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Abstract

Elastic waves in materials with cylindrical orthotropy are considered, this being a plausible

model for a wooden pole. For time-harmonic motions, the problem is reduced to some coupled

ordinary di�erential equations. Previously, these have been solved using the method of Frobenius

(power-series expansions). Here, Neumann series (expansions in Bessel functions of various

orders) are used, motivated by the known classical solutions for homogeneous isotropic solids.

This is shown to give an e�ective and natural method for wave propagation in cylindrically

orthotropic materials. As an example, the frequencies of free vibration of a wooden pole are

computed. The problem itself arose from a study of ultrasonic devices as used in the detection

of rotten regions inside wooden telegraph (utility) poles and trees; some background to these

applications is given. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Wood is a unique material. : : :It is multicomponent, hygroscopic, anisotropic, inho-

mogeneous, discontinuous, inelastic, �brous, porous, biodegradable, and renewable.

(Bodig and Jayne, 1982, p. vii)

Despite these complications, there is a need to have physical models for the behaviour

of wood. One application (which motivated the present study) is to model the use of

ultrasonic devices for the detection of rotten regions inside telegraph poles, so as

to predict the strength of in-service poles. Typically, these devices use stress waves

through the pole cross-section, which we can take to be circular. In Appendix A, we
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give some background information on this application, reviewing the sparse literature

and discussing the problem of how to model the rotten region.

Traditionally, wood is modelled as an orthotropic elastic solid (Bodig and Jayne,

1982, Chapter 3). Thus, at any point P in a wooden pole, we can identify three

mutually orthogonal directions, namely longitudinal (along the grain), radial and tan-

gential. These can be taken to specify three symmetry planes at P, and this leads to

the orthotropic model. Elastic waves in orthotropic materials are discussed in detail by

Musgrave (1970, Chapter 9).

However, the local orthotropic description ignores one obvious characteristic of trees

and poles — the presence of annual rings. Thus, Bucur (1995, p. 3) wrote: ‘At the

annual ring level the structure is again one of a layered composite built up with

two layers corresponding to the earlywood and latewood’. Typically, the density of

earlywood is about half that of latewood (Bucur, 1995, p. 151). Bodig and Jayne (1982,

Section 10:3:2) give more details. In particular, the transition between earlywood and

latewood is observed to be abrupt in certain pines and Douglas �r. In some other trees,

the transition is more gradual.

The e�ect of this layered structure on wave-speed measurement is discussed by

Bucur (1995, Section 4:3:2:4): ‘The opinions of di�erent authors are rather divergent’.

However, it is clear that the curvature of the rings should be taken into account if

wave propagation over signi�cant distances is to be modelled.

The above considerations suggest that a pole could be modelled as a composite mate-

rial with concentric layers of two di�erent materials, giving an axisymmetric structure.

For simplicity, each layer could be assumed to be homogeneous (constant material

parameters) with continuity conditions across the interfaces between layers.

For the wood itself, an alternative formulation of the theory suggests itself, in which

the wood is assumed to be cylindrically anisotropic. Thus, Bodig and Jayne (1982,

p. 21) wrote that one ‘might model [trees or poles] as homogeneous with cylindrical

anisotropy due to the layered growth ring structure’, although they did not go further.

By de�nition, cylindrical anisotropy means that the elastic sti�nesses are constants

when referred to cylindrical polar coordinates. Properties of materials with cylindrical

anisotropy have been studied by several authors. See, for example, Love (1927, Sec-

tion 114), Lekhnitskii (1968) and Ambartsumyan (1970); in particular, Ambartsumyan

(1970, Chapter 4) has examined the free vibrations of thin plates with cylindrical

anisotropy. Further references will be given below.

In this paper, we consider time-harmonic waves in wood, which we model as an

elastic solid with (circular) cylindrical orthotropy. We consider wave motions that are

independent of the axial coordinate (along the grain) as we are interested in propaga-

tion through a wooden pole. We set up the equations of motion and reduce them to a

set of three ordinary di�erential equations for the radial dependence of the three com-

ponents of the displacement vector. Explicit solutions are recovered for the anti-plane

component (perpendicular to a cross-sectional plane) and for the in-plane components,

u(r) and v(r), when the motion is axisymmetric. However, the main concern of the

paper is how to calculate u(r) and v(r) when the motion is not axisymmetric.

The two components, u(r) and v(r), satisfy a pair of coupled, second-order, lin-

ear homogeneous ordinary di�erential equations. Previous workers have solved these
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equations using the method of Frobenius (power series in r); we recall this method in

Section 7. This method is very e�ective for small r and for static problems (for which

it gives explicit closed-form solutions) but it is inappropriate for wave propagation

over signi�cant distances. Thus, motivated by the classical solutions for a homoge-

neous isotropic elastic solid, we generalize the method of Frobenius and use Neumann

series (expansions in series of Bessel functions of varying orders). This new method

is described in detail in Section 8. As a simple application, we have computed the �rst

few frequencies of free vibration of a wooden pole. Further applications are mentioned

in Section 10.

Returning to the NDE problem, let us end this introduction with some concluding

remarks taken from an extensive review of the literature on the development and use

of NDE devices for assessing wooden objects:

Many questions remain unanswered regarding the e�ectiveness of stress wave

NDE techniques to evaluate members in complicated structures. No published

work documents how wave behavior is a�ected by the varied boundary conditions

found in wood structures. In addition, little information has been published on the

relationship between excitation system characteristics and wave behavior. Research

e�orts in these two areas would advance state-of-the-art inspection techniques

considerably. (Ross and Pellerin, 1994, p. 9).

2. Governing equations

Let x1 ≡ x, x2 ≡y and x3 ≡ z be Cartesian coordinates. Then, the governing equations

of motion for an anisotropic elastic material are

@

@xj

(

C̃ ijk‘

@

@xk
ũ ‘

)

= �
@2

@t2
ũ i ;

where ũ is the displacement vector, � is the mass density, t is the time, C̃ ijk‘ are the

elastic sti�nesses and the summation convention holds. As usual, we assume that

C̃ ijk‘ = C̃jik‘ = C̃k‘ij = C̃ ij‘k :

Introduce cylindrical polar coordinates (r; �; z), where x = r cos � and y = r sin �. If

the C̃ ijk‘ depend on � only, the material is said to be angularly inhomogeneous. If

Cijk‘ denote the elastic sti�nesses referred to (r; �; z), we have

Cijk‘(�) = 
ip
jq
kr
‘sC̃pqrs(�);

where


ij(�) =





cos � sin � 0

−sin � cos � 0

0 0 1



 :
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We are interested in special materials for which Cijk‘(�) are constant, so that

Cijk‘(�) = Cijk‘(0) = C̃ ijk‘(0)

such materials are said to be cylindrically anisotropic.

