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In this paper,the propagationof time-harmonictorsionalwavesin compositeelasticcylindersis
investigated.An imperfect interface is consideredwhere tractions are continuous acrossthe
interfaceandthedisplacemenjump is proportionalto the stressactingon theinterface A frequency
equationis derivedfor the rod and dispersioncurvesof normalizedfrequencyas a function of
normalizedwave numberfor elasticbhimaterialswith varyingvaluesfor the interfaceconstant- are
presentedThe analysisis shownto recoverthe dispersioncurvesfor a bimaterialrod with a perfect
(welded interface(F=0), andhasthe correctlimiting behaviorfor largeF. It is shownthat the
modes,at any given frequency,are orthogonal,andit is outlined how the problemof reflectionof
a torsional mode by a planardefect(such as a circumferentialcrack can be treated. © 2000

Acoustical Society of America. [S0001-4966)0)04402-7
PACS numbers:43.20.Mv,43.20.Gp,43.35.Cg,43.38.DV[ANN |

INTRODUCTION

The motivation for this study comesfrom the applica-
tion of electromagneticacoustic transducers EMATS) to
thenondestructiveéestingof reinforcedcables We modelthe
cableasaninfinitely long bimaterialcylinder, with a core of
circular crosssectionsurroundedoy a coaxial cladding;the
core and the cladding are different homogeneoussotropic
elasticsolids.

Applications of EMATSs are reviewedby Frost (1979
andby Hirao andOgi (1997. We areinterestedn the useof
time-harmonictorsional waves in the compositecylinder.
Johnsonet al. (1994 haveusedEMATS to study standing
torsionalmodesin a single-materiatircularcylinder. Thisis
a classicalproblemoriginally studiedby Pochhammefsee,
for example, Achenbach,1973, sec. 6.10, or Miklowitz,
1978,sec.4.4).

Propagatiorof time-harmonictorsionalwavesin a rod
composedf two or more elasticlayershasalso beenstud-
ied; see Thurston’s paper (1978 for a comprehensivae-
view. Perhapsthe earliestwork is by Armenkas (1965,
1967,1971). He studiedthe dispersionof harmonicwaves
and establishedhe displacement&nd stressest the inter-
face of eachlayer analytically. A frequencyequationwas
obtainedby enforcing continuity conditionsat the interface
and a stress-freeboundarycondition on the lateral surfaces
of the cylindrical rod.

Charalambopouloet al. (1998 haveconsideredhefree
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vibration of a bimaterial elastic rod of finite length. The

problem was solved for time-harmonic waves using the

Helmholtzdecompositiorof the three-dimensionatlasticity
equations.The interfacebetweenthe layerswas considered
asperfect,providing continuity of displacemenandtraction.

The frequencyequationfor the full three-dimensionatod

wasfoundin termsof a 9X9 determinantakquationwhose
roots yieldthe dispersionrelationsfor the rod.

Rattanawangcharoeand Shah(1992 havealsoconsid-
eredthelayeredcylindrical rod, but they studiedthe problem
from a more generalperspectivein that their formulation
allowed many layers. A propagatormatrix approachwas
used which related the stressesand displacementf one
layer to the next. The propagatommatrix was found to im-
plicitly generatethe frequency equationfor the rod. The
main motivation for the paperwasto arrive at an efficient
computationakcheméfor the many-layemproblemwhich did
not rely on a homogenizationmethod such as integrating
throughthe layers.

In this paper,we considerthe bimaterialelasticcylinder
with an imperfectinterfacebetweenthe core and the clad-
ding. We do this becaussit is unrealisticto assumea per-
fectly bonded(welded interfacefor our intendedapplication
to reinforcedcables We modeltheimperfectinterfaceusing
a (linean modificationto the standardperfect-interfacecon-
ditions, allowing someslippage.The interfaceconditionsin-
volve a single dimensionlesparametef~. We study the ef-
fect of varying F on the dispersionrelations.Note that the
resultsfor a perfectly bondedinterfacecan be recoveredby
settingF=0.

