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In this paper, we consider the inverse problem for the Laplace equation in two-dimensions which requires the
determination of the location, size and shape of an unknown, or partially unknown, portion � � @� of the
boundary @� of a solution domain � � R2 from additional Cauchy data on the remaining portion of the
boundary � ¼ @�� �. This problem arises in the study of quantitative non-destructive evaluation of corro-
sion in materials in which boundary measurements of currents and voltages are used to determine the material
loss caused by corrosion. This inverse problem is approached using the boundary element method (BEM) in
conjunction with the Tikhonov first-order regularization procedure. The choice of the regularization param-
eter is based on an L-curve type criterion although, alternatively one may use the discrepancy principle.
Several examples which involve noisy Cauchy input data are thoroughly investigated showing that the numer-
ical method produces a stable approximate solution which is also convergent to the exact solution as the data
errors tend to zero.

Keywords: Boundary determination; Corrosion damage; Boundary element method; Regularization;
L-curve

1. INTRODUCTION

The purpose of this work is to demonstrate that a non-destructive evaluation technique

based on electrical impedance tomography (EIT) can be effectively applied to image

corrosion damage in materials. EIT uses electrostatic voltage and current measure-

ments on the surface of a specimen to determine the conductivity distribution in the

interior. In this paper, EIT is used to develop a method to determine material loss

occurring on the inaccessible, or partially inacccessible portion � � @� of the boundary

@� of a material which occupies an open bounded domain � � R2 by measuring

*Corresponding author. Tel.: 00-44-113-2335181; Fax: 00-44-113-2335090;
E-mail: amt5ld@amsta.leeds.ac.uk
1On study leave.

ISSN 1068-2767 print: ISSN 1029-0281 online � 2002 Taylor & Francis Ltd

DOI: 10.1080/10682760290007453



voltages and currents (Cauchy data) on a remaining (accessible) portion � � @�� �.

Although it is not necessary that � [ � ¼ @�, we shall consider, for simplicity, only

the case � ¼ @�� �. The boundary @� is assumed to be smooth in the sense of

Liapunov, see e.g. Kellogg (1953), such that Green’s formula is applicable.

Therefore, we consider the Laplace equation in a two-dimensional damaged or trans-

formed finite plate � with, for example, corrosion or continuous steel casting, for

the potential u, namely,

r2u ¼ 0, in � ð1Þ

subject to the boundary conditions

u ¼ f ,
@u

@n
¼ g, on� ð2Þ

�uþ �
@u

@n
¼ h, on � ð3Þ

where f, g, h, � and � are prescribed functions such that �� 	 0, �2 þ �2 6¼ 0, and n is

the outward normal to the boundary @�.

Practically, we would require that the corroded part � is a perfect conductor, i.e.

� ¼ 1, � ¼ 0, h ¼ 0, or insulated, i.e. � ¼ 0, � ¼ 1, h ¼ 0. Non-linear boundary con-

ditions on �, which take into account the chemical reduction and oxidation occurring

on the boundary, can also be considered, see Vogelius and Xu (1998). A more realistic,

boundary inverse problem would include transient effects in which the Laplace Eq. (1)

is replaced by the heat equation. This problem has been addressed by Bryan and

Caudill (1996) where they dealt with periodic flux in an infinite strip where one of

the boundaries of the strips was unknown.

In Eqs. (2) and (3), � and � are, in general, two simple arcs having in common the

endpoints only, and this problem occurs in several contexts such as corrosion detection

by electrostatic measurements, see Kaup and Santosa (1995) and Kaup et al. (1996),

and of planar crack detection in non-ferrous metals subject to electromagnetic measure-

ments, see McIver (1991).

The uniqueness in determining � in the problem (1)–(3) when � ¼ 1, � ¼ 0 or

� ¼ 0, � ¼ 1, follows from the unique analytical continuation property for the

Laplace equation, see Beretta and Vessella (1998). However, connected to this inverse

problem, is the question of uniqueness when the more general Robin boundary

condition (2) is prescribed on the unknown boundary �, thus allowing convective

corroded damage to occur, see Canuto et al. (2001). The second theoretical issue is

stability. Unfortunately, our inverse problem is severely ill-posed, see Aparicio and

Pidcock (1996), and we cannot expect good stability with the usual topologies, because

an ill-posed Cauchy problem for the Laplace equation is involved. In fact, in

Alessandrini (1997) it is shown that the most one can hope for is logarithmic continuous

dependence of � from the Cauchy data f and g. Further, in the ill-posed problem, sta-

bility can be restored based on additional information on the input and output data, see

Beretta and Vessella (1998), Rondi (1999), Bukhgeim et al. (2000) and Cheng et al.