Following the formulation of Ting (1996a) for static problems, we write the equations

of motion as

@

@r
(rtr) +

@

@�
t� + Kt� + r

@

@z
tz = �r

@2

@t2
ũ;

where

tr =





�rr
�r�
�rz



; t� =





��r
���
��z



; tz =





�zr
�z�
�zz



; ũ =





ur

u�

uz



; (2.1)

�ij are the stress components and

K =





0 −1 0

1 0 0

0 0 0



 :

Ting (1996a, p. 2399) gives expressions for the traction vectors ti in terms of ũ.

In this paper, we are concerned with motions in a cross-sectional plane, so we

assume that ũ does not depend on z. Thus, we �nd that two-dimensional motions are

governed by

rQ
@

@r

(

r
@

@r
ũ

)

+ r(R+ RT)
@2

@r@�
ũ + T

@2

@� 2
ũ

+r(RK + KR
T
)
@

@r
ũ + (TK + KT)

@

@�
ũ + KTKũ = �r2 @2

@t2
ũ; (2.2)

generalizing (Ting, 1996a, Eq. (3:1)) to dynamic problems. The 3×3 matrices occurring

here are given by Ting (1996a) as

Q =





C11 C16 C15

C16 C66 C56

C15 C56 C55



 ; R=





C16 C12 C14

C66 C26 C46

C56 C25 C45



 ; T =





C66 C26 C46

C26 C22 C24

C46 C24 C44



 ;

where RT is the transpose of R, and we have used the contracted notation C�� for the

elastic sti�nesses (Ting, 1996b, Section 2:3).

We look for time-harmonic solutions in the form

ũ(r; �; t) = Rei{um(r)e jm�e−i!t}; (2.3)

where i and j are two non-interacting complex units, m is an integer, ! is the radian

frequency, and Rei denotes the real part with respect to i. Use of e jm� rather than

cosm� and sin m� allows us to retain the nice matrix notation in what follows. Thus,

from Eq. (2.2), we �nd that um(r) solves

r2
Qu′′m + r(Q + RKm + KmR

T)u′m + (�!2r2 + KmTKm)um = 0; (2.4)
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where

Km = K + jmI=





jm −1 0

1 jm 0

0 0 jm



 :

If m = 0 and ! = 0, (2.4) reduces to Eq. (3:2) of Ting (1996a).

Setting um=(um; vm; wm), Eq. (2.4) gives three coupled ordinary di�erential equations

for the three components of um.

3. Cylindrically orthotropic materials

Wood is usually modelled as an orthotropic material. For such materials, the non-trivial

sti�nesses are (Ting, 1996b, pp. 36 and 45)

C11 = C1111; C12 = C1122; C13 = C1133;

C22 = C2222; C23 = C2233; C33 = C3333;

C44 = C2323; C55 = C1313; C66 = C1212:

Thus, the matrices Q, R and T simplify to

Q =





C11 0 0

0 C66 0

0 0 C55



 ; R=





0 C12 0

C66 0 0

0 0 0



 ; T =





C66 0 0

0 C22 0

0 0 C44



 :

This shows that motions independent of z in a cylindrically orthotropic medium depend

on only six of the nine sti�nesses, namely C11, C12, C22, C44, C55 and C66. Note that,

for isotropic materials, C11 = C22 = � + 2�, C12 = � and C44 = C55 = C66 = �, where �

and � are the Lam�e moduli. On the other hand, wood is typically highly anisotropic.

Numerical values for a particular wood, Scots pine, are given in Appendix B: these

show, for example, that C11 ≃ 2C22 and C44 ≃ 10C66.

Simple calculations give

RKm + KmR
T =





0 jm(C66 + C12) 0

jm(C66 + C12) 0 0

0 0 0





and

KmTKm =





−m2C66 − C22 −jm(C66 + C22) 0

jm(C66 + C22) −C66 − m2C22 0

0 0 −m2C44



 :

When these expressions are substituted in the 3 × 3 system (2.4), we �nd that it

uncouples into a 2 × 2 system for um and vm, and a single equation for wm. We shall

examine these in turn, but �rst let us recall the classical results for isotropic solids.
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4. Isotropy

For a homogeneous isotropic elastic solid, the solutions of Navier’s equation in

cylindrical polar coordinates are well known. It is convenient to record these solutions

here as they motivate some of the discussions to follow.

4.1. Anti-plane motions

The general solution is

wm(r) = AJm(kSr) + BYm(kSr);

where J� and Y� are Bessel functions, A and B are arbitrary constants and kS =!
√

�=�

is the shear wavenumber.

4.2. In-plane motions

Let (um; vm) be a solution pair. There are four independent solution pairs, so that

the general solution is a linear combination of these four (for each m). The �rst two

pairs are

um(r) = Jm−1(kPr) − Jm+1(kPr) = 2J ′

m(kPr);

vm(r) = j {Jm−1(kPr) + Jm+1(kPr)} = 2jm(kPr)−1Jm(kPr)
(4.1)

and

um(r) = Jm−1(kSr) + Jm+1(kSr) = 2m(kSr)−1Jm(kSr);

vm(r) = j {Jm−1(kSr) − Jm+1(kSr)} = 2j J ′

m(kSr)
(4.2)

where kP =!
√

�=(� + 2�) is the compressional wavenumber. The second two pairs are

obtained by replacing Jn in these expressions by Yn. Further information can be found

in textbooks on elastic waves; see, for example, (Achenbach, 1973) or (Gra�, 1975).

The far-�eld (large r) properties of these solution pairs are of interest. We have

J�(z) =
√

2=(�z) cos(z − 1
2
�z − 1

4
�) + O(z−3=2) as z → ∞: (4.3)

Thus, for Eq. (4.1), we have um(r) = O(r−1=2) but vm(r) = O(r−3=2) as r → ∞:

Eq. (4.1) represents a cylindrical compressional wave at in�nity. On the other hand,

Eq. (4.2) represents a cylindrical shear wave at in�nity, as the angular component vm
is dominant.

