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Abstract

A nominally 
at penny-shaped crack is subjected to a static loading. A perturbation method

is developed for calculating the stress-intensity factors, based on an asymptotic analysis of the

governing hypersingular boundary integral equation for the crack-opening displacement. Com-

parisons with known exact solutions for an inclined 
at elliptical crack and for a crack in the

shape of a spherical cap are made. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A basic problem in classical fracture mechanics is the determination of the stress-

intensity factors for a crack in an elastic solid. For three-dimensional problems, there are

very few explicit solutions: one example is a penny-shaped crack under arbitrary loads.

Recently, there has been some interest in calculating corrections to these stress-intensity

factors when the crack is perturbed (Rice, 1989; Leblond and Mouchrif, 1996; Movchan

et al., 1998). Taking the penny-shaped crack as the reference crack, two classes of per-

turbation emerge. First, the crack can be perturbed in its own plane. Such perturbations

have been studied by Gao and Rice (1987) and by Martin (1996) for pressurized cracks

(a scalar problem) and by Gao (1988) and Martin (1995) for shear-loaded

cracks (a vector problem); comparisons with known exact solutions for 
at elliptical

cracks were made.

Second, the penny-shaped crack can be perturbed out of its own plane, giving a

‘wrinkled’ crack 
. This is the problem studied here. Speci�cally, let us de�ne 
 by


 : z= �f(x; y); (x; y) ∈ D; (1.1)
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where (x; y; z) are Cartesian coordinates, f is a given function, D is a 
at circular disc

in the xy-plane and � is a small parameter. We have previously considered analogous

scalar problems, such as calculating the added mass for potential 
ow past a wrinkled

rigid disc (Martin, 1998a, b). We have also studied the plane-strain problem of a slightly

curved crack (Martin, 2000). We use a similar method here, although the details are

more complicated. Thus, we �rst reduce the boundary-value problem to a boundary

integral equation over the crack 
; we choose to use a hypersingular integral equation

for the crack-opening displacement (COD). Next, we project this equation onto the

disc D, leading to a two-dimensional hypersingular integral equation over D. At this

stage, the analysis is exact. Then, we introduce Eq. (1.1), leading to a sequence of

hypersingular integral equations for each term in the regular expansion of the COD in

powers of �. These equations are just the corresponding hypersingular integral equation

for a penny-shaped crack, with various forcing functions. Such equations can be solved

exactly. We do this, in detail, for two particular crack geometries, namely, an inclined


at elliptical crack and a shallow spherical-cap crack. We obtain agreement with the

known exact solutions, correct to order �. These are stringent tests of the theory, because

the solution for the spherical-cap crack, in particular, is very complicated. Indeed, one

may regard the asymptotic approximations as validating the exact solution!

The use of hypersingular integral equations leads to a simpler formulation than would

follow from the use of regularized integral equations; see, for example, the equations

derived by Le Van and Royer (1986). Shliapoberskii (1978) and Xu et al. (1994) have

developed perturbation theories based on regularized integral equations for dislocation

densities (tangential gradient of the COD). Shliapoberskii (1978) assumed that the crack

edge @
 was in the plane z=0 (which is a severe restriction for three-dimensional

problems) and did not give any explicit applications. Xu et al. (1994) were able to

�nd the �rst-order correction for a semi-in�nite crack.

To conclude this introduction, let us compare our approach with a more direct treat-

ment, in which one tries to perturb the boundary-value problem itself. This would

inevitably be a singular perturbation (unless the crack edge is �xed), because the per-

turbed �elds are singular at the actual crack edge, not at the edge of the unperturbed

crack. This leads to various technical complications, such as the introduction of a

boundary layer near the crack edge. Our approach is less direct, perhaps, but it leads

to regular perturbations: this happens because we work on the crack faces only, not

within the solid, and, physically, we do not expect the COD to be much di�erent for

the perturbed and unperturbed cracks.

