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A spherical acoustic wave is scattered by a bounded obstacle. A generalization of the

‘optical theorem’ (which relates the scattering cross-section to the far-field pattern in the

forward direction for an incident plane wave) is proved. For a spherical scatterer, low-

frequency results are obtained by approximating the known exact solution (separation of

variables). In particular, a closed-form approximation for the scattered wavefield at the

source of the incident spherical wave is obtained. This leads to the explicit solution of

some simple near-field inverse problems, where both the source and coincident receiver

are located at several points in the vicinity of a small sphere.

Keywords: near field inverse problems; optical theorem; small spherical scatterer; spherical

acoustic waves.

1. Introduction

The interaction of an incident wavefield with a bounded three-dimensional obstacle is a

classic problem in scattering theory. For an obstacle with a smooth boundary S, and time-

harmonic waves, it is well known that the corresponding boundary-value problems for the

Helmholtz equation can be reduced to boundary integral equations over S (Colton & Kress,

1983). This reduction is essentially independent of the form of the incident wavefield.

Alternatively, for special geometries, such as a sphere, one can solve the boundary-value

problem by the method of separation of variables; for this method to be effective, one has

to be able to expand the given incident wavefield in terms of the appropriate separated

solutions of the Helmholtz equation.

In fact, the vast majority of the literature is concerned with incident plane waves.

However, in some recent papers, Dassios and his co-workers have studied incident waves

generated by a point source in the vicinity of the scatterer; see, for example, Dassios

& Kamvyssas (1995, 1997); Charalambopoulos & Dassios (1999); Dassios & Kleinman
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(2000). As they note, such incident wavefields are more readily realized in practice, and

they introduce an extra parameter (the distance of the source from the scatterer) which may

be exploited in inverse problems.

The standard inverse problem is to recover the shape of an obstacle from a knowledge

of the far-field pattern due to incident plane waves in various directions (Colton & Kress,

1992). In other words, the plane waves come in from infinity and the complex amplitude

of the scattered spherical wave is measured at infinity. We shall consider a new class of

near-field inverse problem: we generate waves from a point source in the vicinity of an

obstacle and we measure the scattered field received at the point-source location. This

may be regarded as a near-field version of attempting to determine the shape of an obstacle

from back-scattered data.

There is some previous work on near-field inverse problems, in which the incident field

is generated by point sources (or line sources in two dimensions) (Alves, 1998; Alves &

Ribeiro, 1999). Coyle (2000) has used line sources to locate buried objects. See also the

recent review article by Colton et al. (2000), where further references are given. Other

near-field problems are discussed briefly by Colton & Kress (1992, p. 133). Point sources

have been used by Potthast (1996, 1998) to solve the standard inverse problem (incident

plane waves, far-field data).

We start with the direct problem for ‘small scatterers’, motivated by the work of

Dassios & Kamvyssas (1995). They developed a low-frequency theory for arbitrary smooth

scatterers, which they then specialized to small spherical scatterers. Here, we note that if

spheres are of primary interest, then one can solve the boundary-value problem for the

Helmholtz equation exactly; this solution for point-source insonification is well known

(Sengupta, 1969), and it is an exact Green’s function for related boundary-value problems.

From this solution, one can easily extract the low-frequency results obtained in Dassios &

Kamvyssas (1995). These include an approximation for the scattering cross-section, σ .

For a scatterer of any shape and plane-wave incidence, it is known that σ satisfies a

formula known as the ‘optical theorem’: this relates σ to the far-field pattern in the forward

direction. Here, we derive an analogous formula for point-source incident wavefields. This

new formula relates σ to the scattered field at the source point and a certain Herglotz

wavefunction (Colton & Kress, 1992). Note that Herglotz functions are ubiquitous in the

analysis of inverse problems.

We then consider inverse problems for a small sphere. Dassios & Kamvyssas (1995)

consider such problems, where one measures σ for various point-source locations.

However, σ itself is a far-field quantity. Here, we investigate the possibility of using

the scattered field at the source point, for various point-source locations. We find the

magnitude of the scattered field at the source point, correct to order (ka)2, where k is

the acoustic wavenumber and a is the radius of the sphere. The asymptotics are interesting

in themselves, because one has to sum an infinite number of contributions to calculate the

total contribution at any given power of ka; thus, for a sound-soft sphere and a point source

at distance r0 from the sphere centre, we find that the magnitude of the scattered field at

the source point approaches τ/(1 − τ 2) as ka → 0, where τ = a/r0. Such results can then

be used to solve various simple inverse problems.

It would be of interest to develop the theory of near-field inverse problems further.