5. Anti-plane motions

Returning to cylindrical orthotropy, we �nd that the single equation for the anti-plane

component wm(r) is

r2C55w
′′

m + rC55w
′

m + (�!2r2 − m2C44)wm = 0:
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This is Bessel’s equation. Two independent solutions are

J�(�ar) and Y�(�ar); (5.1)

where

� = m
√

C44=C55 and �a = !
√

�=C55: (5.2)

For isotropic materials, these reduce to Jm(kSr) and Ym(kSr), as expected. Note that if

� is not an integer, we can replace Y�(�ar) in Eq. (5.1) by J−�(�ar).

Solutions (5.1) were obtained in the time domain by Watanabe and Payton (1997).

They were given erroneously by Yuan and Hsieh (1998, Eq. (16)).

6. In-plane motions: axisymmetric solutions

The ordinary di�erential equations for um(r) and vm(r) are

r2C11u
′′

m + r[C11u
′

m + jm(C66 + C12)v′m]

+(�!2r2 − m2C66 − C22)um − jm(C66 + C22)vm = 0; (6.1)

r2C66v
′′

m + r[C66v
′

m + jm(C66 + C12)u′m]

+(�!2r2 − C66 − m2C22)vm + jm(C66 + C22)um = 0: (6.2)

For axisymmetric motions (m = 0), these equations simplify and uncouple

r2C11u
′′

0 + rC11u
′

0 + (�!2r2 − C22)u0 = 0;

r2C66v
′′

0 + rC66v
′

0 + (�!2r2 − C66)v0 = 0:

Typical solution pairs are

u0(r) = J
(�1r); v0(r) = 0 (6.3)

and

u0(r) = 0; v0(r) = J1(�r); (6.4)

where


 =
√

C22=C11; �1 = !
√

�=C11 and � = !
√

�=C66: (6.5)

For isotropic materials, these reduce to 
= 1, �1 = kP and �= kS, whence the solutions

given in Section 4 (for m= 0) are recovered. Two other solution pairs can be obtained

by replacing J� by Y�. These solutions have been given by Yuan and Hsieh (1998,

Eqs. (19) and (26)).

Note that the pair (6.3) corresponds to a cylindrical compressional wave whereas the

pair (6.4) represents a cylindrical shear wave. For Scots pine (Appendix B), 
 = 0:72

and �=�1 = 3:9, so that the compressional waves travel about four times faster than the

shear waves.
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7. In-plane motions: the method of Frobenius

For non-axisymmetric motions (m 	= 0), the situation is more complicated: we have

been unable to �nd closed-form solutions, in general.

We begin with a slight simpli�cation of notation. Thus, de�ne dimensionless sti�-

nesses by

c1 = C11=C66; c12 = C12=C66 and c2 = C22=C66: (7.1)

For isotropic materials, we have

c1 = c2 = c12 + 2 and c12 = �=�:

On the other hand, for Scots pine (Appendix B), we have

c1 = 23:0; c2 = 11:8 and c12 = 8:3:

Making use of Eqs. (7.1), (6.1) and (6.2) become

c1(r2u′′m + ru′m) + jm(1 + c12)rv′m + (�2r2 − m2 − c2)um − jm(1 + c2)vm = 0; (7.2)

r2v′′m + rv′m + jm(1 + c12)ru′m + (�2r2 − 1 − m2c2)vm + jm(1 + c2)um = 0; (7.3)

where �2 = �!2=C66. Note that if (um; vm) is a solution pair, then so is (u−m;−v−m).

Thus, we can assume without loss of generality that m¿ 0.

A standard technique for solving ordinary di�erential equations is the method of

Frobenius, in which one looks for solutions in the form of power series. In the present

context, this approach has been used by many authors, including Chou and Achenbach

(1972) and Yuan and Hsieh (1998). The method proceeds by writing

um(r) =

∞
∑

n=0

ân (�r)2n+� and vm(r) = j

∞
∑

n=0

b̂n (�r)2n+�; (7.4)

where the coe�cients ân, b̂n and � are to be determined. It turns out that there is no

loss of generality in using (�r)2n rather than (�r)n.

Substitute expansions (7.4) in Eqs. (7.2) and (7.3), giving

∞
∑

n=0

(ânA11 − b̂nA12) (�r)2n+� +

∞
∑

n=1

ân−1 (�r)2n+� = 0 (7.5)

and
∞
∑

n=0

(ânA21 + b̂nA22) (�r)2n+� +

∞
∑

n=1

b̂n−1 (�r)2n+� = 0; (7.6)

where

A11(n;m; �) = (2n + �)2c1 − m2 − c2;

A12(n;m; �) = m{(2n + �)(1 + c12) − (1 + c2)};
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A21(n;m; �) = m{(2n + �)(1 + c12) + (1 + c2)};

A22(n;m; �) = (2n + �)2 − 1 − m2c2:

Next, we set the coe�cient of (�r)2n+� equal to zero, for n = 0; 1; 2; : : :; to leading

order (n = 0), we obtain

{�2c1 − m2 − c2}â0 − m{�(1 + c12) − (1 + c2)}b̂0 = 0; (7.7)

m{�(1 + c12) + (1 + c2)}â0 + {�2 − 1 − m2c2}b̂0 = 0: (7.8)

This is a homogeneous pair of equations for â0 and b̂0. For a non-trivial solution, we

require that the determinant

�0(�;m) = 0; (7.9)

where

�n(�;m) = A11A22 + A12A21

= [(2n + �)2c1 − m2 − c2][(2n + �)2 − 1 − m2c2]

+m2{(2n + �)2(1 + c12)2 − (1 + c2)2}

= �0(2n + �;m):

Eq. (7.9) is the indicial equation; it is a quadratic in �2,

�4c1 + �2{m2(2c12 − C) − (c1 + c2)} + (m2 − 1)2c2 = 0 (7.10)

with discriminant

D0 = m4
C{C − 4(c12 + 1)} + (c1 − c2)2

+2m2{C(c1 + c2 + 4) + 2c12(2c12 − c1 − c2)};

where C=c1c2−c2
12 ¿ 0. (C2

66C is a principal minor of C��, a positive de�nite matrix.)

It appears that D0 may be negative; in particular, this may happen when m is large.