EMATSs canbe usedto excite propagatingnodeswith a
specifiedaxial wavelength\, where\ is determinedby the
physicalspacingbetweerthe magnetof alternatingpolarity.
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FIG. 1. Geometryof the bimaterialcylinder.

Onethenadjuststhe frequencyw until one of the propagat-
ing torsionalmodesis excited. When sucha modeinteracts
with a defectin the compositecylinder, other allowable
modesat the frequencyw, but with variouswavelengthswill
be stimulated; evanescenimodes (decaying exponentially
with distancefrom the defec} will alsobe present,in gen-
eral. We showthat the torsionalmodesat a given frequency
areorthogonal extendinga proof dueto Gregory(1983. We
alsodiscussthe evanescenmodesandtheir computation.

Finally, we outline how our knowledge of the modal
structurefor the compositecylinder canbe usedto modelthe
problemof reflectionof a torsionalmodeby a thin defectin
a cross-sectiongblane. The EMAT systemcanonly receive
waveswith the samewavelengthas the incident mode, so
that someinformation at the excitationfrequencyw is lost;
but the experimentcan be repeatedat other modal frequen-
cies.

|. FORMULATION

Let (r,6,z) be cylindrical polar coordinatesWe con-
sider the infinite isotropic elasticbimaterialcylinder shown
in Fig. 1. The cylinder consistsof a solid core,r<a, sur-
roundedby anannularcladding,a<r <b; the coreandclad-
ding aremadeof materialsl and2, respectively Materialm
has Lame moduli \,,, and u,,, m=1,2. The analysispre-
sentedheregenerallyfollows Armengas (1965.

In general,the displacemenfield u=(u,v,w) in each
portion of the bimaterialcanbe written usingthe Lame sca-
lar potential ¢ and vector potential (¢, ,4¥,,%,); see,for
example,Achenbach,1973, sec.2.13. We are interestedin
torsionalwaves,for which the only non zero displacement
components the tangentialdisplacemenv, anduv itself is
requiredto be independenbf 6. Hence,the only potential
neededis the z-componentof the vector potential, i,= i,
say.In termsof ¢, we have

_

V=T oo (1)
The only nontrivial stresscomponentsre
Jv v
T F) 2
and
Jv
Toz= M 97" 3

The potential i satisfies
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1 42
2 —lzﬁ (4)

A=

where A is the Laplace operatorand c is the shearwave
speedFor wavespropagatingn the positive z-direction, the
appropriatesolutionof (4) canbe written as

P(r,z,t)=W(r)e' ke, (5
wherei is —1, k and w arereal,andV solves

1d s o

Fd—r(r\If’)+((w/c) —k5)¥=0. (6)

This is Bessel'sequationof orderzero. Its solutionsdepend
on the sign of w?—k?c?. Thus,define

Z,=J,, W,=Y,, andqg=+(w/c)>—k?> if w®>k3c?
™
and
Z,=(—1",, W,=K,, andqg=k’—(w/c)?

if w?<k2c?, (8

where J, and Y, are Besselfunctionsand |, and K,, are
modified Besselfunctions. The factor (—1)" will allow a
unified treatmentfor all frequencies.The behaviorof the
solutionasq— 0 will be examinedin somedetail later; for
now we assumehatq>0 (w?#k3c?).

So, the appropriatesolutionof (6) is

W(r)=q"2AZy(qr)+b*BWo(qr), (€)

where A and B are arbitrary constantsand the factorsq 2
andb? have beerintroducedfor later convenienceimplying
that A and B are dimensionlessrecall that b is the outer
radius.

The displacementield obtainedby substituting(5) and
9 in(1)is

v={q AZ;(qr)+gb?BW,(qr)}e'kz Y, (10

as Zy(x)=—241(x) and Wy(x)=—Wy(x). (Note that I
=1,.) From (2), we obtainfor the stress,

Tr9= — {AZ,(qr) +(qb)?BW,(qr)}e'®= eV (11)

as Zj(X)—x1Zy(x)=—Z»(x) and W;(x)—x Wy(x)
= - W2(X) .

