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Abstract. A nominally straight crackof finite length is aubjeciedto planestrain loadings.A petturbaion method
is developed for cdculating the stress-irtensity fadors, based on an asymptotic analysis of the governing hy-
persingular bounday integral equaton for the aack-opening displacementKnown exact results for a shalow
circular-arccrack are recovered, correctto secondorder in the smal geometical paramegr. The method wil
extend to three-dimensonal problemsas it doesnot make esseritl use oftwo-dimensonaltechngues.

1. Introduction

Slightly curved or kinked cradks is the title of a well known paperby Cotterell and Rice
(1980),in which anominally straightcrackis subjectto plane-strainoading. The problemis
to calculatethe stress-intensityfactors,correctto first orderin ¢, wherethe perturbedcrackis
defined by

y=c¢ fx), —a<x<a, (@H)
with
f@)=f(=a)=0; 2

here,x and y are Cartesiancoordinates,f is a given function and ¢ is a small parangter.
CotterellandRice (1980) foundexpressiongor thestress-intensityactorsusingtheconmplex-
variable techniquesf Muskhelishvili(1953). Expressionscorrectto secondorderin e were
subsequentlypbtainedoy Wu (1994),using similar methods.

Wu (1994) claimed that the perturbationexpansionin ¢ is regular, in the sensethat the
approxinations obtainedare uniformly valid throughouthesolid; thiswasimplicitly assuned
by Cotterell andRice (1980). Why is this so?Thereasonis (2): in two dimensions,onecan
alwaysarrangethatthe two cracktips are fixed independenthof ¢, implying thatthe places
wherethe stressearesingular do not move asthe crackis perturbedrom the straight(s = 0)
referenceposition.In generalwe do not have this luxury in threedimensions wheretheedge
of anon-planarcrack(a simple closedcurve) neednotlie in aplane.

The discussionabove motivatesthe presentwvork. We reconsidetthe plane-strainproblem
for a slightly curved crack, using integral-equationmethods.We begin by refornulating the
boundary-alue problemasa boundaryintegral equation;we chooseto use a hypersingular
integral equationfor the crack-openingdisplacemen{COD). Next, we parametrise¢he curve
defining the crack, leadingto a one-dinensionalhypersingularintegral equationon a finite
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interval. At this stage,the analysisis exact. Then,we introduce(1), leadingto a sequencef
hypersingulaintegral equationdor eachtermin the regularexpansionof the COD in powers
of ¢. We verify that the methodyields approxingtions in agreenent with Muskhelishvili's
(1953)exactsolutionfor a drculararc crackunderconstantioads,correctto secondorderin
E.

Our methoddoesnot requirethat f(x) satisfes (2). We obtain regular perturbationex-
pansionsbecauseve work only on the crackfaces,not within the solid. (Displacenentsand
stresse®ff thecrackcanbe obtained|f desired by insertingthe approximations to the COD
into theintegral representationfs).) Moreover, our method doesnot make ary essentialise of
two-dimensionaltechniquegsuchasthosebasedon functionsof a cmmplex variable). Thus,
it is perhapaot surprisingthat our method extendsto perturbedcracksin threedimensions.
We have obtainedanalogousresultsfor some scalarproblens (potentialflow pastwrinkled
discs)(Martin, 1998a,b), andwill describeour resultson three-dinensional crack problens
elsavhere.

We notethat Dreilich and Gross(1985) have briefly considerecperturbedcracks,usinga
singularintegral equationfor the derivative of the COD. Numericalsolutionsof this integral
equatiorwerepresentedy Chenet a. (1991).1n fact, therearemary otherpaperson curved
cracksin two dimensions(see for example, Lin’kov andMogilevskaya,1990,1994; Sur and
Altiero, 1988;Zang andGudmundson 1988),but we aremainly interestecherein asynptotic
results.