(2001).
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Prior to this study, numerical methods were devised for an insulated corroded

material, i.e. zero Neumann condition � ¼ 0, � ¼ 1, h ¼ 0, see Aparicio and Pidcock

(1996). They assumed the potential u to be monotonic along the unknown curve �

and presented two numerical methods for determining an insulated corroded boundary.

The first one solves the problem in a closed form and was used to define a

parameter that describes the ill-posedness of the problem. The effect of this param-

eter on a second method based on inverse mapping was thereafter investigated.

Both methods reflected the ill-posedness of the problem but they did not produce

stable solutions, in addition to the a priori assumption of the unknown uj� being

monotonic.

Recently, for a perfect conducting corroded material, i.e. zero Dirichlet conditon,

� ¼ 1, � ¼ 0, h ¼ 0, which arises in the study of a convectively cooling continuously

casting problem, see Siegel (1986), Hon and Wu (2000) approximated the solution

uðx, yÞ as a linear combination of harmonic functions and then determined a curve

Y ¼ fðx, yÞ 2 � j uðx, yÞ ¼ 0g. However, their solution was found to be highly unstable

when noise was introduced in the input data f and g. Further, this method of solution

does not seem easily extendable when the corroded part is insulated, as in such a situa-

tion one will have to determine a curve Y � � on which @u=@n jY¼ 0 and this becomes

complicated.

Therefore, the purpose of this paper is to develop a stable and robust numerical

solution for the ill-posed problem (1)–(3). Either the electric voltage f ð6�constant) or

current flux gð6�0Þ can be prescribed on � in Eq. (2) with the other one being measured

as additional information.

For the discretisation of the problem (1)–(3) it is particularly advantageous to use the

boundary element method (BEM) since we are dealing with a boundary value problem

and the discretisation of the boundary only is the essence of the BEM. Further, it

reduces the dimensionality of the problem by one and, unlike the domain discretisation

methods such as the Finite-Difference Method (FDM) or the Finite Element Method

(FEM), it does not require any domain discretisation moving meshes for the identifica-

tion of the unknown boundary �. Moreover, in our boundary element formulation any

type of boundary condition can be prescribed on � which may include a Robin bound-

ary condition (3). Also many types of (linear) operators such as r2, r4, r2 � @=@t,

r2 � @2=@t2, etc., in any dimension can be considered. The inverse formulation in

which the Cauchy data (2) is prescribed only on a subportion of �1 � � of non-zero

measure with either u or @u=@n being prescribed on �� �1 can also be dealt with

using the BEM. Finally, our analysis can also be easily adapted to the situation

when � is a simple closed curve and � is an insulated simple closed curve or a simple

arc surrounded by �, in which case the problem is known as the inverse cavity problem,

see Kassab et al. (1997), or the inverse crack problem, see Friedman and Vogelius

(1989), Alessandrini (1993) and Alessandrini et al. (1995), and models the detection

by electrostatic measurements of a cavity, crack, flaw, fault or fracture in a conductor.

A more general class of the latter inverse problem formulation is the inverse conduc-

tivity problem, see for more details Isakov (1998) and Ki and Sheen (2000).

Once the problem (1)–(3) has been discretised using the BEM in order to obtain a

stable numerical solution the resulting system of non-linear equations is solved by mini-

mizing a first-order Tikhonov’s functional subject to simple bounds on the unknown

variables. This approach is similar to that of Peneau et al. (1994) who investigated a

problem of isotherm shape identification using the FEM.
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2. THE BOUNDARY ELEMENT REGULARIZATION METHOD

Using Green’s formula for the Laplace Eq. (1) we obtain the following integral

equation

�ð pÞuð pÞ ¼

Z

@�

Gð p, p0Þ
@u

@n
ð p0Þ � uð p0Þ

@G

@np0
ð p, p0Þ

� �

dSp0 , p 2 � ð4Þ

where �ð pÞ is a coefficient function which is equal to 1 if p 2 � and �̂�=ð2�Þ if p 2 @� and