Let usnow usethe expressiongbove,usingsubscriptsl
and?2 to indicatequantitiesin the coreandcladding,respec-
tively. Thus,from (10), the displacemenin the claddingis

va={05 "AsZ1(dar )+ qab?Bo Wi (gar ) Je e (12)

For the core, the solution for v, must be boundedat the
origin sowe have

v1=07 "ArZy(qyr)e' e, (13
In theseexpressionsy; is definedby
W if k*>Kk?,
= 1121 (14)

4=) 52 co2_r2 )

vk —k]-2 if ki<k,
wherek;= w/c;. Note thatthe wave number k, is the same
in the expressiondor g, andq,; this observationgives a
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relationbetweenq, andq,, which we will discusslater.

With referenceo Fig. 1, we now considerboundaryand
interfaceconditionson the displacementfield given by (12)
and (13). At the outer surface,we have the traction-free
boundarycondition

op=0 & r=h. (15

We considerthe interface conditionsin the following sec-
tion.

A. Interface conditions

A variety of conditionsmay be takenon the interface
r=a in orderto represenimperfectinterfaceconditions.A
review of interfaceconditionsfor elasticwave problemshas
beenpresentedy Martin (1992. For mostmodels,the dis-
placemenu™ andtractiont™ on onesideof theinterfaceare
assumedo be linearly relatedto the displacemenu™ and
tractiont™ on the other side of the interface.For example,
the model of Rokhlin and Wang (1991), originally derived
for planeinterfacestakesinterfaceconditionsof the form

[t]=Gu™ +Bt™, [u]=Ft"+Au,
where A, B, F, and G are 3X3 matrices,and the square
bracketsindicatea jump in the quantityacrossthe interface;
for example,if the interfaceis atr=a, we have

[ul=u"—u =u(a*,s)—u(a ,o), (16)
suppressinghe dependencen z andt. If the couplingterm
G canbeneglectedandfurthermoreif A andB aresetequal
to zero, we recoverthe model of Jonesand Whittier (1967
for a flexibly bondedinterface,

[t]=0, 7

[u]=Ft", (18
where F is a constantdiagonalmatrix. For simplicity, we
will usethe Jones-Whittier modelfor the analysispresented
here. For thin, elasticinterfacial layers, the elementsof F
have beemelatedto the thicknessandelasticconstant®f the
layer by, for example,Jonesand Whittier (1967, Mal and
Xu (1989, andPilarskiandRose(1988.

Fortorsionalwaves,u reducego a scalar forthetangen-
tial displacement andt reducego a scalar forthe tangen-
tial shearstresso,,. The interfaceconditionsarethen

Uro(ai):Ure(aJr) (19

and

[v]=(alu)For4(a), (20

where[v]=v,(a™)—v,(a”) andF is a dimensionlessca-
lar. Our goal is to investigatesolutionswhich satisfy (15),
(19), and(20) astheinterfaceparametef is varied.We note
thatif F=0, the perfectinterfaceconditionsof continuity of
tractionanddisplacementarerecovered.
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II. FREQUENCY EQUATION FOR THE ROD

We now presentthe details for the set of equations
which will determinethe dispersionrelationsin the bimate-
rial rod. Substitutingthe displacemenfield of (12) in the
boundarycondition, (15), yields

A,Z5(d2b) +(g2b) 2B, W, (g,b) =0. (21)

Following the Jones-Whittiermodel, we havefor continuity
of tractionacrossthe interface,from (12), (13), and(19),

(1! 12)A1Z,(018) — AxZ,(08) — (020)*B,W,(gpa) =0.
(22)
Note that neitherof theseequationschangesn the caseof
the perfectly bonded interface. The displacementjump
acrossthe interfaceis given by (20). We thenhave

(a1b) "*A{Z1(01@) —FaiaZ,(q,a)} — (dzb) “*AZ4(q,a)
—q,bB,W;(ga)=0. (23

Equations(21)—(23) providethreeequationsn the threeun-
known constantsA;, A,, andB,. In matrix form, the sys-
tem of equationds

Db=0, (24

where the elementsof the nonsymmetricmatrix D are ob-
taineddirectly from (21)—(23) andb=(A;,A,,B,)".
For a nontrivial solutionwe thenrequire

detD=0. (25)

