
*Correspondence to: P. A. Martin, Department of Mathematics, University of Manchester, Manchester
M13 9PL, UK. E-mail: pamartin@man.ac.uk

Contract/grant sponsor: British Council
Contract/grant sponsor: University of Athens

CCC 0170}4214/99/141175}14$17.50 Received 6 May 1998
Copyright ( 1999 John Wiley & Sons, Ltd.

Mathematical Methods in the Applied Sciences
Math. Meth. Appl. Sci., 22, 1175}1188 (1999)
MOS subject classi"cation: 35 Q 60; 45 F 05; 78 A 45

Electromagnetic Scattering by a Homogeneous

Chiral Obstacle: Scattering Relations

and the Far-Field Operator

C. Athanasiadis1, P. A. Martin2,* and I. G. Stratis1

1 Department of Mathematics, University of Athens, Panepistimiopolis, GR 15784 Athens, Greece
2 Department of Mathematics, University of Manchester, Manchester M13 9PL, U.K.

Communicated by G. F. Roach

Time-harmonic electromagnetic waves are scattered by a homogeneous chiral obstacle. The reciprocity
principle, the basic scattering theorem and an optical theorem are proved. These results are used to prove
that if the chirality measure of the obstacle is real, then the far-"eld operator is normal. Moreover, it is
shown that the eigenvalues of the far-"eld operator are the same as the eigenvalues of Waterman's
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1. Introduction

In recent years, extensive work has been performed on various problems related to

electromagnetic scattering in chiral media; see the monograph by Lakhtakia [15] and

the references therein.

In this work we study the reciprocity principle, the general scattering theorem and

an optical theorem for the far-"eld pattern corresponding to the scattering of plane

time-harmonic electromagnetic waves by a homogeneous chiral obstacle. Such results

for achiral obstacles have been proved by Twersky in [18]; analogous scattering

relations for a piecewise homogeneous achiral obstacle have been proved by one of

the present authors [3]. Reciprocity relations for scattering problems corresponding

to di!erent boundary conditions have been studied by Angell et al. [2], and by Colton

and Kress in their book [9].

In section 2 we formulate the scattering problem and furnish an equivalent dimen-

sionless transmission problem; the introduction of convenient notation allows a



uni"ed study of both electric and magnetic "elds. In section 3 we prove the reciprocity

principle, the basic scattering theorem and an optical theorem.

In section 4, we introduce Herglotz pairs and the far-"eld operator F, by analogy

with the ideas of Colton and Kress [10]. We establish some scattering relations and

study the point spectrum of F. Finally, in section 5, we show that the eigenvalues of

F are the same as the eigenvalues of Waterman's ¹-matrix (apart from a factor of 4n).

This result is general and does not depend on the composition of the obstacle,

although the existence proof for the eigenvalues only works for loss-less obstacles.

2. Chiral media

A homogeneous isotropic chiral medium is characterized by three (complex) para-

meters. These are the electric permittivity e, the magnetic permeability k and the

chirality measure b. Thus, we use the Drude}Born}Fedorov constitutive relations

D"e (E3 #b curl E3 ) and B"k (H3 #b curl H3 ),

where E3 is the electric "eld, H3 is the magnetic "eld, B is the magnetic #ux density and

D is the electric #ux density.

In a source-free region, we also have

curl E3 !iu B"0 and curl H3 #iuD"0,

where we have suppressed a time dependence of e~*ut throughout.

Let B
*
denote a bounded three-dimensional domain with a smooth closed bound-

ary, S, and connected exterior, B
%
. B

%
is "lled with an achiral (b"0) medium, with

constant electromagnetic parameters e
%
and k

%
. B

*
is "lled with a chiral medium, with

parameters e, k and b. A given electromagnetic "eld is incident upon the obstacle; it is

partly scattered and partly transmitted into the obstacle. This leads to the following

(dimensional) transmission problem.