Thus, the two solutions for �2 are either both real or they form a complex-conjugate

pair. However, let us assume that the elastic sti�nesses are such that D0 ¿ 0, so that

there are two real solutions. This can be ensured, for all m, by supposing that

C ≥ 4(1 + c12): (7.11)

(Equality holds for isotropic solids, whereas C − 4(1 + c12) ≃ 165 for Scots pine; see

Appendix B.) Then, as the product of these two solutions is (c2=c1)(m2 − 1)2, they

must have the same sign. Moreover, their sum is

{c1 + c2 + m2(C − 2c12)}=c1

so that both solutions will be positive for all m if C ≥ 2c12, a condition that is implied

by Eq. (7.11). Thus, with some restrictions on the elastic sti�nesses, we obtain two
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positive real solutions for �2, and hence four real solutions for �, ±�1(m) and ±�2(m),

say, where we have emphasized the dependence on m. We can regard m as a continuous

variable: the (positive) solutions �1(m) and �2(m) vary continuously with m. We agree

to identify them using

lim
m→0

�1(m) = 
 =
√

c2=c1 and lim
m→0

�2(m) = 1; (7.12)

where these are the appropriate limiting values for the axisymmetric problem (m = 0);

see Eq. (6.5). Some numerical values of �1(m) and �2(m) for Scots pine are given in

Appendix B.

Once a value of � has been selected, we can choose one of â0 and b̂0 arbitrarily

(but not zero) and then the other is de�ned by Eq. (7.7) or Eq. (7.8).

Subsequent coe�cients in Eq. (7.4) are given by Eqs. (7.5) and (7.6); we �nd that

�nân = −A22ân−1 − A12b̂n−1; (7.13)

�nb̂n = A21ân−1 − A11b̂n−1 (7.14)

for n = 1; 2; : : : ; so that ân and b̂n do not depend on frequency !. Note that if both �

and the starting value (â0 or b̂0) are real, then all the coe�cients ân and b̂n will be

real.

For large n, we have

�n ∼ (2n)4c1; A11 ∼ (2n)2c1 and A22 ∼ (2n)2;

whereas A12 and A21 are O(n) as n → ∞. Hence, Eqs. (7.13) and (7.14) give

ân ∼ −(4n2c1)−1ân−1 and b̂n ∼ −(4n2)−1b̂n−1: (7.15)

It follows that the power series (7.4) are absolutely and uniformly convergent for all

values of r; the coe�cients decay very rapidly with n.

8. In-plane motions: Neumann series

The method of Frobenius is e�cient, in that the recursive structure is simple: one

can determine ân and b̂n directly from ân−1 and b̂n−1. However, the result is a power

series in �r, which we may expect to be computationally useful only for moderate

values of �r. Thus, we seek alternative expansions.

8.1. Motivation

For isotropic materials (Section 4), we know that both um and vm can be written as

linear combinations of just two Bessel functions. This suggests an alternative procedure

(when m 	= 0) in which we use a generalization of the method of Frobenius: we expand

um and vm as Neumann series (Watson, 1944, Chapter 16)

um(r) =

∞
∑

n=0

an J2n+�(kr) and vm(r) = j

∞
∑

n=0

bn J2n+�(kr); (8.1)
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where the coe�cients an, bn and � are to be determined. Note that the parameter k is

to some extent at our disposal; we will discuss its choice below.

Further motivation comes from system, (7.2) and (7.3), itself. Assume that �r is

large. Then, the standard theory of (systems of) ordinary di�erential equations (Cod-

dington and Levinson, 1955, Chapter 5, Theorem 2:1; Ince, 1956, Section 19:1) shows

that the asymptotic behavior of the solutions um and vm is given by

eikrr�
(

�0 +
�1

r
+

�2

r2
+ · · ·

)

as r → ∞; (8.2)

where k can take the values ±� and ±�=
√
c1 = ±�1, as de�ned by Eq. (6.5). The

coe�cients �0; �1; �2; : : : and the exponent � do not come out of the general theory,

but they can be determined by substituting in Eqs. (7.2) and (7.3) (see Appendix C). It

turns out that �=− 1
2
, and then it is seen that Eq. (8.2) is consistent with the asymptotic

behavior of J�(kr) and Y�(kr) as kr → ∞; see Eq. (4.3). It also turns out that when

k2 =�2, the angular component vm is asymptotically larger than um at in�nity, whereas

um is asymptotically larger than vm when k2 = �2
1; these properties are also seen in the

isotropic solutions.

We have investigated two methods for �nding the coe�cients an and bn. The �rst, the

direct method, proceeds analogously to the method of Frobenius. The second, indirect

method constructs an and bn in terms of the Frobenius coe�cients, ân and b̂n. It turns

out that the indirect method is better, because the recursion scheme for the method of

Frobenius is simpler than the corresponding recursion scheme for an and bn.

8.2. The direct method

We substitute expansions (8.1) in Eqs. (7.2) and (7.3). In doing this, the following

results are useful. First, from Bessel’s equation, we have

r2u′′m + ru′m =

∞
∑

n=0

an {(2n + �)2 − X 2} J2n+�(X );

where X ≡ kr. Also, making use of the recurrence relations for Bessel functions, we

obtain

z J ′

�(z) = � J�(z) + 2

∞
∑

n=1

(2n + �)(−1)n J2n+�(z);

whence

ru′m =

∞
∑

n=0

anX J ′

2n+�(X )

=

∞
∑

n=0

an(2n + �) J2n+�(X ) + 2

∞
∑

n=1

An(−1)n(2n + �) J2n+�(X ); (8.3)

where we have interchanged the order of summation and de�ned An by

An =

n−1
∑

‘=0

(−1)‘a‘ for n = 1; 2; : : : :
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Similarly, we have

z2 J�(z) = 4

∞
∑

j=0

(−1) j(2j + � + 1)(2j + � + 2) J2j+�+2

−2

∞
∑

j=0

(−1) j(2j + � + 1) z J2j+�+3

= 4

∞
∑

‘=0

(−1)‘(2‘ + � + 2)(‘ + 1)(‘ + � + 1) J2‘+�+2;

whence
∞
∑

n=0

anX
2 J2n+�(X ) = 4

∞
∑

n=1

Ãn(−1)n+1(2n + �) J2n+�(X );

where

Ãn =

n−1
∑

‘=0

(−1)‘(n− ‘)(n + ‘ + �) a‘:

We de�ne Bn and B̃n similarly, with a‘ replaced by b‘.

