstacles. These approximations can
be computed using simple modifications to existing codes for solving Müller’s equations.
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1. Introduction. Chiral media are everywhere: “We know today that almost
every substance found in living organisms is a carbon compound possessing a basic
asymmetry, or ‘chirality’ as chemists and physicists prefer to call it, a term coined by
Lord Kelvin” [11, p. 113]. Nonorganic materials can also be chiral; good examples
are certain man-made composites and coatings. Chiral media support two kinds of
electromagnetic waves. Thus, when “a linearly polarized wave is incident normally
upon a slab of chiral medium, two waves are generated in the medium. One is a
left-circularly polarized wave and the other is a right-circularly polarized wave of a
different phase velocity” [6, p. 2]. This phenomenon, known as optical activity, can
be modeled using appropriate constitutive relations; we use the Drude–Born–Fedorov
relations.

In this paper, we consider the scattering of time-harmonic electromagnetic waves
by a bounded three-dimensional chiral obstacle surrounded by free space. This prob-
lem was first solved by Bohren [7] for a spherical obstacle. Subsequent work, using
integral equations and T -matrix methods, is described in [16] and [15]; see also [19].
It is possible to allow the exterior to be chiral, too; a uniqueness theorem covering
this case is proved in appendix A.

We assume that the obstacle is homogeneous. This allows us to reduce the prob-
lem to a pair of coupled integral equations over the interface between the obstacle and
its surroundings. We derive these equations using a generalization of the Stratton–
Chu representation to chiral media; such generalizations, involving scalar Green’s
functions, have been given before [17], [25], [1], although we give two different proofs.
Alternative representations, involving dyadic Green’s functions, are also available [16],
[15], [24].
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Many different pairs of coupled boundary integral equations can be derived and
studied; reviews are available for the acoustic transmission problem [14] and for elec-
tromagnetic scattering by a dielectric obstacle [12], [20]. (These papers also describe
methods for solving transmission problems using a single integral equation.) One
such pair, obtained by using an ansatz in each region, has been analyzed by Ola [23].
Here, we derive a generalization of Müller’s equations. This pair is contrived so that
all hypersingular operators are combined in such a way that their strong singulari-
ties cancel. Thus, as for the pure electromagnetic transmission problem, we obtain
a pair of equations that has good theoretical properties and that is attractive for
computations.

We give a dimensionless formulation of the transmission problem. It is seen to
depend on four dimensionless parameters, which we can take as kea, ka, ρ, and kβ.
Here, ke is the exterior wavenumber; k is the analogous quantity for the chiral obstacle,
which itself has diameter 2a; ρ2 is the ratio of the two magnetic permeabilities; and
β is the chirality measure. We allow ka, ρ, and kβ to be complex. In practice,
|kβ| ≪ 1, so we develop approximations exploiting this fact. Indeed, we show that
the first-order correction in kβ can be computed by solving Müller’s equations (for a
dielectric obstacle) with different right-hand functions. This allows existing codes to
be extended easily so as to treat low-chirality obstacles.

2. Chiral media. A homogeneous isotropic chiral medium is characterized by
three (complex) parameters. These are the electric permittivity ε, the magnetic per-
meability µ, and the chirality measure β. Thus, we use the Drude–Born–Fedorov
constitutive relations

D = ε(Ẽ + β curl Ẽ) and B = µ(H̃ + β curl H̃),

where Ẽ is the electric field, H̃ is the magnetic field, B is the magnetic flux density,
and D is the electric flux density. For free space (where the medium is achiral), we
have β = 0.

In a source-free region, we also have

curl Ẽ − iωB = 0 and curl H̃ + iωD = 0,

where we have suppressed a time dependence of e−iωt throughout. Hence, eliminating
B and D, we obtain

curl Ẽ − iωµ(H̃ + β curl H̃) = 0(2.1)

and

curl H̃ + iωε(Ẽ + β curl Ẽ) = 0.(2.2)

Put Ẽ =
√
µE and H̃ =

√
εH whence (2.1) and (2.2) become

curlE − ik(H + β curlH) = 0(2.3)

and

curlH + ik(E + β curlE) = 0,(2.4)

where k is defined by

k = ω
√
µε.
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This shows that the key dimensionless parameter for chiral media is kβ.
It is convenient to introduce fields U and U ′ (the dual of U) as follows:

if U = E, then U ′ = iH;

if U = H, then U ′ = −iE.

Here, {E,H} are regarded as solutions of (2.3) and (2.4). With this notation, we can
write (2.3) and (2.4) as

curlU = kU ′ + kβ curlU ′.(2.5)

As
(
U ′

)′
= U , we also have

curlU ′ = kU + kβ curlU .(2.6)

Eliminating curlU ′, we obtain

curlU = γ2βU + (γ2/k)U ′,(2.7)

where

γ2 = k2(1 − k2β2)−1.