This is the frequencyequationfor the rod.
The quantitydetD seemgo dependon only five dimen-
sionlessparametersnamely

d:b, b, a/b, wi/m,, andF; (26)

in particular,the densityratio (or, equivalently,c,/c,) does
not appearexplicitly. However,this is illusory: we haveto
know how to chooseZ,, (J,, or (—1)",?) andW, (Y, or
K,?) in eachmaterial,andthesechoicesdependon the rela-
tive sizesof k2, k?, andk3, informationthat we cannotex-
tractfrom a knowledgeof (26) alone.

Thuswe proceedasfollows. Assumethat we are given
valuesfor a/b, uq/u,, F, and

(27)

say.Choosea valuefor the axial wave numberkb. We now
seekvaluesof k,b, say, so that (25) is satisfied.Note that
k,b= ak,b, andthenq;b andq,b aredefinedby (14), with
the associatedselectionsof Z,, and W,, dictatedby (7) and
(8). In fact, the relationsbetweenqy, q,, ki, ky, k, and «
arecomplicated pecausehey dependon the relative magni-
tudesof k?, k2, andk3; therearefour casesassummarized
in Tablel. In this table,the secondcolumnspecifieghe four
casedn termsof the shearwave speedf the two materials
(theseare material constants and the axial wave speedc,
= w/k. A similar tablewasgiven by KleczewskiandParnes
(1987 in their studyof torsionalmodeswhenthe claddingis
unbounded b— ¢ in our notation.

In orderto comparewith Armenakas (1965 (for F=0),
we havedeterminedhe dispersioncurvesof normalizedfre-
quency,

CZ/C1=k1/k2=a,
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TABLE |. Relationsbetweenq; andqg,, in which a=c,/c;=k; /k, and
Cc,= wlk.

2

Wave numbers Wave speeds qi g; Relationbetweenq; andq,

K2<ki<k3 c;=c,<c, kI-k? kK3—K? gi=a?q3—k3(1-a?)
Ke<ki<k? cp=<cy<cC,

Ki<k®<k?  c;<C,<C, k3—k? k®—k2 ¢2=—a?q2—K3(1—a?)
K2<k?<k3 c,<c,<c; k?—kZ kK3—k? gi=—a?q5+k3(1—a?)
K<k2<k® co<ci=<c, k?—k2 k?—k2 q2=a?q2+K3(1—a?)
Ko<ki<k?®  cy<C,=<Cy

szkz(b_a)/’ﬂzw(b_a)/(WCZ),
as a function of normalizedaxial wave number,
é=k(b—a)lmw,

for a given value of the interfaceparameteir. We notethat
the frequencyequationdeterminecherecannotbe written in
termsof a singleargumentsuchasqa, which canbe donein
the caseof a rod madefrom a single material.As such,we
study numericalsolutionsto (25) in the next sectionfor val-
uesof a/b, F, andthe elasticconstants.

IIl. DISPERSION CURVES WITH VARYING INTERFACE
CONDITIONS

To benchmarkthe analysis presentedhere, we first
presentesultswhich canbedirectly comparedwvith Armena
kas (1965 in the caseof a perfectinterface,F=0. We take
a/b=0.25, 1/ u,=10,andc, /c,= 1.83(sothatthe density
ratio, p;/p,=3). We show the dispersioncurves of fre-
quency, ,, versuswave number, &, for F=0, F=1, F
=10,andF = 100for the secondnodein Fig. 2 andthethird

2.0
1.5
o
d
=
g
3
L: B
=]
Q
8
s
g
=]
Zz
0.5
| F=100
0.0 . | . , . , .
0.00 0.25 0.50 075 1.00

Normalized Wavenumber, &

FIG. 2. Dispersioncurvesfor the secondmodein the bimaterialcylinder.
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FIG. 3. Dispersioncurvesfor the third modein the bimaterialcylinder.

modein Fig. 3. The first modewill be analyzedin a subse-
quentsection.The dispersioncurvefor F=0 agreesxactly
with the analysisof Armenkas (1965. As the interfacepa-
rameteris increasednote the decreasen (),, especiallyat
the smallervaluesof & At higher valuesof &, the loss of
perfectcontinuity at the interfacehasa reducedeffect.