An and Ãn can be calculated recursively. Thus, A1 = a0, Ã1 = (� + 1)a0,

An+1 = An + (−1)nan and Ãn+1 = Ãn + (2n + 1 + �)An+1 for n = 1; 2; : : : :

Eqs. (7.2) and (7.3) give

0 =

∞
∑

n=0

(anA11 − bnA12) J2n+�(X )

−4(q2 − c1)

∞
∑

n=1

Ãn(−1)n(2n + �) J2n+�(X )

−2m(1 + c12)

∞
∑

n=1

Bn(−1)n(2n + �) J2n+�(X ) (8.4)

and

0 =

∞
∑

n=0

(anA21 + bnA22) J2n+�(X )

−4(q2 − 1)

∞
∑

n=1

B̃n(−1)n(2n + �) J2n+�(X )

+2m(1 + c12)

∞
∑

n=1

An(−1)n(2n + �) J2n+�(X ); (8.5)

respectively, where Aij(n;m; �) are de�ned exactly as before and

q2 = �2=k2 = �!2=(k2C66)

is unspeci�ed at the moment; see Section 8.4 below.
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The next step is to set the coe�cient of J2n+�(X ) equal to zero, for n= 0; 1; 2; : : :; to

leading order (n = 0), we obtain exactly the same indicial equation as before, namely

(7.9). Subsequent coe�cients in the Neumann series are given by Eqs. (8.4) and (8.5);

we �nd that

�nan = A22fn + A12gn; (8.6)

�nbn = A11gn − A21fn (8.7)

for n = 1; 2; : : : ; where

fn = (2n + �)(−1)n{4(q2 − c1)Ãn + 2m(1 + c12)Bn};
gn = (2n + �)(−1)n{4(q2 − 1)B̃n − 2m(1 + c12)An}:

These formulae determine an and bn recursively in terms of aj and bj with 0 ≤
j¡n. Again, note that if �, k2 and the starting value (a0 or b0) are real, then all the

coe�cients an and bn will be real.

In Appendix D, we discuss two other issues. The �rst is the possibility of solutions

where only a0, a1, b0 and b1 are non-zero. This is plausible because of the known

results for homogeneous, isotropic materials. However, we have not found any solutions

of this form, in general. Second, we reduce the pair of second-order equations to a

single fourth-order equation. The resulting equation is rather complicated, so that it is

not clear that much is gained by the reduction.

8.3. The indirect method

We can determine the coe�cients in Eq. (8.1) from the coe�cients ân and b̂n ob-

tained by the method of Frobenius. The basic formula needed is a particular Neumann

series due to Gegenbauer (Watson, 1944, Section 5:2)

( 1
2
z)� =

∞
∑

‘=0

(2‘ + �)4(‘ + �)

‘!
J2‘+�(z):

Thus, we have

um(r) =

∞
∑

j=0

âj (�r)2j+�

=

∞
∑

j=0

âj

(

2�

k

)2j+� ∞
∑

‘=0

(2‘ + 2j + �)4(‘ + 2j + �)

‘!
J2‘+2j+�(kr)

=

∞
∑

j=0

âj

(

2�

k

)2j+� ∞
∑

n=j

(2n + �)4(n + j + �)

(n− j)!
J2n+�(kr)

=

∞
∑

n=0

(2n + �) J2n+�(kr)

n
∑

j=0

âj

(

2�

k

)2j+�
4(n + j + �)

(n− j)!
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after changing the order of summation. Hence

an = (2n + �)

n
∑

j=0

âj

(

2�

k

)2j+�
4(n + j + �)

(n− j)!
(8.8)

so that an is given as a weighted sum of â0, â1; : : : ; ân. There is a similar formula for

bn.

8.4. The choice of k

In general, the method of Frobenius gives four solution pairs, corresponding to the

four solutions of the indicial Eq. (7.10) for �, namely ±�1(m) and ±�2(m) (subject

to Eq. (7.11)). (There will be situations involving double roots, or roots di�ering by

an integer (examples are isotropy and m = 1) but we do not consider such situations

here.) Thus, the method of Frobenius gives the small-r behavior of the four solution

pairs.

On the other hand, we know that the large-r behavior is given by Eq. (8.2), wherein

k = ±� or k = ±�1 and � = − 1
2
. Thus, we should choose

k = � (q2 = 1) or k = �1 (q2 = c1) (8.9)

in the Neumann series (8.1). (As J�(−z) = e��iJ�(z), we can assume that k ¿ 0 in

Eq. (8.1).)

So, we have four values of � and two values of k: given a value for �, which value

of k should we choose? In other words, how do we connect the small-r behavior to

the large-r behavior? As a consequence of Eq. (7.12) and the explicit axisymmetric

solutions (Section 6), we have the following answer:

if � = ±�1(m) choose k = �1(q2 = c1); (8.10)

whereas

if � = ±�2(m) choose k = �(q2 = 1): (8.11)

This relies on a ‘homotopy’ argument: the solutions must retain their character as

m varies, and we know their character explicitly when m = 0. In addition, we may

check, computationally, that Eq. (8.10) does indeed lead to a cylindrical compressional

wave (so that Eq. (C.5) holds) whereas (8.11) should lead to a cylindrical shear wave

(satisfying Eq. (C.6)).

9. Free vibrations of a solid wooden pole

Let us now give an application of the foregoing theory to �nd the frequency equation

for a solid wooden pole of radius d. First, we consider the solution obtained using the

Neumann series, and then we compare our results with similar calculations using the

standard method of Frobenius. For a solid cylinder, the displacements must be bounded
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at r = 0, so we retain only the positive roots � of the indicial equation. Thus, the

displacement is given by Eq. (2.3), wherein

um(r) = (um; vm; wm) = A1(�1;  1; 0) + A2(�2;  2; 0) + B(0; 0; w) (9.1)

w(r) = J�(�ar) with � and �a de�ned by Eq. (5.2), and �i and  i are de�ned using

Neumann series, as in Section 8: for i = 1; 2,

�i(r) =

∞
∑

n=0

ai
n J2n+�i(kir); (9.2)

 i(r) = j

∞
∑

n=0

bi
n J2n+�i(kir); (9.3)

where k1 = �1 = !
√

�=C11 and k2 = � = !
√

�=C66.