We always assume that |kβ| < 1.
Finally, taking the curl of (2.7), using (2.6), we obtain

curl curlU − 2γ2β curlU − γ2 U = 0,

which is the governing differential equation for both E and H.
In chiral (or “handed”) media, left-handed and right-handed waves both can

propagate independently and with different phase speeds. To see this, let

QL = E + iH and QR = E − iH,

whence

E = 1

2
(QR + QL) and H = 1

2
i(QR −QL).(2.8)

Then, forming (2.3) ± (2.4), we obtain

curlQL = γL QL and curlQR = −γR QR,(2.9)

where

γL =
k

1 − kβ
, γR =

k

1 + kβ
, and γ2 = γLγR.(2.10)

Thus, QL is a left-handed field, with wavenumber γL, whereas QR is a right-handed
field, with wavenumber γR. Note that k itself is not a wavenumber. Note also that
our splitting into left-handed and right-handed fields was done with a dimensionless
version of the well-known Bohren transformation.

We can relate QL and QR to solutions of Maxwell’s equations. Thus, let us say
that [E,H, k] solves Maxwell’s equations if E and H solve (2.3) and (2.4) with β = 0
and the specified value of k. Then it is easily verified that both

[QL,−iQL, γL] and [QR, iQR, γR] solve Maxwell’s equations.(2.11)

These results allow representations for chiral fields to be found using known achiral
representations.
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3. Integral representations. There are two standard representations for elec-
tromagnetic fields in achiral media in terms of surface integrals. These are the
Stratton–Chu formula (which involves acoustic single-layer potentials) and another
formula based on a dyadic Green’s function. Here, we concentrate on the former,
although connections with dyadic Green’s functions are discussed in appendix B.

3.1. Achiral media. Consider a bounded three-dimensional domain Bi with
a smooth closed boundary, S. Suppose that Bi is filled with achiral material, with
electromagnetic parameters ε and µ.

We shall use the following notation: p, q denote points of S; P , Q denote points
not on S. We choose the origin O at some point in Bi; rP is the position vector of P
with respect to O, rP = |rP |, and r̂P = rP /rP .

Introduce the fundamental solution G, defined by

G(P,Q; k) = exp(ikR)/(2πR),

where R = |rP − rQ| is the distance between P and Q. Next, define a single-layer
potential by

(Sν) (P ) =

∫

S

ν(q)G(P, q; k) dsq,(3.1)

where q ∈ S and ν(q) is a continuous density function. Let a(q) be a tangential vector
density, so that a(q) ·n(q) = 0 for all q ∈ S, where n(q) denotes the unit normal at
q pointing out of Bi. Define

(Ca) (P ) = curl {Sa} and (Fa) (P ) = curl {Ca}.

Then, the Stratton–Chu formula can be written as [10, Theorem 4.1]

−2U(P ) = C{n×U} + k−1F{n×U ′}(3.2)

for P ∈ Bi. This expresses the fields {E,H} in Bi in terms of the tangential compo-
nents of E and H on S.

An alternative representation, using a dyadic Green’s function, is given in ap-
pendix B.

3.2. Chiral media. Suppose now that Bi is filled with a chiral medium, with
parameters ε, µ, and β. From (2.11) and (3.2), we have the representations

−2QL(P ) =
(
CL + γ−1

L FL

)
{n×QL}(3.3)

and

−2QR(P ) =
(
CR − γ−1

R FR

)
{n×QR}(3.4)

for P ∈ Bi, where, for α = L,R,

(Cαa)(P ) = curl {Sαa}, (Fαa)(P ) = curl {Cαa},(3.5)

and

(Sαa) (P ) =

∫

S

a(q)G(P, q; γα) dsq.
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It is worth noting that CLa and FLa are not left-handed fields but the combi-
nation CLa + γ−1

L FLa is such a field. Similarly, CRa − γ−1
R FRa is a right-handed

field.
Next, from (2.8), we obtain

−2E(P ) = 1

2

(
CL + γ−1

L FL

)
{n×QL} + 1

2

(
CR − γ−1

R FR

)
{n×QR}

and

−2H(P ) = − 1

2
i
(
CL + γ−1

L FL

)
{n×QL} + 1

2
i
(
CR − γ−1

R FR

)
{n×QR}

for P ∈ Bi. Finally, using (2.8) again, we obtain

−2U(P ) = 1

2
CL{n×U} + 1

2
CR{n×U}(3.6)

+ 1

2
γ−1
L FL{n×U} − 1

2
γ−1
R FR{n×U}

+ 1

2
CL{n×U ′} − 1

2
CR{n×U ′}

+ 1

2
γ−1
L FL{n×U ′} + 1

2
γ−1
R FR{n×U ′}

for P ∈ Bi. This is the generalization of the Stratton–Chu formula to chiral media.
It reduces to (3.2) when β = 0.