Finally, letus make sone remarks on the asynptotic method developedby Movchan,Gao
and Willis (1998) for two-dimensional(and three-dinensional) crack perturbations.Their
theory useslocal expansionsnearthe crack tips and Buecknerweight functionsfor the un-
perturbedreferencecrack. It is aform of singularperturbaion theory with a boundarylayer
neareachcracktip; this ‘occursdueto relocationof the coordinatesystemfrom the actual
cracktip to theend of thereferencecrack’(Movchanetal., 1998,Section2.1). Thesetechnical
difficultiesdo notarisewhentheproblemis firstreformulatedasaboundaryintegral equation,
aswe do below.

2. Anintegral equation

In this section,we derive an exact hypersingularintegral equationfor the COD when a
cuned crackis loadedunderplane-strainconditions.The basicingredientis the well-known
fundanental solution

G,'.,'(P, Q)Z (3—4\))8,‘j |OgE+__

1 OROR
8xi an ’

8rpu(l—v) {

Here i, j = 1,2, u is the shearmodulus, v is Poissons ratio, the points P and Q have
Cartesiancoordinategx1, x2) and(x}, x5), respectiely, §;; is the Kronecler delta,and

R = {(x1 — x)2 + (x2 — xp)?) €)

is the distancebetween P and Q (see for exanple Rizzo,1967).

Considera cavity in anotherwise unboundedomogeneoussotropicelasticsolid. Assune
that the surface of the cavity, S (a simple closedcurwe) is loadedin sucha way that the
displacenent components; = o(1) andthe stresscomponentsr;; = o(RYH asR — oo,
where R is distancefrom some fixed point in the vicinity of the cavity. Then, a familiar
calculationyieldstheintegral representation
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ui(P)=/{uj(q) T;j(P,q) —tj(q) Gij(P,q)} ds,, i=12 (4)
S

where summation over repeatedsubscriptss implied, 7;(q) = nltjx, n(g) = (n},n?) isthe
unit normel at g € S pointingintothesolid,

Tij = [4n(1—v)RI Y1 - 20)[R;n] — Rin’]
—RI[(1—2v)8;; + 2R R;1},

OR i — X! oR oR
,‘=—=x i and RZE—:H?—/Z—H?R,
0X; R ong 0x;

The formula (4) is the basisfor boundary-elerent methodsin two-dimensionalelastostatics.
Next, letthecavity S shrinkto acrackI'. Denotethetwo sidesof thecrackby 't andI',

andletg™* andg~ becorrespondingointson 't andI"~, respectiely. Definen(g) = n(g™)

sothatn(¢g~) = —n(g). Also, definethe crack-openinglisplacemen{COD) by

[ui (@] =ui(g") —ui(g).

We assune thattheimposedstresseare continuousacrossl". Then,we find that (4) reduces
to

ui(P) = /[uj(CI)]Tij(PaQ)$ , =12 (5)
r

anintegral representatioffior the displacenent componentsat any point P in the solid.
We cancomputethetractionsy; (p) onI" correspondindo u;, usingHooke’s law. Theresult
is

1
;ti(l?) = %[Mj(CI)] Sij(p.q)s,, i=12 pel. (6)
r

In this formula, the crosson the integral sign meansthat the integral is to be interpretedas
a Hadamardfinite-partintegral; for referencessee,for example, Martin andRizzo (1989)or
Martin etal. (1998). Thekernel S;; is given by

nSij = RANS; + Ann? + (1= 3A)n/n + (1 - 2A) N RiR;—
—R{[2An! R; + (1 — 2A)Rin”] + RI[(1 — 2A)n! R; + 2AR;n] (7)
+RYRIB(1— AR R; — (1 — 2A)6;;1}

= (1— AR *n/n% + NR;R; — RIRin" + Rin{R;+
P p4d (8)
+Ry Ry (8R;R; —6;)},
where & = n/n?,

1

1-2 oR
A= Y and Rﬁz—:nf—:nfRi.
2(1—v) on, 0Xx;
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All the terms insidethe curly braclets are boundedas p — ¢; in fact, in this limit, R} —
0, R! — 0and & — 1,assunngthatI is atwice-diferentiablecurve. Thus,(8) exhibits the
expectedhon-intggrable R —2 singularitythatis typical of one-dinensionafinite-partintegrals.
From (8), onecanalsoshaw thats;; = S;;.