From Eq. (2.1) and Ting (1996a, Eq. (2:9)), we have an expression for the radial

traction vector

tr(r; �; t) = Rei{tm(r) e jm� e−i!t};
where

tm =Qu′m + r−1
RKmum:

For cylindrical orthotropy, we obtain

tm(r) =









C11u
′

m + r−1C12[um + jmvm]

C66[v′m + r−1(jmum − vm)]

C55w
′

m









:

The outer surface of the pole (r = d) is stress-free, so that we have the boundary

condition tm(d) = 0. Thus, from Eqs. (9.1), (9.2) and (9.3), we obtain

2
∑

i=1

Ai{dc1�
′

i(d) + c12[�i(d) + jm i(d)]} = 0; (9.4)

2
∑

i=1

Ai{jm�i(d) + d ′

i (d) −  i(d)} = 0 (9.5)

and J ′

�(�ad) = 0. This last equation is the frequency equation for anti-plane motions.

This is uncoupled from the in-plane motions because of the orthotropy. Our primary

interest is with the in-plane motions; for a non-trivial solution, we have to solve

det D = 0; (9.6)

where the elements of the 2 × 2 matrix D can be obtained from Eqs. (9.4) and (9.5).

Note that �′

i(d) and  ′

i (d) can be calculated using Eq. (8.3) or by using zJ ′

�(z) =

�J�(z) − zJ�+1(z), for example.
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Table 1

Convergence of the root of the frequency equation using standard Frobenius power se-

ries and the Neumann series for the second mode. The quantity tabulated is !d
√

�=C66,

which is dimensionless. N is the number of terms in each series

N Frobenius Neumann

2 4.31503 3.38430

4 3.34162 3.34291

6 3.35371 3.35377

8 3.35407 3.35408

10 3.35408 3.35408

12 3.35408 3.35408

20 3.35408 3.35408

We now consider the speci�c case of a wooden pole made of Scots pine; the elastic

constants are given in Appendix B. Selecting m=2, for example, we retain the positive

values of �, which are �1 = 0:37183 and �2 = 5:77083; see Table 2 for other roots.

Then, we see that all of the elements of D are real. The coe�cients for the Neumann

series solutions were determined numerically using a combination of the direct and

indirect methods detailed in the previous section. Speci�cally, we �x â0 = 1, calculate

a0 with Eq. (8.8), then determine the remaining an with the direct method of Eqs. (8.6)

and (8.7). The coe�cients for the standard Frobenius power series were found using

Eqs. (7.13) and (7.14).

The coe�cients in the Neumann series expansions become quite large numerically

as n becomes large. This is due to the fact that the Bessel function Jn(r) decays rapidly

as n → ∞; for example, J50(5) = 2:29 × 10−45. To balance this, the Neumann series

coe�cients were scaled for numerical computations as �an = (−1)n(2q)−2nan with a

similar formula for the bn. This scaling, which was obtained by a rough estimate of

Eq. (8.8) combined with the estimate (7.15), was found to be adequate; it could be

re�ned further.

All computations were performed in double precision. For the Neumann series com-

putations, the gamma function subroutine DGAMMA and the Bessel function sub-

routine DBESJ from the SLATEC library were used. Solutions of Eq. (9.6) were

sought for the �rst, second, and third in-plane modes. Of interest in our calcula-

tions was a comparison of the standard Frobenius power series with the Neumann

series expansions. Focusing our attention on the �rst mode, the root of the frequency

equation, (9.6), is shown in Table 1 as a function of the number of terms taken in

the two methods. We note that the Neumann series results converge slightly faster

than the power series results, with both methods yielding nearly identical results af-

ter about 8 terms in each series. Similar results were obtained for the higher-

order modes.

Finally, we have computed roots of the frequency equation for the �rst three modes,

using 20-term Neumann series. The values found for !d
√

�=C66 are 3.35408, 7.25838

and 11.66891.
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10. Discussion

In this paper, we have given a �rst account of the use of Neumann series to solve

problems of wave propagation in materials with cylindrical anisotropy, including an

application to the free vibrations of a wooden pole. It is clear that the method will

extend to other related problems, such as longitudinal motions (waves along the pole),

hollow poles, poles with concentric layers (giving a better model of a tree, taking

into account the alternate layers of earlywood and latewood) and rotten cores (once

plausible models for decayed wood have been developed; see Appendix A). These

applications of the basic methodology are currently being made.
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Appendix A. The NDE problem

The basic problem is to estimate the size of a rotten region inside a wooden telegraph

pole. Here, we give some background information to aid the modelling.

In the United Kingdom, most poles are made from Scots pine (Pinus sylvestris). The

engineering parameters (Young’s moduli, shear moduli, density, Poisson’s ratios) are

known (Hearmon, 1948; Bucur, 1995, p. 40), assuming that the wood is an orthotropic

elastic solid; see Appendix B.

Much is known about wave propagation through wood, and this knowledge is well

surveyed in the book by Bucur (1995). For example, the various wave speeds are

known for many woods. These speeds vary with temperature and with moisture content.

It is also known that attenuation (damping) can be signi�cant, especially for propagation

in the cross-sectional plane. Thus, it may be appropriate to use a viscoelastic model.

The simplest way to incorporate damping is to make the elastic constants complex; this

approach is described by Bucur (1995, Section 4:4) and by Bodig and Jayne (1982,

Section 6:6:4).

The literature on the ultrasonic non-destructive evaluation of wooden poles is scarce

and scattered. Patton-Mallory and De Groot (1989) have described experiments where

a high-frequency acoustic pulse was generated at one side of a piece of wood and

recorded at the opposite side. The waveforms received through decayed wood and

sound wood were compared. Their conclusions were: ‘sound velocity : : :increased in

a linear fashion with increasing decay degradation; waveform amplitude, measured as

root mean square, decreased with decay degradation; the high-frequency components of

the waveform were attenuated from very early stages of decay; and acousto-ultrasonic

parameters were sensitive to the early stages of decay that caused considerable strength

loss’. At the same conference, Anthony and Bodig (1989) described a similar method,
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termed ‘stress wave spectral NDE’. This is ‘based on the principle that stress waves

propagate at di�erent speeds and attenuate di�erently at various frequencies in inho-

mogeneous materials : : :By collecting a time record of vibration and converting it to a

frequency spectrum, useful information : : : including attenuation and frequency shifts

: : : can be derived for correlation with the strength of the structural component : : : using

linear or nonlinear multiple regression techniques’. Related work is described by Bodig

et al. (1982), Bucur (1995, Section 9:2:2) and Dolwin et al. (1999). In general, these

NDE methods are somewhat unsatisfactory as they do not use a theoretical model to

guide the experiments or help interpret the received waveforms.