The vector fields Cαa and Fαa have well-known properties. In particular, the
tangential components of these fields evaluated on S when a is itself a tangential
vector density are calculated readily. Thus, for continuous tangential densities, we
have

n× Cαa = ±a + Mαa,

where the upper (lower) sign corresponds to P → p ∈ S from Be (Bi), Be is the
(unbounded) exterior of Bi, and Mα is a boundary integral operator defined by

(Mαa) (p) = n(p) × curl {Sαa} , p ∈ S.(3.7)

For sufficiently smooth tangential densities a, we also have

n× Fαa = Pαa

on S, where

(Pαa) (p) = n(p) × curl curl {Sαa} , p ∈ S.(3.8)

Note that Mα and Pα are related to the operators Mα and Nα in [10, section 2.7] by
Mαa = 2Mαa and Nαa = 2Pα{n× a}.

4. Statement of the problem. Let Bi denote a bounded three-dimensional
domain with a smooth closed boundary, S, and connected exterior, Be. Be is filled
with an achiral medium, with constant electromagnetic parameters εe and µe. Bi is
filled with a chiral medium, with parameters ε, µ, and β. A given electromagnetic
field is incident upon the obstacle; it is partly scattered and partly transmitted into
the obstacle. This leads to the following (dimensional) transmission problem.

Transmission problem. Find electric fields Ẽe and Ẽi and magnetic fields
H̃e and H̃i that satisfy Maxwell’s equations in Be,

curl Ẽe − iµeωH̃e = 0 and curl H̃e + iεeωẼe = 0, P ∈ Be,
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a modified form of these equations in Bi,

curl Ẽi − iµω(γ/k)2H̃i − βγ2Ẽi = 0

and

curl H̃i + iεω(γ/k)2Ẽi − βγ2H̃i = 0, P ∈ Bi,

and two transmission conditions on the interface,

n× Ẽt = n× Ẽi and n× H̃t = n× H̃i, p ∈ S,(4.1)

where the total fields in Be are given by

Ẽt(P ) = Ẽe + Ẽinc, H̃t(P ) = H̃e + H̃ inc, P ∈ Be,(4.2)

and {Ẽinc, H̃ inc} is the given incident field. In addition, the scattered fields {Ẽe, H̃e}
must satisfy a Silver–Müller radiation condition [10, section 4.2],

√
µer̂P × H̃e +

√
εeẼe = o(r−1

P ) as rP → ∞,(4.3)

uniformly for all directions r̂P .
We assume that the constants εe and µe are positive, whereas the constants ε,

µ, and β can be complex. Thus, with the chiral wavenumbers γL and γR defined
by (2.10), with k2 = ω2µε and γ2 = γLγR, we assume that [4]

Re γL > 0, Re γR > 0, Im γL ≥ 0, Im γR ≥ 0, and η > 0,

where η =
√

µ/ε is the (real) intrinsic impedance of the chiral medium. Athanasiadis
and Stratis [4] have proved that, with these assumptions, the transmission problem
has precisely one solution for all frequencies. Ola [23] has obtained similar results,
assuming that the chiral parameters are all real. Ammari and Nédélec [1] have proved
unique solvability for inhomogeneous obstacles, assuming that µ, ε, and β are twice-
continuously differentiable real functions of position everywhere in space, taking con-
stant values outside a bounded region. A uniqueness theorem for a homogeneous chiral
obstacle embedded in a different homogeneous chiral medium is proved in appendix A.
This theorem also permits more general transmission conditions than (4.1).

It is convenient to consider a dimensionless version of the transmission problem.
Thus, scale all lengths using a, a typical length-scale for the chiral obstacle, and then
put

Ẽe =
√
µeEe, H̃e =

√
εeHe, Ẽi =

√
µE, H̃i =

√
εH,

with similar scalings for Ẽt, H̃t, Ẽinc, and H̃ inc. These scalings reduce the transmis-
sion problem to the following problem.

Dimensionless transmission problem. Find electric fields Ee and E and
magnetic fields He and H that satisfy Maxwell’s equations in Be,

curlEe − i(kea)He = 0 and curlHe + i(kea)Ee = 0, P ∈ Be,

a modified form of these equations in Bi,

curlE − i(ka)(γ/k)2H − βaγ2E = 0
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and

curlH + i(ka)(γ/k)2E − βaγ2H = 0, P ∈ Bi,

and two transmission conditions on the interface,

ρn×Et = n×E and δn×Ht = n×H, p ∈ S,(4.4)

where the total fields in Be are given by Et = Ee + Einc and Ht = He + H inc,

ke = ω
√
µeεe, ρ =

√
µe/µ, and δ =

√
εe/ε.

In addition, the scattered fields {Ee,He} must satisfy a Silver–Müller radiation con-
dition

r̂P ×He + Ee = o(r−1
P ) as rP → ∞.(4.5)

As δ = kea/(ρka) and (γ/k)2 = (1 − k2β2)−1, we see that there are four dimen-
sionless parameters, which we can take as

kea, ka, kβ, and ρ.