Once the traction componentst; (p) are prescribedon I', (6) becones a hypersingular
boundaryintegral equationfor the componentsof the COD, [«;]. It is to be solved subject
to the naturalend-pointconditions,

[ui(q1 =0, i = 1,2, wheng isanend-pointof I. )

(Notethat(6) canalsobe usedif T" representsereral disjoint cracks)

3. Projection

Our basicintegral equation,(6), is exactandit holdsonthecurve I'. It is more convenient to
write (6) onafixedreferenceurve, whichwetake to beastraightline segment of length2. We
dothis projectionby simply paranetrisingthe curve I'. Thus,we supposethattheintegration
pointg = (x1, x5) is specifed by

xj=ax, xp=aF(x), —-1l<x<1,

where a is alength-scaleand the (dimensionless)unction F specifes the shapeof I". Simi-
larly, the point p = (x1, x») is specifed by

X1 =axg, xo=aF(xg), —-1<xx=<1
Fortheunit normals n(g) andn(p), we haven(¢) = N(g¢)/N (¢) where
N(g) = (=F'(x),1) and N(g) = IN(@)| =V1+I[F(x)]?

with asimilar expressiorfor n(p).
From (3), we have R = a|x — xo| v/1+ AZ?, where

A\ F@) —Fao)
X — Xo
Next, we have
Q QA
Rl = ——, Ry = ——,
V14 A2 V14+ A2
—Q(A—-F) Q(A — F)
N@R] = —7==—  N(p)R] = —=—>
q) K, 11 A2 p) I, 11 A2

andN(p) N(q) N =1+ F'Fj, where F’ = F'(x), Fj = F'(xo) and
Q= (xo — x)/lxo — x|

sothat Q? = 1. Theseexpressionsallow us to write the kernel Sij in terms of x, xo and F.
Thus,we definea new kernel matrix S;; by

2 (1 — v)a?(x — x0)2N(p) N(q) Sij = Sij (x0, X); (10)
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it is given explicitly asfollows:
Si1= (L+ A% 31— 6A%+ A* — (3—6A% — AYF'Fy+
+2A(3 — A?)(F' + Fy},
Szo= (1+ A?)3{146A% —3A% + (1 — 6A% + AYF'F\—
—2A(1 = 3A?)(F' + FY)},
Sia= So1= (14 A?3{2A(1 — 3A%) — 2A(3— A)F'Fj—

—(1—6A%2+ AN (F' + F)).
Finally, if we multiply the integral equation (6) by 2(1 — v)N(p), and note that ds, =
aN (q) dx, we obtain

1 (. . dx N ,
;fluj(x) Sij(xo,x)m:t[(xo), i=12, (12)
for —1 < xg < 1, where

i;(x) =a "ui(¢)] and 7(xo) = 2(1 —v)u 'N(p) t:(p). (12)

Equation(11)is our basichypersingulaintegral equatiorfor a aurved crackI" underplain-
strainloading.In fact, it is a pair of coupledscalarintegral equationsor iz, andii,. This pair
is to be solved subjectto the end-pointconditions(9), which becone

() =u;(-1) =0, i=12

afterprojection. The (vector)integral equation(11) is exact,and it canbe solved numerically.
However, our focuswill beon slightly curved cracks,whereT is approximnately straight.

4. Thesdtraight crack

Forastraightcrack,we have
F(x) =mx +c,

where m andc areconstantsHence, F’ = Fy = A = m. Elementary calculationghengive
S1=S8»=1 ad S;=35:1=0,

sothatthe 2 x 2 systemof scalarintegral equationgdecouplesnto
(Hit;) (x0) = f;(x0), =12 —l<xo<1,

wheretheoperator# is defined by

1
(Hu) (xg) = l f L)z dx, —-1l<uxg<l1l (13)
7 Jo1 (x —x0)
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The hypersingulaintegral equation#u = b canbe solved explicitly. Whenthe end-point
conditionsu(1) = u(—1) = 0 areimposedthesolutionis given by

l —
u(ro) = = / b(x) log . .
TJa 1—xx0+/ 1 —xH)(L—-xf)

for -1 < xo < 1, provided that » satisfes certainconditions(Martin, 1992). (For exanple,
it is sufiicientthat be continuouswith integrableend-pointsingularities) In practice,it is
oftensimpler to usethefollowing formula (Kaya andErdogan,1987; Martin, 1992):

1?[1 V1—x2U,(x)
T J-1

dx=—-mn+1U,(x9), n=012....
(x — x0)?