Tomikawa et al. (1986) have used ‘computed tomography’. This assumes that sound

travels along straight rays (high-frequency approximation for isotropic materials) and

that rays cannot pass through a rotten region. Nevertheless, some good results were

obtained. Computed tomography has also been used by Habermehl et al. (1986) for

inspecting live trees.

An older paper (not cited by Bucur (1995)) is (Makow, 1969), in which a pulse-echo

method is used under laboratory conditions. Similar methods were used later by Okyere

and Cousin (1980).

A.1. Modelling the rotten region

Another aspect of the NDE problem concerns the rotten region itself. The �rst ques-

tion to ask is: what is rot? Bodig and Jayne (1982, Section 11:4) give a general

discussion on the biological deterioration of wood and its e�ects; for more informa-

tion, see the book by Cartwright and Findlay (1958). Most decay is caused by fungi. It

turns out, and ‘it is an interesting and hitherto incompletely explained fact that compar-

atively few of the fungi which occur in standing [live] trees are important as causes of

decay in felled timber’ (Cartwright and Findlay, 1958, p. 166). One particular fungus,

Lentinus lepideus, is the usual culprit for causing decay in telegraph poles in the UK

(Cartwright and Findlay, 1958, pp. 172 and 252); it is also widespread in Europe and

North America.

It is clear that we have to use a reasonable model for the rotten region. The simplest

model is to use a cavity. Thus, Makow (1969) claims that ‘rot is an empty cavity with

poorly de�ned walls. : : :Echoes from the walls will be di�cult to receive unless the

rot contains air rather than liquid’. Tomikawa et al. (1986) also regard rot as an empty

cavity. Obviously, elastic waves cannot pass through a cavity, although they can be

di�racted. On the other hand, there are reported measurements of elastic waves through

rotten regions (Bucur, 1995, Section 9:2:2).

Various photographs of the cross-sections of decayed trees suggest a rotten core with

a solid concentric outer shell. The decay tends to start from the center: ‘heartwood of

pine is vigorously attacked’ (Cartwright and Findlay, 1958, p. 172). Thus, a realistic

model is obtained by taking a central rotten region (with radius c) surrounded by sound

wood (with outer radius a). Empirical evidence (Mattheck and Kubler, 1997, Fig. 104)

shows that hollow trees are not liable to fail until c=a ≃ 0:7.

Concerning the mechanical properties of the decayed wood, we can say that the

density is signi�cantly reduced (Cartwright and Findlay, 1958, p. 53). Bodig and Jayne
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(1982, p. 587) refer to ‘advanced decay’, a stage in which “the wood develops a soft

or ‘punky’ texture”. Such decay ‘caused by any wood destroying fungus nearly always

results in serious reduction in strength properties’. However, although experiments have

been done showing the gross e�ects of decay on the strength of beams (Cartwright

and Findlay, 1958, pp. 53–57; Bodig and Jayne, 1982, Section 11:4:3), nothing seems

to be known about the elastic properties of the decayed wood itself.

In summary, it seems that we have various choices. We could consider ‘hollow rot’

(a cavity with traction-free boundary), but this is likely to scatter waves too strongly.

We could consider ‘elastic rot’, where the rotten region is modelled as an elastic

inclusion; however, we do not have adequate data for the relevant material parameters.

Finally, we could place an impedance-type boundary condition on the boundary of the

rotten region; the impedance matrix may be varied to model dissipation.

Appendix B. An example: Scots pine

As an example, we consider a wooden pole made of Scots pine. We require the

elastic sti�nesses, Cij. Hearmon (1948, Table 2) gives data for the corresponding com-

pliances, Sij, as follows. First, denote the 1, 2 and 3 directions by R(adial), T(angential)

and L(ongitudinal). Then, we have

S11 = E−1
R ; S22 = E−1

T ; S33 = E−1
L ;

S12 = −�RTE
−1
R = −�TRE

−1
T ; S44 = G−1

LT ;

S13 = −�RLE
−1
R = −�LRE

−1
L ; S55 = G−1

LR ;

S23 = −�TLE
−1
T = −�LTE

−1
L ; S66 = G−1

TR ;

where the Young’s moduli Ei, the Poisson’s ratios �ij and the rigidity moduli Gij are

the quantities tabulated by Hearmon (1948); see also (Bucur, 1995, Table 4:1). Thus,

in (GPa)−1, we obtain

S11 = 0:91; S12 = −0:62; S13 = −0:035;

S22 = 1:75; S23 = −0:026; S33 = 0:061;

S44 = 1:47; S55 = 0:86; S66 = 15:15

with Sij = Sji. The remaining entries in the 6 × 6 matrix (Sij) are zeros.

To obtain the sti�nesses, we invert the matrix (Sij). This gives, in GPa,

C11 = 1:52; C12 = 0:55; C13 = 1:11;

C22 = 0:78; C23 = 0:65; C33 = 17:3;

C44 = 0:68; C55 = 1:16; C66 = 0:066:

As Hearmon (1948, p. 29) notes, ‘there is much more relative variation among the

coe�cients, i.e. wood is both weaker and more anisotropic than [many] other materials’;

see also (Hearmon, 1961, p. 41). The density � is given as 550 kg=m3.
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Table 2

Roots of the indicial equation for Scots pine

m 0 1 2 3 4 5

�1 0.72 0.00 0.37 0.67 0.95 1.22

�2 1.00 3.08 5.77 8.54 11.33 14.13

From this data, we obtain

c1 = 23:0; c2 = 11:8; c12 = 8:3 and 
 = 0:72:

The �rst few positive roots of the indicial equation (7.10) are given in Table 2.

As a check, one can easily solve Eq. (7.10) asymptotically for large m; we �nd that

�1(m) ∼ 0:25m and �2(m) ∼ 2:83m, which give �1(5) = 1:25 and �2(5) = 14:15.

Bucur (1995, Chapter 5) gives further information on determining the elastic con-

stants of wood.