¹ransmission Problem. Find electric "elds E3
4#

and E3
*
, and magnetic "elds H3

4#
and H3

*
,

that satisfy Maxwell's equations in B
%
,

curl E3
4#

!ik
%
u H3

4#
"0 and curl H3

4#
#ie

%
u E3

4#
"0, in B

%
,

a modi"ed form of these equations in B
*
,

curl E3
*
!iku (c/k)2 H3

*
!bc2 E3

*
"0

curl H3
*
#ieu (c/k)2 E3

*
!bc2 H3

*
"0

in B
*
, (2.1)

and two transmission conditions on the interface,

n;]E3
5
"n;]E3

*
and n;]H3

5
"n;]H3

*
on S,

where n; is the outward unit normal vector, and the total "elds in B
%

are given by

E3
5
"E3

4#
#E3

*/#
, H3

5
"H3

4#
#H3

*/#
, in B

%
,
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and (E3
*/#

, H3
*/#

) is the given incident "eld. In addition, the scattered "elds (E3
4#
, H3

4#
)

must satisfy a Silver}MuK ller radiation condition

Jk
%
r;]H3

4#
#Je

%
E3
4#

"o (r~1) as rPR,

uniformly for all directions r; 3S2, where S2 is the unit sphere.

We assume that the constants e
%
and k

%
are positive, whereas the constants e, k and

b can be complex. The constant c appearing in (2.1) is given by

c2"k2 (1!k2 b2)~1.

We always assume that D kb D(1.

It has been proved, under di!erent assumptions on the physical parameters, by

Athanasiadis and Stratis [5], and by Ola [15], that this transmission problem has

a unique solution. Ammari and NeH deH lec [1] have proved unique solvability for

inhomogeneous obstacles, assuming that k, e and b are twice-continuously di!erenti-

able real functions of position everywhere in space, taking constant values outside

a bounded region.

It is convenient to consider a dimensionless version of the transmission problem

[4]. Thus, scale all lengths using a, a typical length scale for the chiral obstacle, and

then put

E3
4#

"Jk
%

E
4#
, H3

4#
"Je

%
H

4#
, E3

*
"JkE, H3

*
"JeH,

with similar scalings for E3
5
, H3

5
, E3

*/#
and H3

*/#
. These scalings reduce the transmission

problem to the following dimensionless problem (assuming that E
*/#

and H
*/#

are

dimensionless).

Dimensionless ¹ransmission Problem. Find electric "elds E
4#

and E, and magnetic

"elds H
4#

and H, that satisfy Maxwell's equations in B
%
,

curl E
4#

!i (k
%
a) H

4#
"0 and curl H

4#
#i (k

%
a) E

4#
"0 in B

%
, (2.2)

a modi"ed form of these equations in B
*
,

curl E!i(ka) (c/k)2 H!bac2 E"0,

curl H#i(ka) (c/k)2 E!bac2 H"0
in B

*
, (2.3)

and two transmission conditions on the interface,

on;]E
5
"n;]E and dn;]H

5
"n;]H on S, (2.4)

where the total "elds in B
%

are given by E
5
"E

4#
#E

*/#
and H

5
"H

4#
#H

*/#
,

k
%
"u Jk

%
e
%
, o"Jk

%
/k and d"Je

%
/e.

In addition, the scattered "elds (E
4#
, H

4#
) must satisfy a Silver}MuK ller radiation

condition

r;]H
4#

#E
4#

"o (r~1) as rPR.
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Henceforth, we assume that all lengths have been scaled using a, and so we can set

a"1.