For an achiral obstacle, β = 0 so that there are then only three dimensionless
parameters. Moreover, for chiral obstacles, one typically has

|kβ| ≪ 1,

so this suggests that “low-chirality” approximations will be useful.
Alternative approximations are based on the assumption that the frequency is

low, so that kea ≪ 1; see [3] and [5].
In practice, it is common to consider an impedance-matched obstacle, so that

η = ηe, where η =
√

µ/ε and ηe =
√
µe/εe.

This implies that ρ = δ and so kea = ρ2ka, which again reduces the problem to one
involving three dimensionless parameters.

Henceforth, we assume that all lengths have been scaled using a, and so we can
set a = 1.

5. Boundary integral equations. We are going to reduce the transmission
problem to a pair of coupled boundary integral equations over S. This can be done in
many ways. Our preferred choice is a direct method (meaning that the unknowns are
physically relevant) leading to a generalization of Müller’s equations for scattering by
an achiral obstacle.

Thus, in the exterior achiral region, we use the Stratton–Chu representation.
When this is applied in Be to {Ee,He}, it gives

2U e(P ) = Ce{n×U e} + k−1
e Fe{n×U ′

e}, P ∈ Be,(5.1)

where Ce and Fe are defined by (3.5) with γα replaced by ke. This representation
satisfies the Silver–Müller radiation conditions. It can be used for U e = Ee (in which
case U ′

e = iHe) or for U e = He (in which case U ′
e = −iEe).
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An application in Bi to {Einc,H inc} (with the exterior material) yields a similar
formula which, when added to (5.1), gives

2U e(P ) = Ce{n×U t} + k−1
e Fe{n×U ′

t}, P ∈ Be.(5.2)

Computing the tangential components of (5.2) on S, we obtain

(I −Me){n×U t} − k−1
e Pe{n×U ′

t} = 2n×U inc,(5.3)

where U t, U
′
t, U inc, Me, and Pe are defined in an obvious manner.

In the interior chiral region, we use the generalization of the Stratton–Chu formula
(3.6). Computing the tangential components on S, we obtain

(I + M+ + P−){n×U} + (M− + P+){n×U ′} = 0,(5.4)

where

M± = 1

2
(ML ±MR) and P± = 1

2
(γ−1

L PL ± γ−1
R PR).

Next, we use the transmission conditions (4.4) in (5.3) and (5.4). Setting U t = Et

and U t = Ht in (5.3), we obtain

(I −Me)J − ik−1
e PeM = 2J inc(5.5)

and

(I −Me)M + ik−1
e PeJ = 2M inc,(5.6)

where, as is customary, we have defined J , M , J inc, and M inc by

J(p) = n×Ht, M(p) = −n×Et, J inc = n×H inc, and M inc = −n×Einc

for p ∈ S. Similarly, (5.4) gives

(I + M+ + P−)J + i(ρ/δ)(M− + P+)M = 0(5.7)

and

(I + M+ + P−)M − i(δ/ρ)(M− + P+)J = 0.(5.8)

Equations (5.5)–(5.8) are four boundary integral equations for the two unknowns
J(q) and M(q). We shall choose two linear combinations of these equations, namely,

α1(5.5) + α2(5.6) + α3(5.7) + α4(5.8)(5.9)

and

α′
1(5.5) + α′

2(5.6) + α′
3(5.7) + α′

4(5.8),(5.10)

where αj and α′
j , j = 1, 2, 3, 4, are constants to be specified.

When β = 0, several choices have been investigated, both theoretically and nu-
merically; see [12] and [20] for reviews. For all these choices, we always have existence:
J and M are just the tangential components of Ht and Et, respectively, and we al-
ready know that the transmission problem always has precisely one solution. However,
the question of uniqueness is less obvious.



SCATTERING BY A CHIRAL OBSTACLE 1753

One good choice is by Müller [21]; see also [13, section 6.29]. Müller took

α1 = µe, α3 = µ, α′
2 = εe, α′

4 = ε, and α2 = α4 = α′
1 = α′

3 = 0.(5.11)

This choice leads to a Fredholm system of the second kind: by construction, the
hypersingular operators Pα occur only in the combination (Pe − Pi), and this dif-
ference is known to be compact in the space of Hölder-continuous tangential vector
densities [20]. Numerical results obtained from Müller’s system of boundary integral
equations are given in [8].