Appendix C. Asymptotic solution of the in-plane system

We seek solutions of Eqs. (7.2) and (7.3) in the form

um = eikrr�
∑

n=0

Unr
−n and vm = jeikrr�

∑

n=0

Vnr
−n

valid for large r. Here the coe�cients Un, Vn, � and k are to be determined. We have

ru′m = eikrr�

{

ikrU0 +
∑

n=0

[(� − n)Un + ikUn+1]r−n

}

and

r2u′′m + ru′m = eikrr�
{

(ikr)2U0 + ikr[(2� + 1)U0 + ikU1]

+
∑

n=0

[(� − n)2Un + ik(2� − 2n− 1)Un+1 − k2Un+2]r−n

}

:

Substitute in Eqs. (7.2) and (7.3), and then cancel eikrr�. The leading order terms are

O(r2) as r → ∞. Balancing these gives

(�2 − c1k
2)U0 = 0 and (�2 − k2)V0 = 0;

whence

k2 = �2=c1 = �2
1 and V0 = 0 (C.1)

or

k2 = �2 and U0 = 0; (C.2)

where � and �1 are de�ned by Eq. (6.5).
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The linear terms in r give

(2� + 1)ikc1U0 − ikm(1 + c12)V0 + (�2 − c1k
2)U1 = 0; (C.3)

(2� + 1)ikV0 + ikm(1 + c12)U0 + (�2 − k2)V1 = 0: (C.4)

Let us suppose that Eq. (C.1) holds, whence Eqs. (C.3) and (C.4) reduce to

(2� + 1)U0 = 0 and ikmc1(1 + c12)U0 + �2(c1 − 1)V1 = 0;

respectively. The �rst of these implies that we can only obtain a non-trivial solution

by taking � = − 1
2
, and then the second equation determines V1 in terms of U0. Note

that the corresponding solutions are such that

um = O(r−1=2) and vm = O(r−3=2) as r → ∞: (C.5)

Thus, the solution pairs constructed with k2 = �2
1 are such that the radial component

is dominant at in�nity: they are cylindrical compressional waves. (Recall that �1 = kP

for isotropic materials.)

Alternatively, if Eq. (C.2) holds, Eqs. (C.3) and (C.4) reduce to

ikm(1 + c12)V0 − k2(1 − c1)U1 = 0 and (2� + 1)V0 = 0;

respectively. As before, we obtain � = − 1
2

from the second equation whereas the �rst

equation gives U1 in terms of V0. The corresponding solutions are such that

um = O(r−3=2) and vm = O(r−1=2) as r → ∞: (C.6)

Thus, the solution pairs constructed with k2 =�2 are such that the angular component is

dominant at in�nity: they are cylindrical shear waves. (Recall that � = kS for isotropic

materials.)

Appendix D. Further properties of the in-plane system

D.1. Two-term expansions

It is of interest to study the possibility of solutions of Eqs. (7.2) and (7.3) with

an = 0 and bn = 0 for n ≥ 2 (D.1)

as such solutions exist in the isotropic case (Section 4). Thus, with Eq. (D.1), we have

A1 = a0; Ã1 = (1 + �)a0;

An = a0 − a1; Ãn = n(n + �)(a0 − a1) + (1 + �)a1

for n ≥ 2, with similar expressions for Bn and B̃n. Then, Eqs. (8.6) and (8.7), with

Eq. (D.1), give fn = 0 and gn = 0 for n ≥ 2; explicitly, these give

2(q2 − c1){n(n + �)(a0 − a1) + (1 + �)a1} + m(1 + c12)(b0 − b1) = 0;

2(q2 − 1){n(n + �)(b0 − b1) + (1 + �)b1} − m(1 + c12)(a0 − a1) = 0:
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We can satisfy the �rst of these for all n ≥ 2 by choosing q2 = c1 (see Eq. (8.9)) and

b1 = b0. The second equation then reduces to

2(c1 − 1)(1 + �)b0 = m(1 + c12)(a0 − a1):

This equation, which does not depend on n, can be viewed as de�ning a1 in terms of

a0 and b0.

So, at this stage, all the coe�cients have been speci�ed in terms of a0, say. However,

we have not used Eqs. (8.6) and (8.7) with n = 1; we will have a solution only if

these two equations are also satis�ed, and, in general, they are not satis�ed.

D.2. Fourth-order equations

The pair of coupled second-order equations, (7.2) and (7.3), can be uncoupled,

resulting in a single fourth-order equation for um or vm. Thus, de�ne the operator

D = r(d=dr), and then write Eqs. (7.2) and (7.3) as

c1D
2um + e1jDvm + (R− e2)um − e3jvm = 0; (D.2)

jD2vm − e1Dum + (R− e4)jvm − e3um = 0; (D.3)

where e1 =m(1 + c12), e2 =m2 + c2, e3 =m(1 + c2), e4 = 1 +m2c2 and R=�!2r2. Next,

consider (D.2), D(D.2), D2(D.2), (D.3) and D(D.3). These �ve equations involve vm,

Dvm, D2vm and D
3vm; once eliminated, we obtain an equation for um(r),

4
∑

‘=0

p‘(R)D‘um(r) = 0: (D.4)

The coe�cients p‘(R) are polynomials in R, de�ned as follows:

p0(R) = p00 + p01R + p02R
2 + e2

1R
3; p1(R) = 2R(p11 + e2

1R);

p2(R) = p20 + p21R + p22R
2; p3(R) = −2e2

1c1R; p4(R) = c1(p40 + e2
1R)

with

p00 = (e2
3 − e2

1e4)(e2e4 − e2
3);

p01 = −2e3
1e3 + e2

1[e4(e4 + 2e2 − 4) − e2
3] + 2e1e2e3 + e2

3(4 − e2 − e4);

p02 = −e2
1(e2 + 2e4) − (2e1 − e3)e3;

p11 = −e4
1 + e2

1(e2 − 2e4) + 2e2
3;

p20 = (e2
3 − e2

1e4)(e2
1 − e2 − e4c1);

p21 = e4
1 − e2

1(2e4c1 + e2 + e4) − 2e1e3c1 + e2
3(1 + c1);

p22 = e2
1(1 + c1); p40 = e2

3 − e2
1e4:
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One can derive a similar equation for vm or one can express vm in terms of um and its

�rst three derivatives.

The di�erential equation (D.4) has the same indicial equation as systems (7.2) and

(7.3); note that p1(0) = p3(0) = 0.

It is not clear whether there are any advantages in working with (D.4) rather than

systems (7.2) and (7.3). One gain is that the Wronskian can be calculated easily, using

Abel’s identity (Ince, 1956, Section 5:2; Coddington and Levinson, 1955, Chapter 3,

Section 6).
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