It is also convenient to introduce "elds U and U@ (the dual of U) as follows:

if U"E then U@"i H, (2.5)

if U"H then U@"!i E. (2.6)

Here, (E, H) are regarded as solutions of (2.3). With this notation, we can write (2.3)

(with a"1) as

curl U"c2 b U#(c2/k) U@. (2.7)

3. Scattering relations

The electromagnetic far-"eld pattern (E
=
(r; ), H

=
(r; )) is de"ned in terms of the

scattered electromagnetic "eld (E
4#
(r), H

4#
(r)) by the relations [9]

E
4#

(r)"
e*k%r

r
E

=
(r; )#O (r~2), rPR, (3.1)

H
4#

(r)"
e*k%r

r
H

=
(r; )#O (r~2), rPR, (3.2)

uniformly in all directions r; 3S2. For the (dimensionless) incident electromagnetic

"eld, we take

E
*/#

(r; d< , p)"i (k
%
a) p ei(k%a) d< ) r ,

H
*/#

(r; d< , p)"d<]E
*/#

(r; d< , p)
(3.3)

(with a"1) where the unit vector d< describes the direction of propagation and the

complex vector p gives the polarization, and satis"es d< ) p"0. We shall indicate

the dependence of the scattered "eld, of the total exterior and interior "elds, and

of the far-"eld pattern on the incident direction d< and the polarization p, by writing

(E
4#

(r, d< , p), H
4#

(r; d< , p)), (E
5
(r; d< , p), H

5
(r; d< , p)) and (E

=
(r; ; d< , p), H

=
(r; ; d< , p)),

respectively.

Let us note that (E
*/#

, H
*/#

) and (E
5
, H

5
) satisfy (2.2) in B

%
. In what follows we shall

use the U-notation, given by (2.5) and (2.6); the meaning of the symbols U
4#
, U

*/#
, U

5
and U

=
is clear. Moreover, we shall employ the Twersky [18] notation

MU
1
, U

2
N
S

:" P
S

M(n;]U
1
) ) U@

2
!(n;]U

2
) ) U@

1
] ds. (3.4)

We are in a position to state and prove the following reciprocity principle.

Theorem 1. ¹he far-,eld pattern U
=

satis,es the reciprocity principle

q ) U
=

(r; ; d< , p)"p ) U
=

(!d< ; !r; , q),

for all d< , r; 3S2 and p, q3C3 with p ) d<"q ) r;"0.
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Proof. Using the transmission conditions (2.4) and applying the second vector

Green's theorem in B
*
, we obtain

MU(1)
t

, U(2)
t

N
S
"(od)~1 MU(1), U(2)N

S

"(od)~1 P
B*

[div (U(1)]U(2)@)!div (U(2)]U(1)@)] dv.

In view of (2.7), the volume integral vanishes whence MU(1)
5

, U(2)
5

N
S
"0. Substituting

U
5
"U

*/#
#U

4#
into this identity gives

MU(1)
4#

, U(2)
4#

N
S
#MU(1)

4#
, U(2)

*/#
N
S
#MU(1)

*/#
, U(2)

4#
N
S
#MU(1)

*/#
, U(2)

*/#
N
S
"0. (3.5)

From Gauss' divergence theorem and the Maxwell equations (2.2) (with a"1)

we have

MU(1)
*/#

, U(2)
*/#

N
S
"0. (3.6)

Using, in addition, the radiation condition we get

MU(1)
4#

, U(2)
4#

N
S
"0. (3.7)

From (3.5)}(3.7), we have

MU(1)
*/#

, U(2)
4#

N
S
"MU(2)

*/#
, U(1)

4#
N
S
. (3.8)

Also, from relations (6.24) in [9], taking into account that q ) r;"0, we obtain

q ) U
=

(r; ; d< , p)"!
i

4n
MU

4#
( ) ; d< , p), U

*/#
( ) ; !r; , q)N

S
. (3.9)

When this is combined with (3.8), we have

q ) U
=

(r; ; d< , p)"!
i

4n
MU

4#
( ) ;!r; , q), U

*/#
( ) ; d< , p)N

S

"p ) U
=

(!d< ; !r; , q),

which proves the theorem. K

We observe that the standard reciprocity relation for the achiral case, [9, p. 179], is

also valid for the chiral case. For a discussion of the basic reciprocity theorems for

electromagnetic wave "elds in time-invariant con"gurations, we refer to [12, ch. 28].

See also [7, sections 3.4, 10.5].

We proceed with the following basic scattering theorem. In the sequel the overhead

bar denotes complex conjugation.

