
Acoustic scattering by inhomogeneous spheres
P. A. Martina)

Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden,
Colorado 80401-1887

~Received6 March 2001;revised19 December2001;accepted20 February2002!

Acousticscatteringproblemsareconsideredwhenthematerialparameters~densityr andspeedof
soundc! aresphericallysymmetricfunctionsof position.Explicit separatedsolutionsarederived~i!
whenr(r)5exp(br) andc22 is a linear function of r21, and~ii ! whenr(r)5exp(2br2) andc22

is a linear function of r2. In both cases,the radial parts of the solutionsare given in terms of
Coulombwave functionsor Whittaker functions;thesearewell-studiedspecialfunctions,closely
relatedto confluenthypergeometricfunctions.Two problemsarediscussedin detail: scatteringby
an inhomogeneoussphereembeddedin a homogeneousfluid, and scatteringby a homogeneous
sphere with a concentric inhomogeneouscoating. © 2002 Acoustical Society of America.
@DOI: 10.1121/1.1470502#
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I. INTRODUCTION

Soundpropagationin inhomogeneousmediacontinues
to be of interest.Much is known about layered,stratified
media, where the propertiesof the media ~density r and
speedof soundc! dependon onecoordinate,z, say, wherex,
y, and z are Cartesiancoordinates~Brekhovskikh, 1960!.
Such situations have obvious application to underwater
acoustics.

For time-harmonicmotionsof frequencyv the govern-
ing equationis

r div~r21 gradp !1k2p50, ~1!

wherek5v/c andp is theacousticpressure.If thedensityis
constant,Eq. ~1! reducesto

¹2p1k0
2n~r!p50, ~2!

where¹2[div grad, n(r)5@c0 /c(r)#2 is the ~squareof the!
refractive index at positionr, k05v/c0 , andc0 is a constant
soundspeed.We assumethat n(r)→1 as r→` in all direc-
tions; this excludeslayeredmedia,of course.

Thereis a considerableliteratureon Eq. ~2!, especially
in the contextof quantummechanics;someof this will be
mentionedbelow. In addition,severalpoint-sourcesolutions
~Green’s functions! are known for variousfunctional forms
of n(r); seeLi et al. ~1990! for a review.

For scatteringproblemsin acoustics,there are essen-
tially threecases,dependingon propertiesof n. First, sup-
pose that @12n(r)# has compact support, so that n(r)
[1 for r5uru.a, say. Supposefurther that n(r) is smooth
for all r in three-dimensionalspace.Then,onecanreducethe
scatteringproblemto an integralequationover D, the finite
region in which n(r)Ó1. One such is the Lippmann–
Schwingerequation~see,for example,Ahner, 1977; Colton
and Kress, 1992, Sec. 8.2; and Newton, 1982, Sec. 10.3!.
Asymptoticapproximationsareavailablefor k0a!1 ~Ahner,
1977; Kriegsmannet al., 1983!; Kriegsmannet al. ~1983!
alsodiscussEq. ~1! briefly.

Second,we could have situationsin which @12n(r)#
doesnot havecompactsupport,but is suchthat n(r)→1 as
r→`. The correspondingscatteringproblemsare uncom-
mon in acoustics.

Third, we could haven(r)[1 outsideD with n discon-
tinuous across]D, the boundaryof D. The corresponding
scattering problem will require transmission conditions
acrossthe interface]D. If the materialin D is actuallyho-
mogeneous,so that n(r)5n1 , a constant, for all rPD,
boundaryintegralequationsover]D canbeused;seeKlein-
manandMartin ~1988! for a review.

In this paper, we are mainly concernedwith this third
classof problem:acousticscatteringby a boundedinhomo-
geneityembeddedin an unboundedhomogeneousmedium.
We begin~Sec.II ! with a derivationof thepartialdifferential
equation~1!: this equationgovernsthe acousticpressurein
an otherwise stationary but inhomogeneouscompressible
fluid. We give this derivationbecausesometextbookdiscus-
sionsareflawed.We thensupposethat the inhomogeneityis
spherically symmetric, so that r and c are assumedto be
given functions of the sphericalpolar coordinater ~only!.
Such problemshave beenstudied by severalauthors.For
problemsof the first type @smooth n with n(r)[1 for r
.a] , Ahner~1977! hasgivenlow-frequencyexpansions.For
the second type @smooth n, with n(r)→1 rapidly as r
→`] , Colton ~1978! hasusedso-called‘‘transformationop-
erators,’’ which mapsolutionsof the Helmholtzequation

~¹2
1k0

2!u50, ~3!

into solutionsof Eq. ~2!; seealsoColton andKress~1978!.
ColtonandKress~1979! haveextendedthis approachto con-
sider related transmission problems; see also Sleeman
~1980!. Frisk andDeSanto~1970! haveexploitedthe notion
of a Jostfunction from quantummechanicsso as to obtain
approximatesolutionsof Eq. ~2!.