�̂� is the angle between the two sides of the tangents at @� at p0; in particular �̂� ¼ � if p

belongs to a point on a smooth portion of @�. In Eq. (4), Gð p, p0Þ is the fundamental

solution for the Laplace Eq. (1) which in two-dimensions is given by Gð p, p0Þ ¼

�ð1=2�Þ ln j p� p0 j. Using the boundary data (2) we obtain from Eq. (4)

�ð pÞuð pÞ ¼

Z

�

Gð p, p0Þgð p0Þ � f ð p0Þ
@G

@np0
ð p, p0Þ

� �

dSp0

þ

Z

�

Gð p, p0Þ
@u

@n
ð p0Þ � uð p0Þ

@G

@np0
ð p, p0Þ

� �

dSp0 , p 2 � ð5Þ

As the above integral Eq. (5) cannot, in general, be solved analytically we discretise

the boundary @� in a counterclockwise manner into a collection of K boundary ele-

ments, namely, @� � [K
j¼1Sj, where Sj may be curves or straight lines. (In 3-D,

curved surfaces or polygonal surfaces could be used.) In what follows, consider Sj ¼

½pj�1, pj � to be straight line segments. For simplicity, we also adopt a constant BEM

approximation in which the unknowns u and @u=@n are assumed constant over each

boundary element Sj and take their values at the midpoints ~ppj ¼ ð pj þ pj�1Þ=2, namely,

uð pÞ � uð ~ppjÞ ¼ uj , p 2 ½ pj�1, pj�,

@u

@n
ð pÞ �

@u

@n
ð ~ppjÞ ¼ u0j, p 2 ½ pj�1, pj�: ð6Þ

Based on the BEM approximations (6), Eq. (5) becomes

�ð pÞuð pÞ ¼
X

N

j¼1

½Ajð pÞu
0
j þ Bjð pÞuj � þ

X

MþN

j¼Nþ1

½Ajð pÞgj þ Bjð pÞfj�, p 2 � ð7Þ

where fj ¼ f ð ~ppjÞ, gj ¼ gð ~ppjÞ,

Ajð pÞ ¼

Z

Sj

Gð p, p0Þ dSjð p
0Þ, Bjð pÞ ¼ �

Z

Sj

@G

@np0
ð p, p0Þ dSjð p

0Þ ð8Þ

M is the number of boundary elements on �, N is the number of boundary elements on

�, and thus K ¼ M þN. Collocating Eq. (7) at the boundary nodes ~ppi for i ¼ 1,K , and

Eq. (3) at the boundary nodes ~ppi for i ¼ 1,N, we obtain a system of ðK þNÞ equations,
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namely,

X

N

j¼1

½Aiju
0
j þ Bijuj� þ

X

MþN

j¼Nþ1

½Aijgj þ Bij fj � ¼ 0, i ¼ 1,K ð9Þ

�juj þ �ju
0
j ¼ hj, j ¼ 1,N ð10Þ

where �j ¼ �ð ~ppjÞ, �j ¼ �ð ~ppjÞ, hj ¼ hð ~ppjÞ,

Aij ¼

Z

Sj

Gð ~ppi, p
0Þ dSjð p

0Þ, Bij ¼ �

Z

Sj

@G

@np0
ð ~ppi, p

0Þ dSjð p
0Þ � 
ij�j ð11Þ

�j ¼ �ð ~ppjÞ and 
ij is the Kronecker delta tensor. For two-dimensional straight line ele-

ments, Sj ¼ ½pj�1, pj� with endpoints pj�1 ¼ ðxj�1, yj�1Þ and pj ¼ ðxj, yjÞ the matrices

Aij and Bij in (11) can be evaluated analytically resulting in

Aij ¼ ð�a cosð�Þ lnða=bÞ þ h� h lnðbÞ � a sinð�ÞÞ=ð2�Þ ð12Þ

Bij ¼

�0:5, if i ¼ j

sgnð
j�1 � 
jÞ =ð2�Þ, if i 6¼ j and yi 2 ðyj�1, yjÞ

sgnð
j � 
j�1Þ =ð2�Þ, if i 6¼ j and yi 62 ðyj�1, yjÞ

8

>

<

>

:

ð13Þ

where 
j�1 and 
j 2 ½0,�� are the angles between the positive x-axis and the straight

lines ½ ~ppi, pj�1� and ½ ~ppi, pj � in the upper-half plane, respectively, and h ¼j pj � pj�1 j,

a ¼j ~ppi � pj�1 j, b ¼j ~ppi � pj j, cosð�Þ ¼ ða2 þ h2 � b2Þ= ð2ahÞ, sinð�Þ ¼ ð1� cos2ð�ÞÞ1=2

and  ¼ cos�1ðða2þ b2 � h2Þ=ð2abÞÞ. In Eq. (10), �2j þ �
2
j 6¼ 0 and we assume, for sim-

plicity, that �j 6¼ 0 and, in fact, take �j ¼ 1 for j ¼ 1,N. Then introducing (10) into

(9) we obtain a system of K equations, namely,

X

N

j¼1

½Bij � �jAij�uj þ
X

N

j¼1

Aijhj þ
X

MþN

j¼Nþ1

½Aijgj þ Bij fj� ¼ 0, i ¼ 1,K ð14Þ

For a given initial guess p
ð0Þ
1 , . . . , p

ð0Þ
N�1, we write the system of Eq. (14) as

X

N

j¼1

½Bij � �jAij �uj þ
X

MþN

j¼Nþ1

Aiju
0
j ¼ �

X

N

j¼1

Aijhj �
X

MþN

j¼Nþ1

Bijfj, i ¼ 1,K ð15Þ

where we have replaced the measured flux data gj with the control variable u
0
j. Alterna-

tively, we could have worked with the control variable uj replacing fj. Equation (15) is

a linear system of K equations with K unknowns, namely, uj for j ¼ 1,N, and u0j
for j ¼ ðN þ 1Þ,K . Solving this system using for example a Gaussian elimination

method we produce in particular the values of u
0ðcÞ
j for j ¼ ðN þ 1Þ,K , where the
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superscript (c) denotes the calculated value of the flux on the boundary �. We can then

minimize the Tikhonov functional

Objfð p1, . . . , pN�1Þ ¼j u0
ðcÞ

� g� j2 þ�
X

N

j¼1

j pj � pj�1 j
2 ð16Þ

where � > 0 is a regularization parameter to be prescribed and g� represents the noisy

measurement data for the exact g. The minimization of the functional (16) is performed

using the NAG routine E04UCF, which is designed to minimize an arbitrary smooth

function (which may include simple bounds on the variables, linear constraints and

smooth non-linear constraints) using a sequential quadratic programming method,

see Gill et al. (1986).

3. NUMERICAL RESULTS AND DISCUSSION

At this stage we observe that the objective functional (16) depends on ð2N � 2Þ vari-

ables which are the coordinates ðxj, yjÞ of the points pj for j ¼ 1, ðN � 1Þ, whilst only

M additional data gj, for j ¼ ðN þ 1Þ, ðN þMÞ, of the flux on the boundary � are

imposed. For the simplicity of the BEM implementation we take M ¼ N, in order to

make the minimization over-determined, or at least determined. In this section, we con-

sider the case when the unknown boundary � is the graph of an unknown function

y : ½0, l� ! R taking the x-axis to pass through the endpoints yð0Þ ¼ yðlÞ ¼ 0 of � and

fixing the origin at x ¼ 0. Thus the endpoints of the boundary elements Sj on � will

have the known equally-spaced x-coordinates xj ¼ jl=N for j ¼ 0,N. Further, since

yð0Þ ¼ yðlÞ ¼ 0, the functional (16) will depend on only ðN � 1Þ unknowns,

y1, . . . , yN�1, where yj ¼ yðxjÞ. Then the functional (16) becomes of the form

Objfðy1, . . . , yN�1Þ ¼j u0
ðcÞ

� g� j2 þ� j y0 j2

¼
X

K

j¼Nþ1

ðu
0ðcÞ
j � g�j Þ

2 þ �½y21 þ y2N�1 þ
X

N�1

j¼2

ðyj � yj�1Þ
2� ð17Þ

where we have stopped penalising the x-coordinates in the norms j pj � pj�1 j since they

are known. It is worth noting that a zeroth-order regularization procedure based on

penalising the norm of the solution j y j, rather than its derivative j y0 j did not produce

sufficiently accurate and stable numerical results and this conclusion is consistent to

that found by Peneau et al. (1994). So, the assumption of smoothness of the numerical

solution for �, as given by the Tikhonov first-order functional (17), is essential in

obtaining an accurate and stable solution. Alternatively, instead of (17) one may para-

meterise the unknown boundary � with various approximating functions and then the

problem turns into a parameter estimation problem to determine the coefficients of the

approximation, see Birginie et al. (1996).