Theorem 2. ¹he far-,eld pattern U
=

satis,es the relation

q ) U
=

(r; ; d< , p)#p6 ) U
=

(d< ; r; , q)"!
1

2n PS2

U
=

(r; @; d< , p) ) U
=

(r; @; r; , q) ds (r; @)

!
1

2n
B (d< , p; r; , q) (3.10)
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for all d< , r; 3S2 and p, q3C3 with d< ) p"r; ) q"0, where

B (d< , p; r; , q)"1
2

i MU
5
( ) ; d< , p), U

5
( ) ; r; , q)N

S
(3.11)

"Im A
c2
od1 kB (U@

1
, U@

2
)#Im A

c2
o6 dkB (U

1
, U

2
)

#Im (bc2) G
1

od1
(U@

1
, U

2
)#

1

o6 d
(U

1
, U@

2
)H , (3.12)

U
1
"U ( ) ; r; , q), U

2
"U ( ) ; d< , p) and

(U, V)"P
B*

U ) V1 dv

denotes the inner product in ¸2 (B
*
).

Proof. By the relation U
5
"U

*/#
#U

4#
and the bilinearity of the form (3.4) we obtain

MU
5
( ) ; d< , p), U

5
( ) ; r; , q)N

S
"MU

*/#
() ; d< , p), U

*/#
( ) ; r; , q )N

S

#MU
*/#

() ; d< , p), U
4#

( ) ; r; , q)N
S

#MU
4#

() ; d< , p), U
*/#

( ) ; r; , q)N
S

#MU
4#

() ; d< , p), U
4#

( ) ; r; , q )N
S

) (3.13)

From (3.9) we have

MU
*/#

( ) ; d< , p), U
4#

( ) ; r; , q)N
S
"4nip6 ) U

=
(d< ; r; , q), (3.14)

MU
4#

( ) ; d< , p), U
*/#

( ) ; r; , q)N
S
"4niq ) U

=
(r; ; d< , p), (3.15)

since U@
*/#

(r; d< , p)"!U@
*/#

(r;!d< , p6 ) and U
*/#

(r; d< , p)"!U
*/#

(r; !d< , p6 ).
We consider a sphere S

R
centred at the origin with radius R large enough to include

the chiral scatterer in its interior. Applying the second vector Green's theorem to

U
4#

( ) ; d< , p) and U
4#

( ) ; r; , q) in the region exterior to S and interior to S
R
, we obtain

MU
4#

( ) ; d< , p), U
4#

( ) ; r; , q)N
S
"MU

4#
( ) , d< , p), U

4#
( ) ; r; , q)NS

R
. (3.16)

For RPR, we can use the asymptotic forms (3.1) and (3.2) for the scattered "elds.

Taking into account that n;]U@
=

"i U
=

we conclude that

MU
4#

( ) ; d< , p), U
4#

( ) ; r; , q)N
S
"2i PS2

U
=

(r; @; d, p) ) U
=

(r; @ ; r; , q) ds (r; @). (3.17)
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Substituting (3.14)}(3.17) in (3.13), we arrive at (3.10), withB given by (3.11). To obtain

(3.12), we use the transmission conditions on S to give

B"
i

2o6 d P
S

n; ) (U1
2
]U@

1
) ds#

i

2od1 P
S

n; ) (U@
2
]U

1
) ds.

Then, an application of the divergence theorem in B
*
, together with (2.7) and

(U@)@"U, lead to the desired result. K

Note that B,0 if e, k and b are all real.

We conclude this section by recalling the de"nition of the scattering cross-section,

p, and proving an optical theorem that connects the far-"eld pattern to p. The

scattering cross-section is de"ned as the ratio of the time average rate (over a period)

at which energy is scattered by the obstacle, to the corresponding time average at

which the energy of the incident wave crosses a unit area normal to the direction of

propagation. The scattering cross-section has the dimensions of area and is a measure

of the distrubance caused by the obstacle to the incident wave.