The chiral case is more complicated. For choice (5.9), we obtain

{(α1 + α3)I + M1 + P1}J + {(α2 + α4)I + M2 + P2}M = 2α1J inc + 2α2M inc,

where

M1 = −α1Me + α3M+ − i(δ/ρ)α4M−,(5.12)

M2 = −α2Me + i(ρ/δ)α3M− + α4M+,(5.13)

P1 = i(α2/ke)Pe + α3P− − i(δ/ρ)α4P+,(5.14)

P2 = −i(α1/ke)Pe + i(ρ/δ)α3P+ + α4P−.(5.15)

We want to eliminate the hypersingularities in P1 and P2, so we require (from (5.14))
that

i(α2/ke) + 1

2
α3(γ

−1
L − γ−1

R ) − 1

2
i(δ/ρ)α4(γ

−1
L + γ−1

R ) = 0(5.16)

and (from (5.15))

−i(α1/ke) + 1

2
i(ρ/δ)α3(γ

−1
L + γ−1

R ) + 1

2
α4(γ

−1
L − γ−1

R ) = 0.(5.17)

We impose similar constraints on α′
j . Moreover, to obtain a second-kind system, we

also require that

∣∣∣∣
α1 + α3 α2 + α4

α′
1 + α′

3 α′
2 + α′

4

∣∣∣∣ 6= 0.(5.18)

The constraints (5.16) and (5.17) simplify to

α2 − δ2α4 + ikeβα3 = 0 and α1 − ρ2α3 − ikeβα4 = 0,(5.19)

with similar constraints on α′
j .

We want a pair of equations that reduces to Müller’s pair when β = 0. Therefore,
we choose

α1 = (kρ/γ)2, α2 = 0, α3 = 1, α4 = i(ρ/δ)kβ

and

α′
1 = 0, α′

2 = (kδ/γ)2, α′
3 = −i(δ/ρ)kβ, α′

4 = 1.

These choices satisfy (5.19). They reduce to Müller’s choice (5.11) when β = 0 (apart
from a constant factor). The condition (5.18) will also be satisfied if

(1 + ρ2)(1 + δ2) 6= k2
eβ

2.
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Substituting for αj and α′
j into (5.9) and (5.10), respectively, and simplifying, we

obtain

{I + (kρ/γ)2(I −Me) + A}J + i(ρ/δ)BM = 2(kρ/γ)2J inc,(5.20)

−i(δ/ρ)BJ + {I + (kδ/γ)2(I −Me) + A}M = 2(kδ/γ)2M inc,(5.21)

where

A = 1

2
(k/γ2)(γLML + γRMR + PL − PR),

B = 1

2
(k/γ2)(γLML − γRMR + PL + PR − 2Pe).

Equations (5.20) and (5.21) are our generalized Müller equations for solving the prob-
lem of electromagnetic scattering by a chiral obstacle. When the obstacle is achiral
(β = 0), the equations reduce to Müller’s equations:

{I + ρ2(I −Me) + A0}J + i(ρ/δ)B0M = 2ρ2J inc,(5.22)

−i(δ/ρ)B0J + {I + δ2(I −Me) + A0}M = 2δ2M inc;(5.23)

here, A0 = M , B0 = k−1(P − Pe), and M and P are defined by (3.7) and (3.8),
respectively, with γα replaced by k.

5.1. Uniqueness. The pair (5.20) and (5.21) is uniquely solvable. Existence
follows as when β = 0; see the paragraph following (5.10). To prove uniqueness, we
adapt fairly standard arguments. Thus, let J0 and M0 solve the homogeneous forms
of (5.20) and (5.21), and then construct the following eight fields:

−CeM0 + ik−1
e FeJ0 =

{
2E0

e(P ), P ∈ Be,

−2Ê(P ), P ∈ Bi,

CeJ0 + ik−1
e FeM0 =

{
2H0

e(P ), P ∈ Be,

−2Ĥ(P ), P ∈ Bi,

− 1

2
ρ(CL + CR + γ−1

L FL − γ−1
R FR)M0

+ 1

2
iδ(CL − CR + γ−1

L FL + γ−1
R FR)J0 =

{
2Êe(P ), P ∈ Be,

−2E0(P ), P ∈ Bi,
1

2
δ(CL + CR + γ−1

L FL − γ−1
R FR)J0

+ 1

2
iρ(CL − CR + γ−1

L FL + γ−1
R FR)M0 =

{
2Ĥe(P ), P ∈ Be,

−2H0(P ), P ∈ Bi.

Evaluating the tangential components of these fields on S, we find first that

J0 = n×H0
e + n× Ĥ = δ−1(n× Ĥe + n×H0),(5.24)

−M0 = n×E0
e + n× Ê = ρ−1(n× Êe + n×E0).(5.25)

Next, from the governing integral equations for J0 and M0 (in the form of (5.9)
and (5.10)), we calculate that

α1 n× Ĥ − α2 n× Ê + δ−1α3 n× Ĥe − ρ−1α4 n× Êe = 0 on S,

with another equation obtained by changing αj to α′
j . As α2 = α′

1 = 0, these are seen
to be generalized transmission conditions in the form of (A.1) and (A.2), in which

c11 =
−α′

4

ρα′
2

, c12 =
α′

3

δα′
2

, c21 =
α4

ρα1

, and c22 =
−α3

δα1

.
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It follows that {Êe, Ĥe} and {Ê, Ĥ} solve a homogeneous generalized transmission
problem in which the materials have been interchanged (achiral obstacle embedded
in a chiral medium), and so these fields must vanish identically by the uniqueness
theorem proved in appendix A.