We consideracousticscatteringby an inhomogeneous
sphereof a radiusa. The mediumin r.a is homogeneous,
with densityr0 andsoundspeedc0 . For time-harmonicmo-
tions, theacousticpressurep0 is governedby Eq. ~3!. Insidea!Electronicmail: pamartin@mines.edu
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the sphere,r,a, the governingequationis Eq. ~1!. Across
r5a, we imposecontinuityof pressureandnormalvelocity,
the latter condition being equivalent to continuity of
r21(]p/]r). This givesa transmission problem. If the inte-
rior is homogeneous,with r5r1 and c5c1 constants,the
problem can be solved exactly, by separationof variables.
We will show that this methodcan be extendedto certain
functional forms for r(r) and c(r). We also considerscat-
teringby a spherewith a homogeneouscoreandan inhomo-
geneouscoating.

There are many paperson analogouselectromagnetic
scatteringproblems.For anearly treatment,seethepaperby
Wyatt ~1962!. Onepopulartechniqueis to replacethe inho-
mogeneoussphereby many concentriclayers,and then to
use a simple approximationto the refractive index within
eachlayer;see,for example,Perelman~1996!. Kai andMas-
soli ~1994! havereportedtheresultsof computationswith as
manyas10000 layers.

In this paper, we considerthe following specific func-
tional forms

~i! r(r)5r1ebr and @k(r)#2
5k1

2
1ar21,

~ii ! r(r)5r1e2br2
and @k(r)#2

5k1
2
1ar2.

Here,r1 , b, k1
2, anda areadjustableparameters.For both

~i! and ~ii !, explicit solutions of Eq. ~1! are derived. The
radial partsof thesesolutionsare given in termsof known
special functions, namely Coulomb wave functions and
Whittakerfunctions.Thesesolutionsthenpermit theexplicit
solution of variousscatteringproblemsfor inhomogeneous
spheres.Suchsolutionscanserveasbenchmarksfor numeri-
cal methods,but they alsohaveintrinsic interest.

II. GOVERNING EQUATIONS

In the linear theory of acousticsfor an inhomogeneous
medium,the basicequationis ~Morse and Ingard,1986,p.
408!

r div~r21 gradP !5c22~]2P/]t2!, ~4!

whereP(r,t) is theacousticpressureat positionr andtime t,
r(r) is thedensity, andc(r) is thespeedof sound.For time-
harmonicmotions,with P5Re$pe2ivt%, we obtainEq. ~1!.

According to Pierce~1990!, Eq. ~4! was first given by
Bergmann~1946!. However, the derivation of Eq. ~4! does
not seemto be well known. In particular, Eq. ~4! cannotbe
derivedwithout mentioningthe entropy.

A. Derivation of Bergmann’s equation

The exactequationsfor the motion of an inviscid com-
pressible fluid are ~Batchelor, 1967, Sec. 3.6; Ostashev,
1997,Sec.2.1.1!

Dr̃

Dt
1 r̃ div ṽ50, ~5!

r̃
Dṽ

Dt
1gradP̃50, ~6!

DS̃

Dt
50. ~7!

Here,r̃ is thedensity, ṽ is thevelocity, P̃ is thepressure,and
S̃ is the entropyper unit mass;all thesequantitiesmay de-
pendon r and t. They will be relatedto the quantitiesin Eq.
~4! later. The materialderivativeis definedby (Df /Dt)(r,t)
5] f /]t1(ṽ•¹) f . In writing Eq. ~6!, we haveassumedthat
thereareno bodyforces.Equation~7! meansthat theflow is
isentropic ~Batchelor, 1967,p. 156!.

We alsorequirean equationof state.As usual,we sup-
posethat

P̃5 P̃~ r̃,S̃ !. ~8!

It follows that gradP̃5 c̃2 gradr̃1 h̃ gradS̃, where

c̃2~ r̃,S̃ !5~] P̃/]r̃ ! S̃ and h̃~ r̃,S̃ !5~] P̃/] S̃ ! r̃.