2. An integral equation

In this section, we derive an exact hypersingular integral equation for the COD across

a crack 
 in a three-dimensional homogeneous isotropic elastic solid. We assume that


 is modelled by a smooth open surface with a simply connected edge @
. The basic

ingredient is Kelvin’s fundamental solution

Gij(P;Q)= [16��(1− �)R0]
−1 {(3− 4�) �ij + RiRj} :
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Here, i; j=1; 2; 3, � is the shear modulus, � is Poisson’s ratio, the points P and Q

have Cartesian coordinates (x1; x2; x3) and (x′1; x
′

2; x
′

3), respectively, �ij is the Kronecker

delta,

R0 = {(x1 − x′1)
2 + (x2 − x′2)

2 + (x3 − x′3)
2}1=2 (2.1)

is the distance between P and Q, and

Ri =
@R0

@xi
=
xi − x′i
R0

;

see, for example, Cruse (1969).

Consider a bounded cavity in an otherwise unbounded elastic solid; denote the sur-

face of the cavity by S. Assume that the displacement components ui = o(1) and the

stress components �ij = o(R−1) as R→∞, where R is distance from some �xed point

in the vicinity of the cavity. Then, a familiar calculation yields the integral represen-

tation

ui(P)=

∫

S

{uj(q)Tij(P; q)− tj(q)Gij(P; q)} dsq; i=1; 2; 3; (2.2)

where summation over repeated subscripts is implied, tj(q)= n
q
k�jk , n(q)= (n

q
1; n

q
2; n

q
3)

is the unit normal at q ∈ S pointing into the solid,

Tij = [8�(1− �)R2
0]

−1{(1− 2�)[Rjn
q
i − Rin

q
j ]− Rqn[(1− 2�)�ij + 3RiRj]}

and

Rqn ≡
@R0

@nq
= n

q
i

@R0

@x′i
=− n

q
i Ri :

Formula (2.2) is the basis for boundary-element methods in three-dimensional elasto-

statics.

Next, let the cavity S shrink to a crack 
. Denote the two sides of the crack by 
+

and 
−, and let q+ and q− be the corresponding points on 
+ and 
−, respectively.

De�ne n(q)= n(q+) so that n(q−)=− n(q). Also, de�ne the COD by

[ui(q)]= ui(q
+)− ui(q

−):

Assuming that the imposed stresses are continuous across 
, we �nd that Eq. (2.2)

reduces to

ui(P)=

∫




[uj(q)]Tij(P; q) dsq; i=1; 2; 3: (2.3)

an integral representation for the displacement components at any point P in the solid.

We can use Hooke’s law to compute the tractions ti(p) on 
 corresponding to ui.

The result is

1

�
ti(p)=




[uj(q)] Sij(p; q) dsq; i=1; 2; 3; p ∈ 
: (2.4)

In this formula, the cross on the integral sign means that the integral is to be interpreted

as a Hadamard �nite-part integral; for references, see, for example, Stephan (1986),
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Martin and Rizzo (1989) or Martin et al. (1998). The kernel Sij is given by

2�Sij = R−3
0 {AN�ij + An

q
i n

p
j + (1− 3A)n

p
i n

q
j + 3

2
(1− 2A)NRiRj

− 3Rqn[An
p
i Rj +

1
2
(1− 2A)Rin

p
j ] + 3Rpn [

1
2
(1− 2A)n

q
i Rj + ARin

q
j ]

+ 3RpnR
q
n[5(1− A)RiRj − 1

2
(1− 2A)�ij]}; (2.5)

where N= n
p
i n

q
i ,

A=
1− 2�

2(1− �)
and Rpn ≡ @R0

@np
= n

p
i

@R0

@xi
= n

p
i Ri :

(One can check that Sij = �−1n
p
k Sjik where Skij is given by Eq. (13) in Cruse, 1969.)

All the terms inside the curly brackets are bounded as p → q. Thus, Eq. (2.5) exhibits

the expected non-integrable R−3
0 singularity that is typical of two-dimensional �nite-part

integrals. Note that

Sij(p; q)= Sji(q; p):

Once the traction components ti(p) are prescribed on 
, Eq. (2.4) becomes a hy-

persingular boundary integral equation for the components of the COD, [uj]. It is to

be solved subject to the natural edge conditions,

[ui(q)]= 0; i=1; 2; 3; q ∈ @
: (2.6)