Theorem 3. ¹he following relation holds:

p"!4n Re (p6 ) U
=

(d< ; d< , p))!B(d< , p; d< , p). (3.18)

Proof. Since B
%
is achiral, it can be proved as in the standard theory [18] that

p"PS2

DU
=

(r; ; d< , p) D2 ds (r; ).

The proof of (3.18) now follows, using Theorem 2 with r;"d< and p"q. K

We remark that, if e and k are positive, then

B (d< , p; d< , p)"
2k2 Im (b)

od D 1!k2 b2 D 2
[k (Re b) ( EU@ E2#E U E2)

#(1#k2 D b D2) Re M(U@, U)N], (3.19)

where EU E2"(U, U) gives the norm of U in ¸2 (B
*
). If, in addition, b is real we obtain

directly from (3.18) and (3.19) that

p"!4n Re (p6 ) U
=

(d< ; d< , p)),

which coincides with the classical optical theorem [3, 12, section 10.7, 13, p. 453, 18].

The scattering cross-section in this case (that is when e'0, k'0 and b is real) can be

calculated from the far-"eld pattern in the direction in which the incident wave is

travelling (forward scattering). Comments on the physical meaning of the classical

optical theorem in the achiral case can be found in [13, pp. 453}454].

4. Herglotz pairs

We consider the equations

curl U"k
%
U@ and curl U@"k

%
U. (4.1)
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Any solution (U
g
, U@

g
) of (4.1) of the form

U
g
(r)"ik

% P
SÈ

g (q; ) eik
%
q; ) r ds (q; ), (4.2)

U@
g
(r)"!k

% P
SÈ

q;]g (q; ) eik
%
q; ) r ds (q; ),

where g3¸2
T

(S2)"M f : S2PC3; f3¸2 (S2) and f (q; ) ) q;"0N, is called a Herglotz pair

with kernel g for (4.1). For the classical Maxwell equations, this notion is discussed

in [10].

In the sequel we consider Herglotz pairs as incident "elds. For g3¸2
T

(S2), de"ne

U
*/#, g by (4.2), so that

U
*/#,g

(r)"PS2

U
*/#

(r; q; , g (q< )) ds (q; ),

where U
*/#

is de"ned by (3.3). By linearity, the corresponding scattered "eld U
4#, g and

far-"eld pattern U
=,g

are given by

U
4#,g

(r)"PS2

U
4#

(r; q; , g (q< )) ds (q; )

and

U
=, g (r; )"PS2

U
=

(r; ; q; , g (q< )) ds (q; ),

respectively. De"ne U
*/#, h , U

4#, h and U
=, h similarly, with h3¸2

T
(S2). We have the

following result.

Theorem 4. ¹he following scattering relations hold:

MU
4#, g, U

*/#, hNS"!4ni SU
=, g, hT , (4.3)

MU
4#, g, U

4#, hNS"!2i SU
=, g, U

=,h
T . (4.4)

Here, by de,nition,

S f, gT"PS2

f (q; ) ) g (q; ) ds (q; )

denotes the inner product in ¸2 (S2).

The proof of (4.3) follows from (3.9), while the proof of (4.4) follows from (3.17) after

some calculations.
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We de"ne the far-,eld operator F : ¸2
T
(S2)P¸2

T
(S2), corresponding to the far-"eld

pattern U
=
, by

(Fh) (r; )"PS2

U
=

(r; ; q; , h (q; )) ds (q; ). (4.5)

Note that Fh is the far-"eld pattern of our transmission problem corresponding to the

incident wave U
*/#, h , [10]: Fh"U

=,h
.

The far-"eld operator plays a central role in the dual space method for solving the

achiral inverse electromagnetic scattering problem [9, p. 199]. Its acoustic analogue

also features prominently in the method of Colton and Kirsch [8] and Kirsch [14].

Using the operator F, we can restate Theorem 2 as follows:

Corollary 1.

SFg, hT#Sg, FhT#
1

2n
SFg, FhT"

i

4n
MU

5, g , U
5,h

N
S
. (4.6)

This is obtained by setting p"g (d< ) and q"h(r; ) in Theorem 2, and then integrating

over S2 twice.