Here, U,(x) is a Chebyshe polynomal of the secondkind, defined by U,(cosh) =
[sin(n + 1)0]/ sinb. Thus,if

b(x) =) by Up(x),
n=0

then

u(x) = —v/1— x2 Z(n + 1)1, U, (x)

n=0

is theuniquesolutionof F#u = b, subjectto u(1) = u(—1) = 0. Note that, as the Chebyshe&
polynomials areorthogonalwith respecto theweight+/1 — x2, we have

1
bn = g/ \% 1—x2 Un(x) b(x)dx,
T Ja

sothatthe coefficientsh, areknown in terms of the given functionb.

5. Slightly curved cracks

Supposethat
F(x) =¢ f(x),
where ¢ is asmall dimensionlesgparaneter and f is independenbf ¢. Setting
A=er with A={f(x)— f(x0)}/(x —xo0),
wefind that
Su= 14252 + 0(Y),
Soo= 1+4282,+ O(e*),
512 = 521 = ES%Z + 0(83)
ase — 0, where

82, =312+ f' fo — 20(f" + [,
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Sf1 = —3S§2, Siz =2\ — f/ - fé,

f' = f'(x) and f§ = f'(xo). Note that Si,(xo, x) and S3,(xo, x) areboth O((x — x0)?) as
|x — xg| — 0. Thesekernelsare alsosymmetric in x andxo.

We expandy; similarly. Supposehattheprescribedractionsaredefinedin terms of astress
field 7;; (x1, x2), so that

1;(x0) = B{ti2(axo, aFo) — Fytir(axo, aFop)},

exactly, whereFy = F(xg) andB = 2(1 — v)/u. From Taylor's theorem we have

7j(axo, eafo) = 7.7 (x0) + e (xo) + €277 (x0) + -+ -,
where fp = f(xo) and

n [ gn
% [_ ij (CI)CO, )’):|

Ti(jn) (XO) = ayn

y=0

Hence,we deducethat

fixo) =10 +etr + X2 +-- -, (14)
where

=Bty and 1" =B (ri(;) - 6ri(f’1)> (15)
forn=1,2,....In particular if thegiven stressfield is constant then

1;(x0) = B(ti2 — ef§ti1)

exactly.
Next, we expandthe crack-openingdisplacenentl = (i, i2), writing

i =ul 4 eul +2u? + .- .

Substitutingin (11) thengives integral equationsfor u{ Theseareall uncoupledscalarequa-
tionsof theform

J{’u{:bij, i=12 j;j=012...,
where # is defined by (13) andblf is known. For j = 0, we obtain
b? = l‘io, i=12,

so that the leading-orderapproximation is obtainedby solving the integral equationsfor a
straightcrack.Having foundu?, thefirst-orderapproxination is obtainedusing

1 1 dx
1 1 1 0 1
bi(x0) = 11 (x0) - /_1 uz(x) Sip (x — x0)?
and
1 1 dx
1 1 = 0 T =
b5(xg) = t5(xo) - /1 u71(x) Sto (x — x0)2’
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At secondorder we have

b3 (xo) = t2(x0) + l/1 {3ud(x) 85, — u3(x) Si,} &
and
1 [t dx
bg()C()) = IZZ(XO) — ; ‘/;1 {ug(x) S%z + M%(X) S]].-Z} m

6. Anexample: quadratic cracks

Asasimple exanmple, letustake aquadraticcrack,
f(x) = ap + arx + apx?,

underuniform loading; here,ag, a1 anda, areconstantsHence f’ = 2a,x + a;, A = ax(x +
x0) + a1, S, = 0 and S5, = —a3(x — xo)2. From (15), we have

tl-o = Br1;5, tl-l(x) = —B(2a,x +ay)t;1 and tl-z =0.
Hence
u0(x) = —Bripy/1—x2 and ul(x) = Baox + a))tiy/1— 12,
wherewe have notedthatthe solution of (#u)(xq) = 2axo+b isu(x) = —(ax +b)v/1 — x2.