Note that, at a fixed frequency, the standard inverse problem involves four-dimensional

data (directions of incident wave and observation) whereas the back-scattered version
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gives two-dimensional data. The near-field problem discussed here is intermediate, as the

location of the point source gives three-dimensional data.

2. Formulation

Consider a bounded three-dimensional obstacle B with a smooth closed boundary S,

surrounded by a compressible fluid. Choose an origin O in the vicinity of B. We consider

an incident spherical wavefield due to a point source at P0, with position vector r0 with

respect to O . Following Dassios & Kamvyssas (1995), we take this incident field as

uin(r; r0) =
r0

R
eik(R−r0) =

h0(k R)

h0(kr0)
, (1)

where r0 = |r0|, R = |r − r0| and hn(w) ≡ h
(1)
n (w) is a spherical Hankel function; note

that h0(w) = eiw/(iw). Here, we have suppressed a time dependence of e−iωt .

The form (1) is convenient because

uin(r; r0) ∼ exp (−ikr̂0 · r) as r0 → ∞, (2)

where r̂0 = r0/r0 is a unit vector, so that the incident field reduces to a plane wave

propagating in the direction from P0 towards O as the point source recedes to infinity.

On the other hand, if we fix P0, we have

uin(r; r0) ∼ fin(̂r; r0) h0(kr) as r → ∞,

where

fin(̂r; r0) = ikr0 exp {−ikr0(1 + r̂ · r̂0)} (3)

is the far-field pattern of the point-source incident wavefield. Thus, uin satisfies the

Sommerfeld radiation condition at infinity (with respect to r ).

We want to calculate the scattered field u, where u satisfies the Helmholtz equation,

(∇2 + k2)u = 0,

everywhere in the fluid, the radiation condition at infinity and a boundary condition on S.

For simplicity, we assume that the obstacle is sound-soft, so that the total field ut ≡ u +uin

vanishes on S. We assume that k2 is a real constant.

The solution of this problem, ut(r; r0), is the exact Green’s function for the soft

obstacle B. In general, it can be constructed by solving a boundary integral equation over S.

It can then be used as a fundamental solution for more complicated problems; see Martin

& Rizzo (1995) for more information.

The behaviour of the scattered waves in the far field is given by

u(r; r0) ∼ f (̂r; r0) h0(kr) as r → ∞, (4)

where f is the far-field pattern. From f , we can calculate the scattering cross-section σ0:

σ0 =
1

k2

∫

S2
| f (̂r; r0)|

2 ds (̂r), (5)
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where S2 is the unit sphere.

For plane-wave incidence, it can be shown that the scattering cross-section, σp say, is

related to f evaluated in the forward direction. This is sometimes known as the ‘optical

theorem’. In the next section, we prove an analogous result for point-source incident fields.

In the sequel, we will sometimes write u(r) for u(r; r0), for example, leaving the

dependence on the point-source location as implicit.

3. An optical theorem for point-source insonification

Consider a volume Br bounded internally by S and externally by a large sphere Sr centred

at the origin with radius r large enough to include the scatterer B in its interior. We also

exclude a small ball centred on the source point P0; the boundary of this ball is a sphere Sε

of radius ε.

Apply Green’s theorem in Br to ut and ut, where the overbar denotes complex

conjugation. As ut and ut both satisfy the same Helmholtz equation in Br , and they both

satisfy homogeneous boundary conditions on S, we obtain

I (Sr ) + I (Sε) = 0, (6)

where

I (S) =

∫

S

(
ut

∂ut

∂n
− ut

∂ut

∂n

)
dS

and ∂/∂n denotes normal differentiation in the outward direction with respect to Br .

As ut ∼ ft h0(kr) as r → ∞, with ft ≡ f + fin, we find that

lim
r→∞

I (Sr ) =
2

ik

∫

S2
| ft(̂r; r0)|

2 ds (̂r)

=
2

ik

{
k2σ0 +

∫

S2
| fin|

2 ds (̂r) + 2 Re

∫

S2
f fin ds (̂r)

}

=
2

ik

(
k2σ0 + 4πk2r2

0 + 2kr0 Im

{
eikr0

∫

S2
f (̂r; r0) exp (ik̂r · r0) ds (̂r)

})

(7)

where we have used (3) and (5).

Next, consider I (Sε). From (1), we find that

ut
∂ut

∂n
=

r2
0

ε3
+

1

ε2
{ikr2

0 + r0 eikr0 u(r0; r0)} + O(ε−1)

as ε → 0. The most singular term, r2
0/ε3, is real, so that the integrand in I (Sε) is O(ε−2)

as ε → 0. As dS = O(ε2), we see that

lim
ε→0

I (Sε) = 8π ir0(kr0 + Im{eikr0 u(r0; r0)}).