For the subsequent discussion, we need to compute the quantity MU
5, g, U

5,h
N
S

in terms of the "elds in B
*
and the physical parameters of the scatterer. From (3.11),

we have

!1
2

i MU
5
( ) ; d< , g (d< )), U

5
( ) ; r; , h (r; ))N

S
"B (d< , g (d< ); r; , h(r; )).

Integrating this over d< 3S2 and over r; 3S2, using

U
'
"P

S2

U
2

ds (d< ) and Uh"P
S2

U
1

ds (r; ),

gives

!
i

2
MU

5,g
, U

5, hNS"Im A
c2
od1 kB (U@g, U@h)#Im A

c2
o6 dkB (Ug, Uh)

#
1

od1
Im (bc2) (Ug, U@h)#

1

o6 d
Im (bc2) (U@g, Uh). (4.7)

If the physical parameters e and k are positive, then (4.7) takes the form

!1
2
i MU

5, g, U
5 ,h

N
S
"(Im b) Ag, h , (4.8)

where

Ag, h"
k2

od D 1!k2 b2 D 2
M2k (Re b) [(U@g, U@h)#(Ug, Uh)]

#(1#k2 D b D2) [(Ug, U@h)#(U@g, Uh)]N.
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Theorem 5. Suppose that e'0, k'0 and Im b"0. ¹hen the far-,eld operator

is normal and hence has a countable number of eigenvalues. ¹hese eigenvalues all lie

on the circle

D j D2#4n Re j"0. (4.9)

Proof. Since Im b"0, Corollary 1 and (4.8) give

SFg, hT#Sg, FhT#
1

2n
SFg, FhT"0. (4.10)

As in [3, 10], it follows that F is a normal operator, and hence has a countable number

of eigenvalues. Now, let Fh"jh, j3C. Setting g"hO0 in (4.10), we conclude that

the eigenvalues lie on the circle (4.9). K

Note that, if we set h"g and Fg"jg in (4.6), and assume that Sg, gT"1,

we obtain

D j D2#4n Rej"1
2

i MU
5, g, U

5, gNS ,

so that the right-hand side must be real. Thus,

D j D2#4n Re j"!1
2

Im MU
5, g, U

5,g
N
S

"!Im P
S

(n;]U
5, g) ) U@

5, g ds

"Re P
S

n; ) (E
5, g]H

5, g ) ds,

which is recognized as the time-averaged #ow of electromagnetic energy across S

[13, p. 242]; this quantity vanishes as energy is neither created nor destroyed within

B
*
when e, k and b are all real.

Let us de"ne an operator R by

(Rh) (r; )"h (r; )#
1

2n
(Fh) (r; ).

Cho [7, section 10.5.2] calls R the &dynamic scattering amplitude operator'. It follows

from Theorem 5 that the eigenvalues of R are all on the unit circle. R is a unitary

operator. Colton and Kress [10, Eq. (2.23)] noted a similar relation between the

acoustic (scalar) far-"eld operator and the &scattering operator' S [7, section 10.2]. In

the next section, we relate the electromagnetic F to Waterman's ¹-matrix.

5. Connection with the T-matrix

In general, the scattering properties of an obstacle can be speci"ed using its

¹-matrix. Thus, surround an obstacle by a sphere of radius d and centre O. Assume
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that the given incident "eld can be expanded as

U
*/#

(r)"+
n

a
n
t)

n
(r) for r(d,

where t)
n
are regular spherical vector wave functions. Similarly, we can write

U
4#

(r)"+
n

f
n
t

n
(r) for r'd,

where t
n
are outgoing spherical vector wave functions. To be speci"c, we shall use the

notation and normalizations of BostroK m et al. [6, p. 173] in all that follows, with some

deviations; in particular, we use t) for their Ret.