Now, consider the fields {E0
e,H

0
e} and {E0,H0}. Direct calculation shows that

ρn×E0
e − n×E0 = n× Êe − ρn× Ê = 0 on S,

as Êe ≡ 0 and Ê ≡ 0. Similarly, δn × H0
e = n × H0 on S. Hence, as {E0

e,H
0
e}

and {E0,H0} solve the homogeneous transmission problem, they also must vanish
identically. Finally, (5.24) and (5.25) imply that J0 ≡ 0 and M0 ≡ 0, as required.

6. Low-chirality approximations. In practice, the chirality parameter kβ is
usually small. This motivates the development of low-chirality approximations. Thus,
corrections to first-order in kβ for sources above a slightly chiral half-space have been
found [18], [26]. Here, we consider how to compute such corrections for scattering by
a slightly chiral obstacle.

It is known that the solution of the transmission problem depends continuously
on β as β → 0 through positive real values [2]. In fact, the solution is actually an
analytic function of β. To see this, consider the Bohren field QL. From (2.9), we see
that QL satisfies

(∇2 + γ2
L)QL = 0.

Thus, QL is an analytic function of γL; see [28], for example. But, from (2.10),
γL is a rational function of β, whence QL is an analytic function of β. A similar
argument applies to QR. Since k is fixed and |kβ| is small, it follows from the Bohren
decomposition (2.8) that the solution is an analytic function of kβ for |kβ| < 1.

Rather than seek power-series solutions of the transmission problem directly, we
expand the solutions of the governing integral equations. Thus, we write

J ≃ J0 + ikβJ1 and M ≃ M0 + ikβM1,

where the error is O((kβ)2) as kβ → 0. For small kβ, we have

γL ∼ k(1 + kβ), eiγLR ∼ eikR(1 + ik2βR),

and

SLa ≃ Sa + ikβ Ta,

where

(Ta)(P ) =
k

2π

∫

S

a(q) eikR dsq.

Similarly, SRa ≃ Sa− ikβ Ta. Thus, we obtain

ML ≃ M + ikβ L, PL ≃ P + ikβ Q,

MR ≃ M − ikβ L, and PR ≃ P − ikβ Q

with an error of O((kβ)2), where

La = n× curl {Ta} and Qa = n× curl curl {Ta}.
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Note that L is an integral operator with a continuous kernel, whereas Q has a weak
singularity.

Substituting these approximations into the exact boundary integral equations,
(5.20) and (5.21), we find that {J0,M0} solves Müller’s equations, (5.22) and (5.23).
The first-order correction {J1,M1} also solves Müller’s equations but with different
functions on the right-hand sides: replace

2ρ2J inc by − k−1QJ0 − (ρ/δ)(M + iL)M0

and

2δ2M inc by − k−1QM0 + (δ/ρ)(M + iL)J0.

In principle, one can calculate higher-order approximations, but the new right-hand
sides will be much more complicated. However, we can see that computing the first-
order correction is fairly straightforward.

The virtue of this strategy is clear. Sophisticated codes have been developed for
solving Müller’s equations [8]. By a simple modification, these can be used to compute
the correction due to chirality of the obstacle. Note that the approximations obtained
for J and M can be inserted into (3.2) and (3.6) so as to generate exact solutions of
the governing equations in Be and Bi.

Appendix A. A chiral/chiral uniqueness theorem. Consider a chiral ob-
stacle surrounded by a different unbounded chiral medium. The parameters of the
external medium are distinguished by the subscript e. We are going to prove that,
under certain conditions, the following transmission problem has only the trivial so-
lution. Note that we consider more general interface conditions than previously; they
are needed in our analysis of the system of integral equations in section 5.1.

Homogeneous transmission problem. Find electric fields Ee and E and
magnetic fields He and H that satisfy

curlEe − i(γ2
e/ke)He − βeγ

2
eEe = 0

and

curlHe + i(γ2
e/ke)Ee − βeγ

2
eHe = 0

in Be,

curlE − i(γ2/k)H − βγ2E = 0

and

curlH + i(γ2/k)E − βγ2H = 0

in Bi, and two generalized transmission conditions on the interface S,

n×E = c11 n×Ee + c12 n×He(A.1)

and

n×H = c21 n×Ee + c22 n×He,(A.2)
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where c11, c12, c21, and c22 are constants. In addition, {Ee,He} must satisfy a
Silver–Müller radiation condition (4.5).