Combining this formula with (6) and (7), we obtain

σ0 =
2r0

k
Im

{
eikr0

[
2π u(r0; r0) −

∫

S2
f (̂r; r0) exp (ik̂r · r0) ds (̂r)

]}
. (8)
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This is the analogue of the optical theorem for a point-source incident wavefield. It shows

that the scattering cross-section due to a point source at r0 is related to the scattered field

at r0 and a Herglotz wavefunction with Herglotz kernel f .

It is of interest to examine the behaviour of (8) as the point source recedes to infinity.

From (2), we know that f (̂r; r0) ∼ fp(̂r; −r̂0) as r0 → ∞, where fp(̂r; p̂) is the far-field

pattern in the direction r̂ due to a plane wave propagating in the direction p̂. Hence

u(r0; r0) ∼ fp(r̂0; −r̂0) h0(kr0) as r0 → ∞. (9)

Next, consider the integral in (8) for large kr0. Choose spherical polar coordinates (θ, ϕ)

on S2 so that r̂ · r̂0 = cos θ , and define

F(θ; r0) =

∫ 2π

0

f (̂r; r0) dϕ.

In particular, we have

F(0; r0) = 2π f (r̂0; r0) and F(π; r0) = 2π f (−r̂0; r0). (10)

Hence

∫

S2
f (̂r; r0) exp (ik̂r · r0) ds (̂r) =

∫ π

0

F(θ; r0) eikr0 cos θ sin θ dθ

=
i

kr0

∫ π

0

F(θ; r0)
d

dθ
(eikr0 cos θ ) dθ

∼
i

kr0
{F(π; r0) e−ikr0 − F(0; r0) eikr0}

∼
2π i

kr0
{ fp(−r̂0; −r̂0) e−ikr0 − fp(r̂0; −r̂0) eikr0}

for large r0. Thus, when we combine this formula with (9) in the right-hand side of (8), we

see that two terms cancel, so that (8) reduces to

σp = −4πk−2 Re{ fp(−r̂0; −r̂0)},

which is the standard optical theorem for plane-wave incidence; here

σp =
1

k2

∫

S2
| fp(̂r; −r̂0)|

2 ds (̂r)

is the scattering cross-section for plane-wave incidence.

4. Exact Green’s function for a soft sphere

Dassios & Kamvyssas (1995) have developed a low-frequency asymptotic theory for point-

source insonification of an arbitrary obstacle B. They then calculated explicit results from

their theory for the special case of a sphere. Here we obtain these results more readily

by approximating the known exact solution for point-source insonification of a sphere
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(Sengupta, 1969, Section 10.2.1). (We note that Charalambopoulos & Dassios (1999) have

recently obtained low-frequency results for a small ellipsoid.)

Consider a spherical scatterer of radius a. Take spherical polar coordinates (r, θ, ϕ)

with the origin at the centre of the sphere so that the point source is at r = r0, θ = 0. Thus,

the incident field uin and the scattered field u are axisymmetric. From (1) and Abramowitz

& Stegun (1965, equations 10.1.45 and 10.1.46), we have the expansion

uin(r, θ; r0) =

∞∑

n=0

(2n + 1) jn(kr)Hn(kr0) Pn(cos θ) for r < r0, (11)

where jn(w) is a spherical Bessel function, Pn(x) is a Legendre polynomial and

Hn(w) = hn(w)/h0(w).

Note that H0 = 1, H1 = w−1 − i,

Hn(w) ∼ cn w−n as w → 0, (12)

where cn = 1 · 3 · 5 · · · (2n − 1) with c0 = 1, and

Hn(w) ∼ (−i)n as w → ∞. (13)

The scattered field has a similar expansion to (11); taking the radiation condition into

account, we have

u(r, θ; r0) =

∞∑

n=0

(2n + 1) An hn(kr)Hn(kr0) Pn(cos θ) for r � a,

where the coefficients An are determined from the boundary condition on r = a; for a

sound-soft sphere,

An = − jn(ka)/hn(ka). (14)

From (4) and (13), we find that the far-field pattern is given by

f (̂r; r0) =

∞∑

n=0

(2n + 1)(−i)n An Hn(kr0) Pn(cos θ) (15)

and then (5) gives the scattering cross-section as

σ0 = 4πk−2
∞∑

n=0

(2n + 1)|An Hn(kr0)|
2. (16)

We are also interested in the scattered waves received at the source point. This field is

given by

u(r0) ≡ u(r0, 0; r0) = h0(kr0)

∞∑

n=0

(2n + 1)An [Hn(kr0)]
2. (17)

All the formulae above are exact. In the rest of the paper, we assume that the sphere is

small, ka ≪ 1.
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5. Far-field results for a small soft sphere

In the asymptotic results to follow, there are two parameters, namely

κ = ika and τ = a/r0.