One featureof notein Fig. 3 is the curve for F=100,
which exhibits a cornerat £&=0.8. This is not a numerical
artifact: the figure wasproducedusingvery smallincrements
in & Similar behaviorwas found for other (large valuesof
F.

A secondway of visualizingthe behaviorof the disper-
sion curvesasthe interfaceparameteis variedis illustrated
in Fig. 4. In thefigure, we showresultsfor the secondmode
andplot frequency(),, versustheinterfaceparameterf, as
the wave number¢ is varied. As expectedwe seea much
greatereffecton ), by F at the smallerwavenumbersThis
suggestsa possiblemeasuremerdpproactfor determiningF
where¢ is fixed, ), is measuredandthenF is determined
from the figure.

The curvesshownin Fig. 4 appearto be approaching
asymptoticvaluesfor largeF. With referenceo theinterface
conditionsgiven by (20), we seethatin the limit asF—o
we recoverthe boundarycondition

0',0(a)=0

This is the appropriateboundary condition for the outer
boundaryof a solid rod of radiusa andfor the inner bound-
ary conditionfor a hollow tube with inner radiusa. In the
caseof F—o, the frequencyequationgiven by (25) reflects
this changein boundarycondition,

Z,(d12)9(d2a,q,b) =0, (29)

where
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FIG. 4. Normalizedfrequencyvs interfaceparameteat fixed wave number
in the bimaterialcylinder for the secondmode.

9(0,a,92b) = Z5(g,a) W(q2b) — Z,(q,b) Wo(g,a).

The frequencyequation(28) hastwo setsof solutions,one
given by Z,(q,a)=0 and the other given by g(g,a,q,b)
=0. Thefirst of theseis the frequencyequationfor a solid
rod of radiusa, whereagshe seconds the frequencyequation
for a hollow tubeof innerradiusa andouterradiusb. So,the
imperfectinterfaceformulationhasthe expectedehaviorfor
large valuesof F.

Numerically,one mustbe somewhatarefulin handling
the limit asF—o0 andcheckif therelationsbetweeng; and
g, givenin Tablel still hold. We presensometypical results
in Table Il wherewe have used F=1x10". Note in the
table that we report valuesof normalizedfrequency(), as
we havethroughoutthis paper,evenfor the solid rod modes
in material1 reportedin the table. From the table, we see
that the asymptoticvaluesof frequency(},, for the second
modein the compositerod, arethe nondispersivdirst modes
(g;a=0) in the solid rod. Also, the asymptoticvalues of

TABLE Il. Frequencie$or thesecondandthird modesin the compositerod
with F=1X 10% andcorrespondingrequenciegor thefirst modein asolid
rod and the secondmodein a hollow tube.

Q, Q, Q,, hollow tube Q,, solid rod
& secondmode third mode secondmode first mode
0.2 0.365 1.286 1.286 0.365
0.4 0.730 1.332 1.332 0.730
0.6 1.095 1.405 1.405 1.095
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frequency),, for the third modein the compositerod cor-
respondto the secondmodefrequenciesn the hollow tube.

Somediscussioron the interfaceparametef is perhaps
in order. As mentionedin the Introduction, the application
motivating the analysispresentedhereis the nondestructive
evaluationof reinforced cables.Typically thesecablesare
fabricatedwith a steelcoresurroundedy analuminumclad-
ding. Becauseof the underlying wire-rope structureof the
coreandthe cladding,the interfaceconditionsareimperfect.
Our approachhereis to treat the interface parameterin a
phenomenologicahannerto accountfor theimperfectinter-
face.As such,we do not stipulatea strict physicalinterpre-
tation to the numericalvalue of F, nor do we attemptto
relatethe value of F to elasticconstants.