We proceed in a standard way [4], [23], although some deviations are discussed
in detail. Thus, let SR denote a large sphere of radius R enclosing Bi, and let Be,R

denote the region bounded internally by S and externally by SR.
An application of the divergence theorem in Bi to div (E ×H) gives

∫

S

n · (E ×H) ds = I(E,H, βγ2, γ2/k;Bi) ≡ Ii,

say, where the overbar denotes complex conjugation, and

I(E,H, κ1, κ2;B) = i

∫

B

{
2 Im (κ1)E ·H + κ2|H|2 − κ̄2|E|2

}
dV.(A.3)

Similarly, an application of the divergence theorem in Be,R to div (Ee ×He) gives

∫

SR

r̂ · (Ee ×He) ds−
∫

S

n · (Ee ×He) ds = I(Ee,He, βeγ
2
e , γ

2
e/ke;Be,R) ≡ Ie,

say. Hence

Re

∫

SR

Ee · (r̂ ×He) ds + Re {Ie} + Re

∫

S

n · (Ee ×He) ds = 0(A.4)

and

Re {Ii} = Re

∫

S

n · (E ×H) ds.(A.5)

Now, we eliminate the integrals over S using the transmission conditions. These give

n · (E ×H) = c11c̄22 n · (Ee ×He) − c12c̄21 n · (Ee ×He).

Assume that

c11c̄22 and c12c̄21 are real

and that

∆ ≡ c11c̄22 − c12c̄21 > 0.(A.6)

Then Re {n · (E ×H)} = ∆ Re {n · (Ee ×He)} whence (A.4) and (A.5) give

Re

∫

SR

Ee · (r̂ ×He) ds + Re {Ie} + ∆−1 Re {Ii} = 0.(A.7)

Next, we use the radiation condition. This gives
∫

SR

|r̂×He+Ee|2 ds =

∫

SR

(
|r̂ ×He|2 + |Ee|2

)
ds+2 Re

∫

SR

Ee · (r̂×He) ds = o(1)

as R → ∞. We can eliminate the last integral using (A.7). From (A.3), we have

Re {I} = −Im (κ2)

∫

B

(
|E|2 + |H|2

)
dV − 2 Im (κ1)

∫

B

Im (E ·H)dV.
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But, using the Bohren transformation (2.8), we obtain

2|E|2 + 2|H|2 = |QL|2 + |QR|2 and 4 Im (E ·H) = |QL|2 − |QR|2,

whence

2 Re {I} = −Im (κ2 + κ1)

∫

B

|QL|2 dV − Im (κ2 − κ1)

∫

B

|QR|2 dV.

It follows that
∫

SR

(
|r̂ ×He|2 + |Ee|2

)
ds + Im (γeL)

∫

Be,R

|QeL|2 dV + Im (γeR)

∫

Be,R

|QeR|2 dV

+ ∆−1

{
Im (γL)

∫

Bi

|QL|2 dV + Im (γR)

∫

Bi

|QR|2 dV
}

= o(1)

as R → ∞.
Thus, assuming that all the coefficients multiplying the above integrals are non-

negative, we deduce that
∫

SR

|Ee|2 ds = o(1) as R → ∞.(A.8)

Now, we have used the Silver–Müller condition (4.5). However, we also know that
{Ee,He} satisfies the other Silver–Müller condition, namely,

r̂P ×Ee −He = o(r−1
P ) as rP → ∞.(A.9)

(This can be shown as follows. First, note that the generalized Stratton–Chu for-
mula (3.6) holds in Be, if we replace the left-hand side by +2U(P ). From the repre-
sentations (3.3) and (3.4), we can show by direct calculation that

r̂P ×QeL + iQeL and r̂P ×QeR − iQeR

are both o(r−1
P ) as rP → ∞. From these, we can derive (4.5) and (A.9), using (2.8).)

Then, repeating the calculation, we deduce that
∫

SR

|He|2 ds = o(1) as R → ∞.

When this is combined with (A.8), we obtain
∫

SR

|QeL|2 ds = o(1) and

∫

SR

|QeR|2 ds = o(1)

as R → ∞. But, from the curl of (2.9), we have

(∇2 + γ2
eL)QeL = 0 and (∇2 + γ2

eR)QeR = 0

in Be. Hence, Rellich’s lemma implies that QeL ≡ 0 and QeR ≡ 0 in Be. The rest of
the argument is standard, and so we obtain uniqueness, assuming that

Im (γL) ≥ 0, Im (γR) ≥ 0,

Re (γeL) > 0, Re (γeR) > 0,

Im (γeL) ≥ 0, Im (γeR) ≥ 0
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and that (A.6) holds.
For the standard transmission conditions (4.4), we have c11 = ρ, c12 = c21 = 0,

and c22 = δ whence ∆ = c11c̄22 = ρδ̄ and c12c̄21 = 0. Then (A.6) reduces to the
condition that ρδ̄ be real. In terms of the intrinsic impedances η and ηe, (A.6) is
equivalent to

ηe/η is real and positive.