We assume that |κ| = ka ≪ 1 and note that the geometrical parameter τ satisfies

0 < τ < 1.

From (14), we have

An ∼
(ka)2n+1

i(2n + 1)c2
n

as ka → 0, for n = 0, 1, 2, . . . . (18)

Explicitly, with κ = ika,

A0 = −κ(1 − κ + 2
3
κ2) + O(κ4), (19)

A1 = 1
3
κ3 + O(κ5),

A2 = − 1
45

κ5 + O(κ7)

as κ → 0.

Let us use these approximations to calculate f with an error of O(κ4). We have

A0H0 = A0 and

A1H1(kr0) = ( 1
3
κ3 + O(κ5))((kr0)

−1 − i)

= 1
3

iκ2(τ − κ) + O(κ4),

with τ = a/r0. More generally, from (12) and (18), we have

AnHn(kr0) ∼
(ka)n+1τ n

i(2n + 1)cn

as ka → 0, (20)

so that we should retain A2. Thus, (15) gives the approximation

f (̂r; r0) = −κ + κ2[1 + τ P1(cos θ)] − κ3[ 2
3

+ P1(cos θ) + 1
3
τ 2 P2(cos θ)] + O(κ4)

as κ → 0, in agreement with Dassios & Kamvyssas (1995, equation (54)).

To obtain σ0 to the same accuracy, (16) and (20) show that we only require A0 and A1,

giving the result

σ0 = 4πa2{1 + 1
3
κ2(1 − τ 2)} + O(κ4)

as κ → 0, in agreement with Dassios & Kamvyssas (1995, equation (55)).

6. Near-field results for a small soft sphere

The scattered field at the source point u(r0) is given by (17). Let us evaluate u(r0) for

small ka. From (12) and (18) we have

An[Hn(kr0)]
2 ∼ −(2n + 1)−1κτ 2n,
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so that every term in the infinite series for u(r0) contributes to the leading-order behaviour.

Specifically, we have

u(r0) ∼ −κ h0(kr0)

∞∑

n=0

τ 2n =
−κ h0(kr0)

1 − τ 2
,

after summing the geometric series. In particular,

|u(r0)| ∼
(a/r0)

1 − (a/r0)2
as ka → 0. (21)

These results are uniformly valid in the geometrical parameter τ = a/r0.

Let us obtain higher-order terms, and calculate |u(r0)| correct to O((ka)2). As

H0 = 1, (19) gives

A0[H0(kr0)]
2 = −κ(1 − κ + 2

3
κ2) + O(κ4)

as ka → 0. From Abramowitz & Stegun (1965, equation 10.1.16), we have

Hn(w) = (−i)n
n∑

j=0

(n + 1
2
, j) (−2iw)− j , (22)

where (n + 1
2
, j) = [(n + j)!]/[ j ! (n − j)!]. We have

(n + 1
2
, n) = 2ncn, (n + 1

2
, n − 1) = 2n−1cn and (n + 1

2
, n − 2) =

2n−2(n − 1)cn

2n − 1
,

where cn = 1 · 3 · 5 · · · (2n − 1) and c0 = 1. Hence

Hn(w) ∼
cn

wn

(
1 − iw −

n − 1

2n − 1
w2

)
as w → 0

for n � 1. (The right-hand side gives H1 and H2 exactly.) Squaring gives

[Hn(w)]2 ∼
c2

n

w2n

(
1 − 2iw −

4n − 3

2n − 1
w2

)
as w → 0, n � 1. (23)

Also, for n � 1, we have

An = − jn(ka)/hn(ka) ∼ i jn(ka)/yn(ka) as ka → 0,

where Abramowitz & Stegun (1965, equations 10.1.2 and 10.1.3)

jn(w) ∼
wn

cn+1

(
1 −

1
2
w2

2n + 3

)
and yn(w) ∼

−cn

wn+1

(
1 +

1
2
w2

2n − 1

)
,

whence

An ∼
−i(ka)2n+1

(2n + 1)c2
n

{
1 −

(2n + 1)(ka)2

(2n + 3)(2n − 1)

}
as ka → 0, n � 1. (24)
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Combining (23) and (24) gives