3. Projection

The integral equation (2.4) is exact and it holds on the surface 
. It is more conve-

nient to write (2.4) on a �xed reference surface D. Thus, we suppose for the moment

that the surface 
 is given by


 : x3 ≡ az= aF(x; y); (x; y) ∈ D; (3.1)

where D is the unit disc in the xy-plane, centred at the origin, a is a length-scale, and

the (dimensionless) function F gives the shape of 
. Explicitly, the integration point

q and the �eld point p are speci�ed by

q : (x′1; x
′

2; x
′

3)= (ax; ay; aF(x; y)); (x; y) ∈ D

and

p : (x1; x2; x3)= (ax0; ay0; aF(x0; y0)); (x0; y0) ∈ D;

respectively. For the unit normal n(q), we have

n(q)=N(q)=N (q);

where

N(q)= (−F1;−F2; 1) and N (q)= |N(q)|=
√

1 + F2
1 + F2

2 :
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Here,

F1 = @F=@x and F2 = @F=@y evaluated at (x; y): (3.2)

There is a similar expression for n(p); for example, N(p)= (−F0
1 ;−F0

2 ; 1) where

F0
1 = @F=@x and F0

2 = @F=@y evaluated at (x0; y0).

Let

R= {(x − x0)
2 + (y − y0)

2}1=2

and

�= {F(x; y)− F(x0; y0)}=R;

whence R0 = aR
√
1 + �2. Also, de�ne the angle � by

x − x0 =R cos� and y − y0 =R sin�;

leading to the following expressions:

R1 =− & cos�; R2 =− & sin�; R3 =− &�;

N (q)Rqn=− &(F1 cos�+ F2 sin�− �)

and

N (p)Rpn =&(F0
1 cos�+ F0

2 sin�− �);

where &=(1 + �2)−1=2. These allow us to write the kernel Sij in terms of (x; y),

(x0; y0) and F . Thus, we de�ne a new kernel matrix S̃ ij(x0; y0; x; y) by

2�a3R3N (p)N (q) Sij = S̃ ij(x0; y0; x; y); (3.3)

it is given explicitly in Appendix A. Finally, if we multiply the integral equation

(2.4) by N (p), and note that dsq= a2N (q) dA, where dA=dx dy, we obtain

1

2� D

ũ j(x; y) S̃ ij(x0; y0; x; y)
dA

R3
= t̃i(x0; y0); i=1; 2; 3; (x0; y0) ∈ D; (3.4)

where

ũ i(x; y)= a−1[ui(q)] and t̃i(x0; y0)= �−1N (p) ti(p): (3.5)

Eq. (3.4) is our basic hypersingular integral equation for a crack 
, de�ned by

Eq. (3.1). In fact, it is a system of three coupled scalar integral equations for ũ 1,

ũ 2 and ũ 3. This system is to be solved subject to the edge conditions (2.6), which

become, after projection,

ũ i(x; y)= 0 when x2 + y2 =1; i=1; 2; 3:

The vector integral equation (3.4) is exact, and it could be solved numerically. Here,

we concentrate on analytical results for wrinkled cracks, where 
 is approximately a

penny-shaped crack.
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In fact, our goal is to calculate the stress-intensity factors at a typical point q on the

crack edge, @
. To do this, we will need an orthonormal triad of vectors at q. Let �

parametrise @
, so that q has position vector

r(�)= (a cos �; a sin �; aF(cos �; sin �)):

Thus, a unit tangent to @
 is t(�)= r′(�)=|r′(�)|, where
a−1r′(�)= (−sin �; cos �; F2 cos �− F1 sin �);

whereas a unit normal vector is n(�)=N(�)=|N(�)| with N(�)= (−F1;−F2; 1). For the
third unit vector, we take s(�)=S(�)=|S(�)|, where

S(�) = a−1r′ × N

= ((1 + F2
2 ) cos �− F1F2 sin �; (1 + F2

1 ) sin �− F1F2 cos �; F1 cos �+ F2 sin �):

In all of these expressions, F1 and F2 are evaluated at (x; y)= (cos �; sin �).