We consider that the clean (undamaged) material at the time t ¼ 0 of insertion into

an engineering environment is a circle of radius 1, namely, �0 ¼ fðx, yÞ j ðx� 1Þ2þ

y2 < 1g, which may represent a circular plate or the cross-section of a long circular
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cylindrical pipe. At the steady-state, as t ! 1, the domain becomes corroded and

degenerates into the damaged domain �. We assume that the upper semicircular part

� ¼ fðx, yÞ j ðx� 1Þ2 þ y2 ¼ 1, y 	 0g remains uncorroded and is known, whilst the cor-

roded part � ¼ @�� � is totally, or partially unknown, but remains within the initial

configuration �0. Thus l ¼ 2 and the simple bounds on the unknown variables are

given by

�
2

N
½ jðN � jÞ�1=2 < yj <

2

N
½ jðN � jÞ�1=2, j ¼ 1, ðN � 1Þ ð18Þ

In order to illustrate a typical benchmark inversion we consider an insulated damaged

material, i.e. � ¼ 0, � ¼ 1, h ¼ 0, and thus (15) simplifies as

X

N

j¼1

Bijuj þ
X

MþN

j¼Nþ1

Aiju
0
j ¼ �

X

MþN

j¼Nþ1

Bij fj, i ¼ 1,K ð19Þ

We consider the corroded damaged boundary � given by the union of three portions �1,

�2, �3, where

�1 ¼ ðx, yÞ j x� 1
4

	 
2
þy2 � 1

16
, y < 0

n o

�2 ¼ ðx, yÞ j ðx� 1Þ2 þ y2 � 1
4
, y 	 0


 �

�3 ¼ ðx, yÞ j x� 7
4

	 
2
þy2 � 1

16
, y < 0

n o

ð20Þ

This typical test example was chosen in order to ensure that � � �0 is sufficiently com-

plex and changes concavity, but any other graphs of continuous functions can be

inverted. Further, � given by Eq. (20) is a smooth curve in agreement with the minimi-

zation of (17) which imposes a first-order smoothness constraint on the solution.

However, in Fig. 8 we have also tested another example involving the retrieval of a

piecewise smooth continuous boundary.

The uniform BEM discretisation was obtained with M ¼ 40 boundary elements on

�, N1 ¼ 10 boundary elements on each of �1 and �3, and N2 ¼ 20 boundary elements

on �2, such that N ¼ 2N1 þN2 ¼ 40. Further refinements in this mesh did not show

any divergence of the numerical results and it was kept fixed in the inversion. We

consider a non-constant voltage f ¼ x ¼ cosð�Þ prescribed on �, where � 2 ½0,�� is

the angular polar coordinate, for which, a direct problem solution, i.e. when � is

known, based on solving (19) using a Gaussian elimination method, gives rise to the

non-zero current gð�Þ on � shown in Fig. 1. From this figure it can be seen that the

above mesh size is sufficiently fine for achieving very good accuracy. In order to

simulate the inherent errors present in any practical experiment, the data g shown by

ð� � �Þ in Fig. 1 was then perturbed by p 2 f1, 2, 3g percent Gaussian normally distrib-

uted multiplicative random noise, �, namely, g� ¼ gþ �, generated using the NAG

routine G05DDF, with zero mean and standard deviation � ¼ ð�iÞi¼ðNþ1Þ,M
, where

�i ¼ p� absðgiÞ=100. Additive random noise with zero mean and standard dev-
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iation � ¼ p�max fabsðgj�Þg=100 has also been tested and the same conclusions were

obtained.

In the inverse analysis of retrieving the whole, or a portion of � we have investigated

three cases, namely:

Case 1 (�1, �3 known and �2 unknown) in order to investigate a simple shape �2 for

which the number of measurements M ¼ 40 is much larger than the number of

unknowns N2 � 1 ¼ 19.