An[Hn(kr0)]
2 ∼

−κτ 2n

2n + 1

{
1 − 2

κ

τ
+

κ2

2n − 1

(
2n + 1

2n + 3
+

4n − 3

τ 2

)}

whence (17) gives

u(r0) = −κ h0(kr0)

{
1

1 − τ 2
− κ

(
1 +

2τ

1 − τ 2

)
+ κ2 Q1 + O(κ3)

}
(25)

as ka → 0, where

Q1 = 2
3

+

∞∑

n=1

τ 2n

2n − 1

(
2n + 1

2n + 3
+

4n − 3

τ 2

)

=
τ 2 − 1

2τ 2
+ 2

∞∑

n=0

τ 2n +
(1 − τ 2)2

2τ 3

∞∑

n=0

τ 2n+1

2n + 1

=
τ 2 − 1

2τ 2
+

2

1 − τ 2
+

(1 − τ 2)2

4τ 3
log

(
1 + τ

1 − τ

)
.

Again, (25) is uniformly valid in τ . In particular, one can verify that letting τ → 0

(r0 → ∞) recovers the known result for plane-wave incidence.

From (25), we have

|u(r0)|
2 = τ 2{(1 − τ 2)−2 + (ka)2 Q2} + O((ka)3)

as ka → 0, where

Q2 =

(
1 +

2τ

1 − τ 2

)2

−
2Q1

1 − τ 2

= 1 +
1

τ 2
−

4

1 + τ
−

1 − τ 2

2τ 3
log

(
1 + τ

1 − τ

)
.

Hence

|u(r0)| =
τ

1 − τ 2
{1 + 1

2
(ka)2(1 − τ 2)2 Q2} + O((ka)3) as ka → 0. (26)

7. Near-field inverse problems

Dassios and Kamvyssas have considered various inverse problems for small spherical

scatterers, in which a sphere of unknown radius and location is identified from a knowledge

of the scattered field due to a point source at several known locations. The knowledge

required is one or two terms in the low-frequency asymptotic expansion of the scattering

cross-section; this is a far-field quantity.

As an alternative, we can consider what is perhaps a more natural and realizable

experiment, where one measures the magnitude of the scattered field at the source point,

so that this is a genuine near-field experiment. From (21), we know that

|u(r0)| ∼ τ/(1 − τ 2) as ka → 0,
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where τ = a/r0. So, following Dassios & Kamvyssas (1995), choose a Cartesian

coordinate system Oxyz, and five point-source locations, namely (0, 0, 0), (1, 0, 0),

(0, 1, 0), (0, 0, 1) and (0, 0, 2), which are (unknown) distances r0, r1, r2, r3 and r4,

respectively, from the sphere centre. For each location, measure the leading-order term

in the low-frequency expansion of |u| at the source point, so that we know

mi = τi/(1 − τ 2
i ), τi = a/ri , i = 0, 1, 2, 3, 4.

Inverting this expression gives

(
ri

a

)2

=
1

τ 2
i

=
1 + 2m2

i +

√
1 + 4m2

i

2m2
i

, i = 0, 1, 2, 3, 4.

Thus, we have five measurements and six unknowns, r0, r1, r2, r3, r4 and a. However, r0, r3

and r4 are related, using the cosine rule (Dassios & Kamvyssas, 1995): r2
4 = 2 + 2r2

3 − r2
0 .

This gives

2/a2 = (r4/a)2 − 2(r3/a)2 + (r0/a)2,

so that we can obtain a from m0, m3 and m4. We can then locate the centre of the sphere at

the intersection of the four spheres centred at the first four source points. Measurability and

sensitivity aspects of similar algorithms are discussed in Dassios & Kamvyssas (1995).

Similar calculations can be made for a sound-hard sphere (Neumann boundary

condition). Thus, we find that the coefficients An should be replaced by Sengupta (1969,

Section 10.3.1)

AN
n =

− j ′n(ka)

h′
n(ka)

∼
in(ka)2n+1

(2n + 1)(n + 1)c2
n

as ka → 0, for n � 1, whilst AN
0 ∼ − 1

3
i(ka)3. Hence, we find, for example, that

u(r0) ∼ κ h0(kr0)

∞∑

n=1

nτ 2n

n + 1
= κ h0(kr0)

{
1

1 − τ 2
+

1

τ 2
log (1 − τ 2)

}

whence

|u(r0)| ∼ τ/(1 − τ 2) + τ−1 log (1 − τ 2) as ka → 0.

One can use this formula to solve similar inverse problems for a hard sphere.
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