4. The 
at penny-shaped crack

For a penny-shaped crack, we have F(x; y)= c, a constant. Hence, &=1 and all of

F1, F
0
1 , F2, F

0
2 , �, �, �

0 and 	 are zero. It follows from the expressions given in

Appendix A that

S̃ ij =(1− �)−1S0ij ;

where

S011 =
1
4
(2− �+ 3� cos 2�);

S022 =
1
4
(2− �− 3� cos 2�);

S012 = S021 =
3
2
� sin 2�; S033 =

1
2

and S013 = S023 = S031 = S032 =0. Thus, we obtain the following integral equations:

1

8� D

{(2− �+ 3� cos 2�) ũ 1 + 3� ũ 2 sin 2�} dA

R3
=(1− �)t̃1(x0; y0); (4.1)

1

8� D

{3� ũ 1 sin 2�+ (2− �− 3� cos 2�) ũ 2}
dA

R3
=(1− �)t̃2(x0; y0); (4.2)

1

4� D

ũ 3

dA

R3
=(1− �)t̃3(x0; y0) (4.3)

for (x0; y0) ∈ D. These integral equations are well known; see, for example, Martin

(1995, 1996). They can be solved explicitly. (Note that the same equations hold when

D is any planar region.) Observe that the 3×3 system (3.4) has decoupled into a 2×2

system for ũ 1 and ũ 2 (shear loading), (4.1) and (4.2), and a single scalar equation,

(4.3), for ũ 3 (normal loading).
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For a simple example, suppose that t̃1, t̃2 and t̃3 are all constants. Then, the exact

solution of Eqs. (4.1)–(4.3) is given by

ũ �=
−8(1− �)

�(2− �)
t̃�
√

1− r2 and ũ 3 =
−4(1− �)

�

t̃3
√

1− r2; (4.4)

where �=1; 2, and r=
√

x2 + y2.

For a second example (which we will require in Section 7), suppose that

(1− �)t̃i(x0; y0)=Aix0 + Biy0; i=1; 2; 3:

For this linear loading, we have (Martin, 1995, 1996)

ũ 1(x; y)=
4
√
1− r2

3�(2− �)

{

x[− (4− �)A1 + �B2] +
y

1− �
[�A2 − (4− 3�)B1]

}

; (4.5)

ũ 2(x; y)=
4
√
1− r2

3�(2− �)

{

x

1− �
[− (4− 3�)A2 + �B1] + y[�A1 − (4− �)B2]

}

(4.6)

and

ũ 3(x; y)= (4=�)(A3x + B3y)
√

1− r2: (4.7)

5. Wrinkled penny-shaped cracks

Suppose that

F(x; y)= �f(x; y);

where � is a small dimensionless parameter and f is independent of �. Setting

�= �� with �= {f(x; y)− f(x0; y0)}=R;
we �nd from the expressions given in Appendix A that

S̃ ij =(1− �)−1{S0ij + �S1ij + O(�2)}
as � → 0, where

S113 =
3
2
� cos�− 1

4
(2− �+ 3� cos 2�)f1 − 3

4
�f2 sin 2�

− 1
4
{1 + 2�+ 3(1− 2�) cos 2�}f0

1 − 3
4
(1− 2�)f0

2 sin 2�; (5.1)

S123 =
3
2
� sin�− 3

4
�f1 sin 2�− 1

4
(2− �− 3� cos 2�)f2

− 3
4
(1− 2�)f0

1 sin 2�− 1
4
{1 + 2�− 3(1− 2�) cos 2�}f0

2 ; (5.2)

S131 =
3
2
� cos�− 1

4
{1 + 2�+ 3(1− 2�) cos 2�}f1 − 3

4
(1− 2�)f2 sin 2�

− 1
4
(2− �+ 3� cos 2�)f0

1 − 3
4
�f0

2 sin 2�; (5.3)
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S132 =
3
2
� sin�− 3

4
(1− 2�)f1 sin 2�− 1

4
{1 + 2�− 3(1− 2�) cos 2�}f2

− 3
4
�f0

1 sin 2�− 1
4
(2− �− 3� cos 2�)f0

2 (5.4)

and S111 = S112 = S121 = S122 = S133 =0, where fj, f
0
j are de�ned similar to Fj, F

0
j (see

Eq. (3.2)).