Case 2 (�2 known and �1, �3 unknown) in order to investigate the case when the

unknown boundary is not simply-connected which violates the hypotheses of the theor-

etical studies mentioned in the introduction. In this case, the number of measurements

is M ¼ 40 and the number of unknowns is 2N1 � 2 ¼ 18.

Case 3 (�1, �2, �3 all unknown) in order to investigate a complex shape �1 [ �2 [ �3
which changes concavity and for which the number of measurements M ¼ 40 is com-

parable with the number of unknowns 2N1 þN2 � 1 ¼ 39.

The objective functional (17) has been minimized subject to the constraints (18) using

the NAG routine E04UCF, with the gradient of Objf calculated using forward finite

differences with a step of 10�3 which was found to be sufficiently small that a further

decrease in this value does not affect significantly the accuracy of the numerical results.

The initial guess was taken to be the constant 0.0, and the algorithm has been found to

be robust as other initial guesses produced the same numerical convergent results. For

example, for Case 1 and p ¼ 1, the constant initial guesses �0:25, 0:0 and 0:25 produced

the same convergent value for Objf ¼ 0:0014, within 154, 127 and 124 iterations,

FIGURE 1 The values of the current gð�Þ on � obtained for various BEM mesh discretisations, namely,
ð� � �Þ N1 ¼ 5, N2 ¼ 10, M ¼ 20; ð� � �Þ N1 ¼ 10, N2 ¼ 20, M ¼ 40 and (––) N1 ¼ 20, N2 ¼ 40, M ¼ 80.
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respectively, for � ¼ 5� 10�3. In the functional (17), the choice of the regularization

parameter � > 0 is crucial for achieving the stability of the numerical solution, and

in this study we have used an L-curve type criterion, see Hansen (1992), which plots

on a log–log scale the least-squares gap j u0ðcÞ � g� j versus the norm of the derivative

of the solution, j y0 j, for various values of �. As with every practical method, the L-

curve has its advantages and disadvantages. There are two main disadvantages or lim-

itations of the L-curve criterion; understanding these limitations is the key to the proper

use of the L-curve criterion and, hopefully, also to future improvements of the method.

The first disadvantage is concerned with the reconstruction of very smooth exact sol-

utions, see e.g. Tikhonov et al. (1998). For such solutions, Hanke (1996) showed that

the L-curve criterion will fail, and the smoother the solution the worse the � computed

by the L-curve criterion. In fact, for p ¼ 0, i.e. no noise, we have not obtained any

L-curve. However, it is not clear how often very smooth solutions arise in applications

and therefore in general p > 0. The second limitation of the L-curve criterion is related

to its asymptotic behaviour as the problem size M increases. As pointed out by Vogel

(1996), the regularization parameter � computed by the L-curve criterion may not

behave consistently with the optimal parameter �opt as M increases. However, this

situation in which the same problem is discretised for increasing M, may not arise so

often in practice. Usually the problem sizeM is fixed, such asM ¼ 40 in our numerical

investigation, by a particular measurement setup, and if a larger M is required then a

new experiment must be performed. Apart from these limitations, the advantages of

the L-curve criterion are its robustness and its ability to treat perturbations consisting

of correlated noise, for more details see Hansen (2001).

Figures 2(a)–(c) show the L-curve plots for the Cases 1–3, respectively, for

p 2 f1, 2, 3g. The optimal values of � are then chosen at the corners (‘elbows’) of

these curves in order to balance the over-smooth regions, i.e. � too large, and the

under-smooth regions, i.e. � too small. A more systematic way to find this elbow is

to determine the maximum point of the curvature of the L-curve with respect to

� > 0, for more details see Hansen (1992, 2001) and Hansen and O’Leary (1993).

This is confirmed in Figs. 3(a)–(c) which show the accuracy error-norms

j y� yðexactÞ j, as functions of �, for Cases 1–3, respectively, for p 2 f1, 2, 3g. On compar-

ing Figs. 2 and 3 it can be seen that as p increases, the elbow of the L-curve becomes

broader and the error j y� yðexactÞ j increases fairly dramatically as we move away

from the optimal value for �. However, this is to be expected since as the amount of

noise p increases the inverse problem becomes more ill-posed and hence more difficult

to solve. Of course in the absence of an exact solution yðexactÞ this is a rather heuristic

argument, but then other more rigorous criteria such as the discrepancy principle, see

Morozov (1966), or the generalized cross-validation, see Wahba (1977), can be adopted

for comparison. In our study, Figs. 2(a)–(c) present clearly L-shaped curves and there-

fore the L-curve criterion is applicable. The optimal values �opt shown in Figs. 2(a)–(c)

are then fixed in Figs. 4–7.