The known coe$cients a
n
are related to the unknown scattering coe$cients f

n
by

f
n
"+

m

¹
nm

a
m
, or f"¹a

for brevity; see StroK m [17, p. 161]. Many properties of the ¹-matrix are known;

see Waterman [19] and StroK m [17, p. 162]. In particular, ¹ is symmetric, ¹
mn

"¹
nm

,

and, for loss-less obstacles, it satis"es

¹s ¹#Re ¹"0, (5.1)

where (¹s)
mn

"¹
nm

. We shall return to (5.1) later.

In the formulae above, m and n are multi-indices. We shall write n"ql where

q"1, 2 and l"pml is another multi-index. Thus, for example,

t
1l (r)"[l (l#1)]~1@2 curl Mr h(1)

l
(k

%
r) >pml

(r; )N

"h(1)
l

(k
%
r) A

1l (r; ),

where h(1)
l

is a spherical Hankel function, >pml
is a normalized spherical harmonic

[6, p. 171] and

A
1l (r; )"[l(l#1)]~1@2 curl Mr >pml

(r; )N

is a normalized real vector spherical harmonic. There are similar de"nitions for t
2l,

A
2l and t)

n
.

The functions MA
n
N form a complete orthonormal basis for ¸2

T
(S2). Thus, we have

g (r; )"+
n

g
n

A
n
(r; ), (5.2)

where g
n
"S g, A

n
T and r; ) g (r; )"0.

Let us now calculate Fg. In the far "eld, we have

tql (r)&
eik%r

k
%
r

(!i)l`2~q Aql (r; ) ,
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whence

(Fg) (r; )"k~1
%

+
ql

Aql (r; ) (!i)l`2~q fql .

Thus, we have the expansion

(Fg) (r; )"+
n

F
n
A

n
(r; ), (5.3)

where the coe$cients F
n
"SFg, A

n
T are given by

F"k~1
%

D¹a, (5.4)

D is a diagonal block matrix, given by

Dqpml, q@p@m@l @"(!i)l`2~q dqq@ dpp@ dmm@ dll@ ,

d
ij

is the Kronecker delta, and we have used f"¹a.

Next, we calculate the incident-"eld coe$cients a
n
. We start with the coe$cients

ap
n

for a plane wave. Thus, we have

p exp(i k ) r)"+
n

ap
n

t)
n

(r),

where

ap
n
"4n il`1~q p ) A

n
(k< ),

k"k
%
k< and p ) k"0. In the literature, this formula is usually given only for k along

the z-axis of the spherical coordinate system. We obtained it using the following

&connection formula',

4n il`1~q t)
n
(rk< )"PS2

exp (ik ) r) A
n
(r; ) ds (r; ),

which has been proved by Dassios and Rigou [11]. Then, setting p"ik
%
g (k< ), and

integrating over S2, we obtain

a
n
"4n k

%
il`2~q g

n
,

where g
n

are the coe$cients in the expansion (5.2). Thus, in terms of the matrix D,

we have

a"4nk
%
DM g.

When this is substituted into (5.4), we obtain (5.3) with

F"4n D¹DM g.

This gives a general representation for F. The composition of the obstacle (chiral or

achiral, homogeneous or inhomogeneous, perfectly conducting or otherwise) enters

through its ¹-matrix.
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We are interested in the eigenvalues of F. We have

0"Fg!jg"+
n

(F
n
!jg

n
) A

n

where, as DM "D~1,

F!jg"D (4n¹!jI) DM g.

Thus, we see that j is an eigenvalue of F if and only if j/(4n) is an eigenvalue of ¹.

This identi"es the eigenvalues of the far-"eld operator as being precisely those of

Waterman's ¹-matrix (apart from a factor of 4n).

For loss-less obstacles, we have the identity (5.1). Assume that

4n ¹g"jg.

We can normalise g with ggs"1, where gs"(gN )T. Hence, 4n gs ¹s"j1 gs. From (5.1),

noting the symmetry of ¹, we have

2gs ¹s ¹g#gs (¹#¹s) g"0.

Substituting for ¹g and gs¹s, we see that the eigenvalues j lie on the circle (4.9),

as before.
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