The temperature T̃ satisfies @Batchelor, 1967, Eq.
~3.6.6!#

r̃
DT̃

Dt
5nT̃

DP̃

Dt
,

wheren is the ratio of the specificheatat constantpressure
to the coefficientof thermalexpansion.Thus

T̃21
DT̃

Dt
5

n c̃2

r̃

Dr̃

Dt
52n c̃2 div ṽ, ~9!

usingEqs.~5!, ~7!, and ~8!.
For linear acoustics,we supposethat P̃5P01P1 , ṽ

5v01v1 , r̃5r01r1 , S̃5S01S1 , T̃5T01T1 , c̃5c0

1c1 , andh̃5h01h1 , wheretheambientflow is denotedby
thesubscript0 andthesmall acousticdisturbanceis denoted
by the subscript1. ~The quantitiesof most interestare P1 ,
v1 , r0 , S0 , andc0 .) We requirethat the ambientflow sat-
isfiesEqs.~5!–~9! exactly, andthenwe derivea setof linear
equationsgoverningthe small acousticdisturbance.

From Eq. ~8!, we obtain P05 P̃(r0 ,S0) andthen

P15c0
2r11h0S1 , ~10!

wherec0
2
5 c̃2(r0 ,S0) andh05 h̃(r0 ,S0).

The leading-order equations,governing the ambient
flow, follow from Eqs.~5!–~7! and ~9!

]r0

]t
1div~r0v0!50, ~11!

r0H ]v0

]t
1~v0•¹ !v0J 52gradP0

52c0
2 gradr02h0 gradS0 , ~12!

]S0

]t
1v0•gradS050, ~13!

]T0

]t
1~v0•¹ !T052nc0

2T0 div v0 . ~14!

Having selectedan ambient flow, the acousticdistur-
banceis thengovernedby

]r1

]t
1div~r1v01r0v1!50, ~15!
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r0H ]v1

]t
1~v0•¹ !v11~v1•¹ !v0J

1r1H ]v0

]t
1~v0•¹ !v0J 52gradP1 , ~16!

]S1

]t
1v0•gradS11v1•gradS050. ~17!

We couldderiveanequationfor T1 , but it will not beneeded
below.

1. Homogeneous fluid at rest

This is the textbookcase~Lighthill, 1978;Pierce,1989;
DeSanto,1992!, where the ambient flow has v050, with
P0 , r0 , S0 , T0 , c0 , andh0 all constant.Thesechoicessat-
isfy Eqs.~11!–~14! identically. Then,Eqs.~15!–~17! reduce
to

]r1

]t
1r0 div v150, ~18!

r0

]v1

]t
52gradP1 , ~19!

]S1

]t
50, ~20!

togetherwith Eq. ~10!. Multiplying Eq. ~18! by c0
2 and Eq.

~20! by the thermodynamiccoefficient h0 and adding the
results,gives

]P1

]t
1r0c0

2 div v150. ~21!

Then,eliminatingv1 betweenthis equationandEq. ~19!, we
obtain the familiar wave equation,¹2P15c0

22(]2P1 /]t2),
for the acousticpressure.The otheracousticquantities,v1 ,
r1 , andS1 , canthenbe calculatedin termsof P1 .

In practice,the dependenceon entropyis often ignored,
so that Eq. ~8! is replacedby P̃5 P̃( r̃) when h̃50 and S1

50. However, we claim that entropy should be retained
whenthe fluid is not homogeneous.

2. Constant entropy

Supposethat S0 is constant,so that Eq. ~13! is satisfied
identically. Equation~12! reducesto

]v0

]t
1~v0•¹ !v052c0

2r0
21 gradr0 . ~22!

If we assumethatv0 is a constantvector, Eqs.~22! and~11!
imply thatr0 is constant.Equation~12! thenimplies that P0

is a functionof t only. But, P05 P̃(r0 ,S0), sothatP0 is also
a constant.Thus,constantS0 andconstantv0 imply that r0

andP0 areconstanttoo.Also, T0 mustsatisfyEq. ~14! with
zeroon the right-handside.

Furtherremarkson the assumptionof consantS0 in the
contextof stratifiedmediacanbefoundin thebook byOsta-
shev~1997,Sec.2.2.4!.

DeSanto~1992,Appendix 1A! argued that the second
term on the left-handsideof Eq. ~22! is negligible,andthen

deducedthat v0 cannotbe constantin an inhomogeneous
fluid. In fact, if the right-hand side of Eq. ~22! does not
dependon t, we can integrate,thus showingthat uv0u must
grow linearly with t. This is an unpleasantconsequenceof
neglectingentropy.

The derivation given by Morse and Ingard ~1986, p.
408! is flawed.They begin~their first displayedequationon
p. 408! with

05

Dr0

Dt
5

]r0

]t
1v0•gradr0 ~23!