Appendix B. Dyadic Green’s functions. For Maxwell’s equations, we have
the dyadic Green’s function G0, defined by

G0(P,Q; k) = (I + k−2∇∇)G(P,Q; k),(B.1)

where I is the unit tensor; see, for example, [22] or [9, Chapter 7]. In terms of
components,

Gij =

(
δij +

1

k2

∂2

∂xi∂xj

)
G,

where rP = (x1, x2, x3). This leads to the representation

2U(P ) = −
∫

S

{curlP G0(P, q; k) · (n×U) + G0(P, q; k) · (n× curlU)} dsq(B.2)

for P ∈ Bi; see [22, equation (2.15)], noting that

curlP {G0(P,Q; k)} ·a = curlP {G(P,Q; k)a}(B.3)

= (gradP G) × a = a · {curlQ G0(Q,P ; k)},

where a is any vector that does not depend on P .
The representation (B.2) is identical to the Stratton–Chu formula (3.2). To see

this, first note that (B.3) immediately gives

C{n×U} =

∫

S

curlP G0(P, q; k) · (n×U) dsq.

From Maxwell’s equations (that is, (2.5) with β = 0), we have curlU = kU ′, so it
remains to show that

(Fa)(P ) = k2

∫

S

G0(P, q; k) ·a(q) dsq,(B.4)

where a(q) = n×U ′. Substituting for F and G0, we have to show that

curlP curlP {a(q)G(P, q; k)} = k2aG + gradP {divP (aG)}.(B.5)

But curlP {aG} = (gradP G) × a(q) whence the left-hand side of (B.5) is k2aG +
(a ·∇P ) gradP G. The result follows by noting that, for any constant vector e,

e · (a ·∇P ) gradP G = eiaj
∂

∂xj

∂G

∂xi

= ei
∂2

∂xi∂xj

(ajG) = e · gradP {divP (aG)} .

It is known that the two representations (3.2) and (B.2) are identical [9, section
1.4.2] but this fact is seldom exploited. We can use it to derive the chiral generalization
of the Stratton–Chu formula from the known chiral analogue of (B.2).
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Thus, for chiral media, the dyadic Green’s function is given by [16, p. 60]

G(P,Q) = GL(P,Q) + GR(P,Q),

where GL is a left-handed field, GR is a right-handed field,

GL(P,Q) = 1

2
kγ−2 {γL G0(P,Q; γL) + curlP IG(P,Q; γL)} ,

GR(P,Q) = 1

2
kγ−2 {γR G0(P,Q; γR) − curlP IG(P,Q; γR)} ,

and G0 is defined by (B.1); note that G(P,Q) = G0(P,Q; k) when β = 0. This leads
to the representation

−2U(P ) =

∫

S

curlP G(P, q) · (n×U) dsq

− 2γ2β

∫

S

G(P, q) · (n×U) dsq +

∫

S

G(P, q) · (n× curlU) dsq,

which reduces to (B.2) when β = 0. Making use of (2.7), we can eliminate curlU to
give

−2U(P ) =

∫

S

curlP G(P, q) · (n×U) dsq

+

∫

S

G(P, q) ·

{
γ2

k
(n×U ′) − γ2β(n×U)

}
dsq.

Write this formula as −2U = I1 + I2 and then consider each integral separately.
For I1, we note that

curlP GL(P, q) ·a = 1

2
kγ−2 (γL curlP + curlP curlP ) {aG(P, q; γL)}

and

curlP GR(P, q) ·a = 1

2
kγ−2 (γR curlP − curlP curlP ) {aG(P, q; γR)} .

Hence, the first integral I1 can be written as

I1 = 1

2
kγ−2 (γL CL{n×U} + γR CR{n×U})

+ 1

2
kγ−2 (FL{n×U} − FR{n×U}) ,

where Cα and Fα are defined by (3.5).
Next, consider the second integral I2. We have

∫

S

GL(P, q) ·a(q) dsq =
kγL
2γ2

∫

S

G0(P, q; γL) ·a(q) dsq

+
k

2γ2
curl

∫

S

a(q)G(P, q; γL) dsq

= 1

2
kγ−2

{
γ−1
L FLa + CLa

}
,

using (B.4). Similarly

∫

S

GR(P, q) ·a(q) dsq = 1

2
kγ−2

{
γ−1
R FRa− CRa

}
.
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Hence,

I2 = 1

2

(
γ−1
L FL{n×U ′} + CL{n×U ′}

)

+ 1

2

(
γ−1
R FR{n×U ′} − CR{n×U ′}

)

− 1

2
kβ

(
γ−1
L FL{n×U} + CL{n×U}

)

− 1

2
kβ

(
γ−1
R FR{n×U} − CR{n×U}

)
.

Finally, grouping terms, using kγ−2γL − kβ = kγ−2γR + kβ = 1, we obtain (3.6),
as required. This gives an alternative proof of (3.6).
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