IV. FIRST TORSIONAL MODE

Armendas (1965 notedthatthe first torsionalmodeis
not properlydescribedy the solutionof the Besselequation,
unlike the highertorsionalmodesanalyzedabove.Therefore,
specialconsideratiorof thefirst torsionalmodeis necessary,
andthis is carriedout next. For example whenq,=0, there
canbe a nondispersivanodepropagatingn the claddingof
the rod with dispersivemodesin the core.

Supposehat w?=k?c?, so thatq=0 and(6) reduceso

d

ar rvH=0,

with generalsolution
W (r)=A+Blogr.

This givesa solutionfor v proportionalto B/r, which cannot
be the generalsolutionasit involvesonly onearbitrarycon-
stant,B. Aswe areinterestedn W' ratherthan ¥, we return
to (6); differentiationwith respecto r gives
d1d V') |+ ((wlc)®>—k?)W'=0
dl’ r dr (r ) ((w C) ) ]
a second-ordeprdinary differential equationfor ¥’. When
w?=k?c?, the generalsolution of this equationis

W' (r)y=Ar+BI/r.
Hence,in dimensionlesgorm, we have
v(r,z,t)=(Ar+Bb?r)e'kz eV
and
o, 4(r,2,t)=—2uB(b/r)2e (kz= ), (30)

Note that the expression$29) and (30) canalsobe ob-
tainedby takingthe limit g—0 in (10) and(11) (apartfrom
somenumericalfactorswhich canbe absorbednto A andB).
This accountsfor the variousg-factorsin (10): they leadto
meaningful(bounded expressiongor small g.

Let usassumehatqg,=0. The outerboundarycondition
(15) impliesthatB,=0, whenceo, ,=0 in the claddingand

vy=A,rel ket (31)

Within the core,v, is givenby (13). For continuity of trac-
tionsacrossr =a, (19) gives

(29
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Alzz(qla) - O, (32)
whereashe imperfect-interfacecondition (20) gives
A1Z1(q,2) —qaA,=0. (33

Now, for nontrivial solutions we requirek?>k?, so that
(32) gives gia=j,s, the sth zero of J,(x). Then A, is
arbitrarywith A, givenby (33) (with Z,=J,). It is interest-
ing to notethatthe interfaceparametelr doesnot enterinto
any of the equations,so that the dispersioncurvesfor the
first torsionalmodewheng,=0 areidentical, regardlesf
whetherthe interfaceis perfector imperfect.This is consis-
tent with the fact that sinceq,=0, a nondispersiveanodeis
propagatingn the claddingand(32) is simply the frequency
equationfor the dispersivemodesin the core.

Alternatively, let us assumethat q;=0; for bounded
displacementén the core,we obtain

vy(r,z,t)=Asreeeb,

Within the cladding,v, is given by (12), so that the outer
boundarycondition gives (21). The interfacecondition (19)
gives

AyZ,(0za) +(g2b)?B,W,(gza) = 0;

the frequencyequationis then obtainedoy combining this
equationwith (21): it is the sameequationas for a hollow
cylindrical tube. The otherinterfacecondition,(20), thende-
terminesA; as

A1=(0,8) " *AyZ1(gza) +(0,b%a)BoWi(0,a).
Again, theseequationsdo not involve F.

V. EVANESCENT MODES

So far, we have only consideredpropagatingtorsional
modes. However, cylinders can also support evanescent
modes,which decayexponentiallywith z. Suchmodescan
be constructedy writing

Y(r,z)="w(r)e =1,

where ¥ solves
1d _
Fa(r\lf’)ﬂ(w/c) +k5)¥=0,

whence
W(r)=q~2Ado(qr)+b?BY,(qr)

with gq=\(w/c)?+k?. Then, proceedingexactly as before,
we arrive at the frequencyequation(25) in which Z, andW,,
areto bereplacedby J, andY,, respectively.