We expand t̃i similarly. Suppose that the prescribed tractions are de�ned in terms

of a stress �eld �ij(x1; x2; x3), so that

t̃i(x0; y0)= �−1(�i3 − F0
1 �i1 − F0

2 �i2);

evaluated at (x1; x2; x3)= (ax0; ay0; aF(x0; y0)). This is exact. From Taylor’s theorem,

we have

�ij(ax0; ay0; �af0)= �
(0)
ij (x0; y0) + ��

(1)
ij (x0; y0) + · · · ;

where f0 ≡ f(x0; y0) and

�
(n)
ij (x0; y0)=

(af0)
n

n!

[

@n

@zn
�ij(ax0; ay0; z)

]∣

∣

∣

∣

z=0

:

Hence, we deduce that

t̃i(x0; y0)= t0i + �t1i + · · · ; (5.5)

where

t0i = �−1�
(0)
i3 and t1i = �−1(�

(1)
i3 − f0

1 �
(0)
i1 − f0

2 �
(0)
i2 ): (5.6)

We can easily deduce subsequent terms in Eq. (5.5), but if the given stress �eld is

constant, then we have, exactly,

t̃i(x0; y0)= �−1(�i3 − �f0
1 �i1 − �f0

2 �i2): (5.7)

Next, we expand the crack-opening displacement ũ=(ũ 1; ũ 2; ũ 3), writing

ũ i = u0i + �u1i + · · · : (5.8)

Substituting into Eq. (3.4) then gives integral equations for umi . Each equation is of

the form

1

2� D

umj (x; y) S
0
ij(x0; y0; x; y)

dA

R3
= bmi (x0; y0); i=1; 2; 3; (x0; y0) ∈ D; (5.9)

where the forcing function bmi is known. This is simply the system of integral equations

for a 
at penny-shaped crack; given bmi , we can solve it exactly. At leading order

(m=0), we obtain

b0i =(1− �)t0i ;

so that u0i does not depend on the crack’s shape. Having found u0i , the �rst-order

correction (m=1) is obtained using

b1i (x0; y0)= (1− �)t1i (x0; y0)−
1

2� D

u0j (x; y)S
1
ij(x0; y0; x; y)

dA

R3
; (5.10)
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explicitly, we have

b1�(x0; y0)= (1− �)t1�(x0; y0)−
1

2� D

u03(x; y)S
1
�3(x0; y0; x; y)

dA

R3
(5.11)

for �=1; 2, and

b13(x0; y0)= (1− �)t13(x0; y0)−
1

2� D

(u01S
1
31 + u02 S

1
32)

dA

R3
: (5.12)

We can see that further terms in Eq. (5.8) can be found, in principle, by solving

the 
at-crack integral equation with di�erent forcing functions. Here, we content our-

selves by calculating the �rst-order corrections for particular geometries, under uniform

loading. In fact, as the given stress �eld is assumed constant, we can immediately use

Eq. (4.4) to give

u0�(x; y)=− B��3
√

1− r2 and u03(x; y)=− C�33
√

1− r2; (5.13)

where �=1; 2, r=
√

x2 + y2,

B=
8(1− �)

��(2− �)
and C =

4(1− �)

��
: (5.14)

The calculation of b1i and thence u1i will depend on the shape of 
.

For calculations of the stress-intensity factors, we require approximations of the

vectors t, n and s, as de�ned at the end of Section 3. We �nd that

n(�)= (−�f1;−�f2; 1);

s(�)= (cos �; sin �; �(f1 cos �+ f2 sin �));

t(�)= (−sin �; cos �; �(f2 cos �− f1 sin �));

correct to �rst order in �. (Note that these approximations satisfy n · t= n ·s=0 exactly,

whereas s · t=O(�2) as � → 0.) Hence, the components of the COD in each of the

three directions are given as follows:

un ≡ ũ · n ≃ u03 + �(u13 − u01f1 − u02f2); (5.15)

us ≡ ũ · s ≃ u01 cos �+ u02 sin �+ �{(u11 + u03f1) cos �+ (u12 + u03f2) sin �}; (5.16)

ut ≡ ũ · t ≃ u02 cos �− u01 sin �+ �{(u12 + u03f2) cos �− (u11 + u03f1) sin �}: (5.17)

From these, we can extract the stress-intensity factors K�, de�ned by

�n� ∼ K�=
√

2��′ as �′ → 0; �= n; s; t;

where �′ is distance from the crack edge @
. For, it is known (see, for example, Rice,

1989, p. 32) that the stresses ahead of @
 are related to the COD behind @
 by

u�∼ (4=�)(1− �)K�

√

1
2
�=�; �= n; s

and

ut ∼ (4=�)Kt

√

1
2
�=�
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as �→ 0, where � is the distance from @
. Then, we may easily calculate the stress-

intensity factors from Eqs. (5.15)–(5.17).