Figures 4(a)–(c) show the numerically retrieved boundaries obtained using the opti-

mal values �opt shown in Fig. 2(c), for p 2 f1, 2, 3g, in comparison with their exact tar-

gets in Cases 1, 2 and 3, respectively. From these figures it can be seen that in all the

cases considered the numerical solutions are stable and consistent with the amount

of noise p included in the input data g, and that they converge to their corresponding

exact targets given by Eq. (20) as the amount of noise p decreases, i.e. as the data errors

tend to zero, the numerical solution is convergent to the exact solution.
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FIGURE 2 The L-curve plots of j u0
c
� g� j versus the norm of the first-order derivative, j y0 j, for various

values of � 2 f10�k; k ¼ 0, 5g [ f5� 10�k; k ¼ 1, 5g for p 2 f1, 2, 3g in (a) Case 1, (b) Case 2 and (c) Case 3.
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FIGURE 2 (Continued).

FIGURE 3 The accuracy error-norms j y� yðexactÞ j, as functions of �, for p 2 f1, 2, 3g in (a) Case 1,
(b) Case 2 and (c) Case 3.
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FIGURE 3 (Continued).
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FIGURE 4 The numerically retrieved boundaries for p 2 f1, 2, 3g in comparison with their exact targets in
(a) Case 1, (b) Case 2 and (c) Case 3.
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FIGURE 4 (Continued).

FIGURE 5 The convergence of the objective function Objf given by Eq. (17), as a function of the number of
iterations, for p 2 f1, 2, 3g in Case 1.
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FIGURE 6 The convergence history of �2 for various numbers of iterations k 2 f0, 10, 50, 127g, as the initial
guess yð0Þ ¼ 0 (dashed line), moves towards the semicircle target �2 in Case 1, for p ¼ 1.

FIGURE 7 The numerical solution ð–�–Þ for u on � in comparison with the direct problem solution (––) in
Case 3, for p ¼ 3.
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Figure 5 shows the monotonic decreasing convergence of the objective functional (17)

which is minimized subject to the constraints (18), as a function of the number of itera-

tions k, for various amounts of noise p 2 f1, 2, 3g, for Case 1. From this figure it can be

seen that the objective functional (17) levels off quickly after a small number (less than

30) of iterations. Although not illustrated it is reported that rate of convergence of Objf

given by (17), is the fastest in Case 2, followed by Cases 1 and 3. This is to be expected

since Case 3 contains the union of Cases 1 and 2, and because in Case 2 the unknown

boundaries �1 and �3 are closer than in Case 1 to the known boundary � where the

Cauchy data f and g are prescribed by Eq. (2). The convergence history of the iterative

process in Case 1, for p ¼ 1, is shown in Fig. 6. From this figure it can be seen that the

unknown boundary �2 is detected reasonably accurately within 127 iterations with an

l2-error norm of 0.0481, see also Fig. 3(a), which is comparable with the amount of

noise which is � ¼ 0:0248 for this case. Further, it can be observed that after 10 itera-

tions the numerical solution seems unstable, but it regularizes as the number of itera-

tions increases and the process becomes convergent.

Figure 7 shows the numerical values for u on � in Case 3 for p ¼ 3, in comparison

with the direct problem solution obtained by solving the direct problem using a

Gaussian elimination method for inverting (19), when � is taken as known. From

Fig. 7 it can be seen that the numerical solution for u j� is stable.

We have also investigated the situation when � is piecewise–smooth by taking

�1 ¼ ½0, 0:5� � f0g and �3 ¼ ½1:5, 2� � f0g and, as illustrated in Fig. 8 for Case 3, the

same sound stability and good accuracy between the numerical solution and the analy-

tical solution were obtained. In this figure, the optimal regularization parameters were

chosen according to the L-curve criterion and were found to be �opt ¼ 5� 10
�3 for

FIGURE 8 The numerically retrieved boundary for p 2 f1, 2, 3g in comparison with its exact piecewise
smooth target � ¼ ð½0, 0:5� � f0gÞ [ �2 [ ð½1:5, 2� � f0gÞ.
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p ¼ 1 and �opt ¼ 10
�2 for p 2 f2, 3g. The corner points ð0:5, 0Þ and ð1:5, 0Þ are, as

expected, rounded-off since the minimization of the first-order regularization functional

(17) imposes the numerical solution to be smooth.