Forthe second-ordesolution, we have

2 1
a
b3(x0) = ;2 / u(x)dx = —1Ba3tp,
-1

andb? = 3 Bat1,, whenceu? is proportionalto u?. So, corbining all theseresults we find
that

ur(x) = —B {112 — €(azx + a1 + gszagrlz} 1— x2
and
up(x) = —B {120 — e(azx + a))tio — %82615122} V1—x2,

correctto secondorderin ¢.
The quantitiesof mostinterestarethe stress-intensityactors,K; and K,. We definethese

by

U, (x) ~ —BKl\/Z and u;(x) ~ —BKZ\/Z asp — 0, (16)
where

p=v@A-x)2+ef(1)— f(x)]

is distancefrom the edgeatx = 1, andu, andu, arethenorma and tangentialcomponents,
respectiely, of the crack-openingdisplacenent, (. The slope of the crack nearx = 1 is
ef'(1), sothat if 6 is theinclinationof the crackto thex-axisat x = 1, then
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sing =¢f'(1) and cos® =1— 3e2[f'(D]?,
with anerrorof O(s®) ass — 0. Thus,nearx = 1,

U, = upC0OSH — u,Sing
~ud + e{ub — ul £ (DY + eHud — Jud DR — ulf' (D)
~ —B/2(1 — x){t22 — €(3az + 2a1) 112

+&2[(az + a1)(2az + a1) 11 — %(56!3 + daza; + a?)tp,l)

and
U, = u1CO0SH + u,Sind

~ud + eful + udf (O} + e2u? — 3l f/DP + udf' (1)
~ —BJ2(1 — x){r12 + €[(2az + a1) 122 — (az + a1)t11]

5 3
—82T12[§a§ + Bara; + gaf]}-

We how comparetheseexpressionswith (16), notingthat

VB = VI=x {14 earl+x) +arP}”"

~VI=x {1+ 262202 + a1)?} .
Hence, we find that
K1 = 12— e@Bax+ 2a1)t12

+e2 {(az + a1) (a2 + a1) 111 — ($a5 + 3aza1 + $a2) 120}
and
K> = 1o+ e {(2a2 + a1) 122 — (a2 + a1) 111}

2 72 7.2
—¢ 112{§a2+6a2a1+‘—1a1}.

A specialcaseof this geonetry is a shallow circular arc, given by

xp=aF(x1) =c—/c2—x2, —a<x <a,

where ¢ is the radiusof the arc. The ac subtendsan angleof 2« at the centreof the circle,
wheresine = a/c. For ashallow arc, we supposethatc/a is large, with a fixed.Hence,we
seethat

S = %xz with & =a/c = sine,
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where o = ¢ + 0(e%) ase — 0. Thus,the previous calculation,with a, = % anda; = 0,
gives

3 2(1 7
K1 = 10— SeT1o+ €2 (5711 — §722)
and
1 7.2
Ky = 112+ (22 — 5711) — g€ 112,

with anerrorof O(e%) ase — 0. This agreeswith Muskhelishvili's exactsolution(Muskhel-
ishvili, 1953,Section124a),asre-expressedy Cotterell andRice (1980,p. 158].

7. Discussion

We have presenteda perturbationmethod for calculatingthe crack-openingdisplacenent
for a crackthatis nominally straightand subjectedto plane-strainloading. The methodis
generaland takes properaccountof the edge behaiour; we do not have to assune that the
two cracktips lie on the x-axis. At eachperturbationorder, we have to solve two uncoupled
scalarintegral equationsof the form #u = b, where # is the basic one-dinensionalhy-
persingularoperator;such equationscan be solved exactly. For ary given crack shapef,
the main difficulty comes from the evaluation of the forcing terms (b{ ) for eachintegral
equation.Nevertheless the methoddoesgeneraliseto three-dinensional problens, suchas
non-planaiperturbation®f a penry-shapectrack undermixed-nodeloadings;this work will
bedescribecklsavhere.
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