6. Example 1: inclined elliptical crack

Suppose that 
 is a 
at elliptical crack, lying in the plane z= x tan 
. Let X and Y

be Cartesian coordinates on this plane, so that

X = x cos 
+ z sin 
; Y =y and Z = z cos 
− x sin 
;

where Z is a coordinate perpendicular to the plane. Then, the ellipse 
 with @
 given

by

X 2 cos2 
+ Y 2 =1

can be speci�ed by

z=F(x; y)= x tan 
; (x; y) ∈ D:

For small inclinations of the ellipse to the plane z=0, set �= tan 
 and f(x; y)= x.

Thus, f1 =f0
1 =1, f2 =f0

2 =0 and �=cos�, whence Eqs. (5.1)–(5.4) give

S113 = S131 =
1
4
�(−1 + 3 cos 2�) and S123 = S132 =

3
4
� sin 2�:

Next, we evaluate b1i , as given by Eqs. (5.11) and (5.12). From Eq. (5.7), we have

t1i =− �−1�i1 whereas u0i is given by Eq. (5.13). Let us de�ne operators H0, Hc and

Hs by

H0u=
1

4� D

√

1− r2
u

R3
dA;

Hcu=
1

4� D

√

1− r2
u cos 2�

R3
dA;

Hsu=
1

4� D

√

1− r2
u sin 2�

R3
dA:

Then, we �nd that

b11 =−�−1(1− �)�11 +
1
2
�C�33(−H01 + 3Hc1)

=−�−1(1− �)(�11 − 1
2
��33);

b12 =− �−1(1− �)�12 +
3
2
�C�33Hs1=− �−1(1− �)�12;

b13 =−�−1(1− �)�13 +
1
2
�B{�13(−H01 + 3Hc1) + 3�23Hs1}

=−2(1− �)2[�(2− �)]−1�13;

where we have used (Martin, 1995, 1996)

H01=− 1
4
� and Hc1=Hs1=0: (6.1)
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Thus, b1i is constant, i=1; 2; 3, and so we can solve Eq. (5.9) for u1i , using Eq. (4.4).

When the result is combined with the leading-order solution, (5.13), we obtain

ũ 1(x; y)=− B{�13 − �(�11 − 1
2
��33)}

√

1− r2;

ũ 2(x; y)=− B(�23 − ��12)
√

1− r2;

ũ 3(x; y)=− {C�33 − �B(1− �)�13}
√

1− r2:

These are our approximations for the components of the COD; they are correct to �rst

order in �. From them and Eqs. (5.15)–(5.17), we obtain

un(x; y)=− C(�33 − 2��13)
√

1− r2; (6.2)

us(x; y)=− B{[�13 + �(�33 − �11)] cos �+ [�23 − ��12] sin �}
√

1− r2; (6.3)

ut(x; y)=B{[�13 + �(�33 − �11)] sin �− [�23 − ��12] cos �}
√

1− r2; (6.4)

correct to �rst order in �. These can be used to calculate the stress-intensity factors at

points on @
 (r=1) parametrized by �. In particular, when �=0, un, us and ut agree

with the known exact solutions for [uZ ], [uX ] and [uY ], respectively (see Appendix B).