VI. DISCUSSION ON MODE ORTHOGONALITY

We have constructedvarious torsional modesfor the
compositecylinderin the generalform
u(r,8,z,t)=Re{U(r, 9)e' Kz~ V1

In our computationsye havefixed the axial wave numberk
and then calculatedthe frequenciesw of the allowable
modes.This is convenientfor comparisonsvith Armenzas
(1965 andit is appropriatefor the applicationto EMATS;
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thesecanbe usedto excite propagatingnodesof a specified
axial wavelengthHowever,oncesucha modehasbeenex-

cited,we areinterestedn studyingits reflectionby defectsin

the cylinder. This is most convenientlydone by specifying
the frequencyandthen determiningall the allowablemodes
atthatfrequency With thisin mind, we write a typical mode
as

u™(r,0,2,t)=Re{UM(r, 9)e K"z 001

wherethe wave numberk(™ neednot be real.
Thesemodesare biorthogonal.To be more explicit, de-
notethe stressesorrespondingo u(™ by

o"(r,0,2,t)=Re[S"(r,9)elK"z-oy
Then,if kM= +kM we have

JA{ug‘”s(ZQ)— SMuM—smyMrdrde=0, (34

where A is the crosssectionof the compositecylinder. This

relation can be proved by a simple extensionof the proof
givenby Gregory(1983. (Oneappliesthe elasticreciprocal
theoremtwice, oncein the coreandoncein the cladding,and
thenaddsthe results;the interfaceconditionsimply thatthe
contributionsfrom integratingover the two sidesof the in-

terfacecancel) In fact, (34) holdsfor all modesin composite
cylindersof any crosssection,and with any numberof im-

perfect (cylindrical) interfaces.For our problem, with tor-

sionalmodesgiven by

o ™(r,2,t)= RV (r)elK "z ot}
Eq. (34) reducedo

b
fo VM (r)VW(r)rdr=0, m#n, (35
so that torsional modes are actually orthogonal. This or-
thogonality relation is useful when the reflection of a tor-
sionalmodeby certaindefectsis examined For examplewe
may consider a bimaterial cylinder with a planar break
(crack perpendiculato the cylinder’s axis, giving an ideal-
izedmodelof a damagecdable.Specifically,we partitionthe
cross-sectiond into a brokenpart .4, andan unbrokenpart
A,, sothatA=A,UA,. Theboundarieof A4, and.A, are
concentriccircles; for example,we might take A, to be the
circle 0=r <c, with 4, astheannulusc<r<b, so thatthe
cableis circumferentiallycracked.Then,if atorsionalmode
is incidenton the defect,the reflectedand transmittedfields
can be written as modal sums.This is a standardapproach
for planar obstaclesin waveguides.In the context of tor-
sionalwaves,it hasbeenusedrecentlyby Engan(1998 to
analyzethe effectof a step-changé radiusof homogeneous
circularcylinders.For the presenfproblem,applicationof the
boundaryconditionsat the defectplaneleadsto a systemof
equationdor the reflectionand transmissiorcoefficients;of
particular interest are the reflectedand transmittedmodes
with the samewavelengthas the incident mode, because
thesearethe only modesthatcanbe detectedby the EMAT.
Again, in a standardway, one can derive integral equations
and/orvariationalexpression$or thereflectionandtransmis-
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sion coefficients;see, for example, Schwingerand Saxon
(1968 for a detaileddiscussionon relatedscatteringprob-
lems.

VII. CONCLUSIONS

We have presentedan analysis for torsional waves
propagatingn a bimaterialrod with imperfectinterfacecon-
ditions. To the authors’knowledge,the effect of imperfect
interfaceconditionson dispersivewave motion hasnot been
studiedfor rods.We find the expectedehaviorfor wavesin
the rod when we take the interfaceparametei==0 and F
—oo, WhenF#0 we find that the frequencydecreasewith
increasingF at a given wave numberin the dispersionrela-
tions. This effectwasshownto be morepronouncecdht small
wave numbers.The propagationof nondispersivenodesin
the claddingwas alsoinvestigatedand the frequencyequa-
tion for dispersivemodesin the corewasrecoveredWe also
showedthat, at any given frequency the modesare orthogo-
nal. This fact canbe exploitedin the solutionof a scattering
problem,wherean incidenttorsionalmodeinteractswith an
annulardefectin the bimaterialrod. The model developed
hereshouldbe usefulin analyzingnondestructiveevaluation
measurementfn reinforced cableswhere perfectinterface
conditionsmay not exist.
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