Finally, although not illustrated it is reported that the numerical method proposed in

this study was also obtained to be stable when solving the Dirichlet problem, i.e. � ¼ 1,

� ¼ 0, for all the Cases 1–3, for an analytical test function such as uðx, yÞ ¼ x2 � y2.

4. CONCLUSIONS

In this paper, the inverse boundary determination in potential corroded damaged

materials, which requires the determination of the location, size and shape of an

unknown, or partially unknown, portion � � @� of the boundary @� of a solution

domain � � R2 in which Laplace’s equation holds from additional Cauchy data on

the remaining portion of the boundary � ¼ @�� �, has been investigated numerically.

This difficult inverse problem was approached using the BEM in conjunction with a

Tikhonov first-order regularization procedure with the choice of the regularization par-

ameter based on an L-curve type criterion, although alternatively the discrepancy prin-

ciple may be equally used with the same performance. The constrained minimization

procedure was found to be robust, independent on the initial guess, whilst the

zeroth-order regularization was found to be significantly dependent on the initial

guess. Several examples in which the unknown boundaries are represented by the

graph of a function were thoroughly investigated and it was found that the proposed

numerical method produces a stable approximate solution of the ill-posed problem con-

cerning the retrieval of the unknown boundaries which is also convergent to the exact

solution as the data errors tend to zero.

The boundary element regularization method proposed in this study can easily be

extended to:

i) homogeneous anisotropic materials with conductivity given by the symmetric and

positive definite (constant) tensor kij in which the EIT is governed by

X

i, j

kij
@2u

@xi@xj
¼ 0, ð21Þ

ii) special inhomogeneous isotropic materials with conductivity kðxÞ > 0 satisfying

r2ðk1=2ðxÞÞ þ ck1=2ðxÞ ¼ 0, in which the EIT is governed by

r � ðkðxÞruÞ ¼ 0 ð22Þ

and is applied to a perfect conducting corroded part �,

iii) non-linear isotropic materials with conductivity kðuÞ > 0 in which the EIT is gov-

erned by

r � ðkðuÞruÞ ¼ 0 ð23Þ
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and is applied to a perfect insulated corroded part �. Furthermore, the BEM can be

extended to three dimensions by using the fundamental solution Gð p, p0Þ ¼

1=ð4� j p� p0 jÞ in the integral Eq. (4). In this case one could retrieve a Lipschitz

continuous surface �, see for more details the recent paper of Cheng et al. (2001)

where logarithmic conditional stability estimates are given.

Further work will be concerned with extending the numerical method of this study to

the retrieval of more complex boundaries which are not graphs of functions and also to

include the transient effects.
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NOMENCLATURE

A, B coefficient matrices

G fundamental solution of Laplace’s equation

K total number of boundary elements on @�

M number of boundary elements on �

N number of boundary elements on �

N1 number of boundary elements on each of �1 and �3
N2 number of boundary elements on �2
Objf Tikhonov’s first-order regularization objective functional

Sj boundary elements

abs absolute value (modulus)

f electric voltage on �

g current flux on �

h prescribed function on �

n outward normal

p percentage of noise

pj�1, pj endpoints of Sj

~ppj midpoint of Sj

sgn signum function

t time

u potential

ðx, yÞ Cartesian coordinates

ðxj, yjÞ Cartesian coordinates of pj
� known boundary where the Cauchy data is prescribed

� solution domain

�0 undamaged material at t ¼ 0

@� boundary of �

�, � constants, either 0 or 1, in general

� unknown, or partially unknown boundary

�1, �2, �3 portions of �
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ij Kronecker delta tensor

� Gaussian random variables

� coefficient function

� regularization parameter

� standard deviation

� angular polar coordinate

�̂� angle between the two sides of the tangents at @�

j j l2-Euclidean norm of a vector

Superscripts

0 normal derivative

(c) calculated (computed) value of the current flux on �

(exact) exact solution for the unknown parametrised boundary �

� perturbed data

Subscripts

opt optimal value
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