7. Example 2: spherical-cap crack

Consider a crack in the shape of a spherical cap, given by

x3 = c −
√

c2 − x21 − x22 ; x21 + x22 ≤ a2;

where c is the radius of the sphere. The cap subtends a solid angle of 2�(1 − cos �)

at the centre of the sphere, where sin �= a=c. In dimensionless variables, the cap is

given by

z=F(x; y)= (c=a)−
√

(c=a)2 − x2 − y2; (x; y) ∈ D:

We shall consider a shallow spherical cap, given approximately by z= �f(x; y) with

f(x; y)= 1
2
(x2 + y2)= 1

2
r2 and �= a=c=sin �:

We have f1 = x, f2 =y and �= 1
2
{(x + x0) cos�+ (y + y0) sin�}, whence

S113 =(−1 + 3 cos 2�)P(x; x0) + 3 sin 2�P(y;y0);

S123 =3 sin 2�P(x; x0)− (1 + 3 cos 2�)P(y;y0);

S131 =(−1 + 3 cos 2�)P(x0; x) + 3 sin 2�P(y0;y);

S132 =3 sin 2�P(x0; x)− (1 + 3 cos 2�)P(y0;y);

where

P(X ;X0)=
1
8
{(1− 2�)X − (1− 4�)X0}:
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Next, we evaluate b1i , assuming constant applied stresses. From Eq. (5.7), we have

t1i (x0; y0)=− �−1(x0�i1 + y0�i2);

whereas u0i is again given by (5.13). Making use of the operators H0, Hc and Hs,

de�ned in Section 6, we �nd that

b11(x0; y0) = (1− �)t11 + 2C�33{(−H0 + 3Hc)P(x; x0) + 3HsP(y;y0)}

=−�−1(1− �){x0[�11 + 1
4
(1− 4�)�33] + y0�12};

where we have used Eq. (6.1),

H0x=− 3
8
�x0 and Hcx=Hsy=− 1

16
�x0:

Similarly, we obtain

b12(x0; y0)=− �−1(1− �){x0�12 + y0[�22 +
1
4
(1− 4�)�33]}

and

b13(x0; y0)=− 3
2
(1− �)[�(2− �)]−1(x0�13 + y0�23);

where we have also used

H0y=− 3
8
�y0 and Hcy=−Hsx=

1
16
�y0:

Thus, b1i (x0; y0) is linear in x0 and y0, for i=1; 2; 3.

To �nd u1i , we solve Eq. (5.9), using Eqs. (4.5)–(4.7). We obtain

u11(x; y)=− 1
6
B{x[− (4− �)�11 + ��22 − 1

2
(1− 4�)(2− �)�33]− 4y�12}

√

1− r2;

u12(x; y)=− 1
6
B{−4x�12 + y[��11 − (4− �)�22 − 1

2
(1− 4�)(2− �)�33]}

√

1− r2

and

u13(x; y)=− 3
4
B(x�13 + y�23)

√

1− r2;

where B is de�ned by Eq. (5:14)1. When these results are combined with Eq. (5.13), we

obtain our approximation to the COD, in Cartesian coordinates. We can also calculate

the components of the COD with respect to the normal-tangential coordinates, un, us
and ut , as given by Eqs. (5.15)–(5.17); we obtain

un=
−4(1− �)

��

√

1− r2
{

�33 −
�

2(2− �)
(x�13 + y�23)

}

;

us =−B
√

1− r2{�13 cos �+ �23 sin �

− 1
6
�r[(2−�){�11+�22− 1

2
(5+4�)�33}+2(�11−�22) cos 2�+4�12 sin 2�]};

ut =− B
√

1− r2{�23 cos �− �13 sin �+
1
3
�r[(�11 − �22) sin 2�− 2�12 cos 2�]}:

As a special case, consider the axisymmetric problem of uniaxial tension at in�nity,

so that the only non-zero stress component in the prescribed loading is

�33 =− p0;
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where p0 is a constant. Then, we obtain ut ≡ 0, un= �
√
1− r2 + O(�2) and

us=− 1
6
��r(5 + 4�)

√

1− r2 + O(�2);

where �= − 4(1 − �)p0=(��). This result agrees with the known exact result for a

crack in the shape of a spherical cap (Martynenko and Ulitko, 1979; Martin, 2001).

Appendix A. The kernel after projection

The kernel Sij is given by Eq. (2.5), and it is related to the projected kernel S̃ ij
by (3.3). Set

�=F1 cos�+ F2 sin�− �; �0 =F0
1 cos�+ F0

2 sin�− �;

	=F1F
0
1 + F2F

0
2 , E1 =cos� and E2 =sin�. Then, S̃ ij is given explicitly as follows:

S̃33 =&3{1− A+ A	}+ 3
2
&5�{(1− 2A)�(1 +	)− �− �0}

− 3&5��0{5(1− A)�2&2 − 1
2
(1− 2A)};

S̃�� =&3{A+ A	 + (1− 2A)F�F
0
� }

+ 3
2
&5E�{(1− 2A)E�(1 +	) + �F0

� + �0F�}

− 3&5��0{5(1− A)E2
�&

2 − 1
2
(1− 2A)};

S̃�� =
3
4
(1− 2A)&5(1 +	) sin 2�

+3&5�{AF0
� E� +

1
2
(1− 2A)F0

� E�}+ &3{AF�F0
� + (1− 3A)F0

� F�}

+3&5�0{ 1
2
(1− 2A)F�E� + AF�E�} − 15

2
&7(1− A)��0 sin 2�;

S̃�3 =−&3{AF� + (1− 3A)F0
� }+ &5E�{ 3

2
(1− 2A)(�− �)− 3A�0}

+&5�{ 3
2
(1− 2A)(E�	 + �0F�) + 3A�F0

� } − 15&7(1− A)�E���
0;

S̃3� =−&3{AF0
� + (1− 3A)F�}+ &5E�{ 3

2
(1− 2A)(�− �0)− 3A�}

+&5�{ 3
2
(1− 2A)(E�	 + �F0

� ) + 3A�0F�} − 15&7(1− A)�E���
0:

Appendix B. The 
at elliptical crack

Consider the elliptical crack (X=A0)
2+(Y=B0)

2≤1 on the plane Z =0, where A0≥B0¿0.

There are constant loads on the crack, given by

�XZ = qX ; �YZ = qY and �ZZ =p0:
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Then, the COD is given by

[uX ] = 2qX�
−1(1− �)B0(k

2=
1)
√

1− �2; (B.1)

[uY ] = 2qY�
−1(1− �)B0(k

2=
2)
√

1− �2; (B.2)

[uZ ] =− 2p0(�E)
−1(1− �)B0

√

1− �2; (B.3)

where �2 =(X=A0)
2 + (Y=B0)

2,


1(k)= (�− k2)E − �k ′2K;


2(k)= �k ′2K − (k2 + �k ′2)E;

k ′ =B0=A0, k
2 =1− k ′2 and the complete elliptic integrals are de�ned by

E(k)=

∫

�=2

0

(1− k2 sin2 t)1=2 dt and K(k)=

∫

�=2

0

(1− k2 sin2 t)−1=2 dt:

The results (B.1)–(B.3) are exact; they can be found in Martin (1986a, b), for example.

To compare with Example 1, we take A0 =sec 
∼ 1+ 1
2
�2 and B0 =1, whence k ∼ �,


∼ � and �∼ r as � → 0. Also, E and K have known power-series expansions; thus

E(k)∼ 1
2
� as k → 0, whereas both k2=
1 and k2=
2 ∼ 4=[�(�− 2)] as k → 0. Hence

[uX ]∼ − BqX
√

1− r2; [uY ]∼ − BqY
√

1− r2 and [uZ ]∼ − Cp0

√

1− r2;

(B.4)

as � → 0, where the constants B and C are de�ned by Eq. (5.14).

Now, we have to calculate the constants qX , qY and p0 in terms of the applied

stresses �ij, which are de�ned in terms of the Cartesian coordinates Ox1x2x3. The

tractions on the crack faces are given by

nj�ij =− �i1 sin 
+ �i3 cos 
=Ti ;

say. Thus

p0 =Tini = �11 sin
2 
− �13 sin 2
+ �33 cos

2 


and, as x2 =Y ,

qY =T2 =− �12 sin 
+ �23 cos 
:

For qX , we need X̂=(cos 
; 0; sin 
), a unit vector in the X -direction, so that

qX =TiX̂ i = �13 cos 2
+
1
2
(�33 − �11) sin 2
:

For small 
∼ �, we obtain

qX = �13 + �(�33 − �11); qY = �23 − ��12 and p0 = �33 − 2��13;

correct to �rst order in �. When these approximations are substituted into Eq. (B.4),

we obtain results in agreement with Eqs. (6.2)–(6.4), evaluated at �=0.
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