~in our notation!, which is incorrect;cf. Eq. ~11!. Next, they
‘‘add a soundwave,with its velocity u, its pressurep, andits
additionaldensitychanged,’ ’ so that u[v1 , p[P1 , and
d[r1 in our notation.Thefollowing equationsareerroneous
because,in their Eq. ~23!, theyhaveu in placeof v0 , so that
their u is both v0 andv1!

3. Zero ambient velocity

Suppose,instead,that v050. Then,Eqs.~11!, ~13!, and
~14! imply that r0 , S0 , T0 , c0 , andh0 do not dependon t.
Equation~12! will alsobe satisfied,providedthat

c0
2 gradr01h0 gradS050. ~24!

This constraintpermitsusto havespatialvariationsin c0
2 and

r0 within a stationaryfluid.
For the acousticdisturbance,Eqs.~15!–~17! reduceto

]r1

]t
1div~r0v1!50, ~25!

r0

]v1

]t
1gradP150, ~26!

]S1

]t
1v1•gradS050. ~27!

Making useof Eq. ~10!, we combineEqs. ~25! and ~27! to
give

]P1

]t
1c0

2 div~r0v1!1h0v1•gradS050. ~28!

Usingtheconstraint~24! soasto eliminateS0 from Eq. ~28!,
we obtain Eq. ~21! again ~exceptnow r0 and c0

2 are not
requiredto beconstants!. Finally, by eliminatingv1 between
Eqs. ~26! and ~21!, we obtain Bergmann’s equation ~4!,
whereinr[r0 , P[P1 andc[c0 .

B. Reduced equations

We can reduce Bergmann’s equation to an equation
without first derivatives by introducing a new dependent
variable~Bergmann,1946!; thus,define

P5r1/2U, ~29!

whenceU is found to satisfy

¹2U1KU5c22~]2U/]t2!, ~30!

where
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K5
1
2r

21¹2r2
3
4r

22ugradru2 ~31!

52r1/2¹2~r21/2!. ~32!

Equations~29!–~31! @but notEq. ~32!# canbe found in Bre-
hovskikh ~1960,p. 171!.

Evidently, Eq. ~30! canbe reducedto a partial differen-
tial equation with constant coefficients if, for example,
¹2(r21/2)5lr21/2 and c5c1 , where l and c1 are con-
stants.

For time-harmonic problems, we can write U
5Re$ue2ivt% andv5Re$we2ivt%, whenceu satisfies

¹2u1~k2
1K !u50, ~33!

wherek2
5v2/c2, and then the fluid velocity is given by w

5(ivr)21 grad(r1/2u).
In a homogeneousregion,we haver5r1 , c5c1 , and

k5k15v/c1 , all constants.Then, K[0 and Eq. ~33! re-
ducesto thestandardHelmholtzequation.If r is constantbut
c is not, we still have K[0 and then Eq. ~33! is usually
written asEq. ~2!; see,for example,ColtonandKress~1992,
Chap.8!.

Finally, we can write Eq. ~33! as ¹2u1(k1
2
2V)u50,

wherek1
2 is a constantandV5k1

2
2k2

2K, which we recog-
nize asSchrödinger’s equation with potential V @Newton,
1982,Eq. ~10.59!#.

III. SPHERICAL SYMMETRY

Introducesphericalpolar coordinates,r, u, and f. As-
sumethat the inhomogeneousmedium is sphericallysym-
metric. Then, as ¹2$ f (r)%5r22@r2f 8#8 @where f 8(r)
[d f /dr] , we find that

K~r !5r21~r8/r !1
1
2~r9/r !2

3
4~r8/r !2.

Next, we seeksolutionsof Eq. ~33! in the form

u~r,u,f !5un~r !Y n~u,f !, ~34!

wheren is an integer, Y n is a sphericalharmonic,andun(r)
is to befoundby substitutingEq. ~34! in Eq. ~33!. @A typical
sphericalharmonicis An

mPn
m(cosu)eimu, wherePn

m is an as-
sociatedLegendrefunction and An

m is a normalizationcon-
stant.#

We have

¹2~unY n!5un¹2Y n12~gradun!•~gradY n!1Y n¹2un .
~35!

But (gradun)•(gradY n)50 becauseun is a functionof r and
Y n is a function of u and f. We also know that rnY n is a
separatedsolutionof Laplace’s equation,so that

05¹2$rnY n%5rn¹2Y n1Y n¹2$rn%,

by Eq. ~35! and ¹2$rn%5n(n11)rn22 whence ¹2Y n5

2n(n11)r22Y n , andthenEq. ~35! gives

¹2~unY n!5$¹2un2n~n11!r22un%Y n .

Hence,Eq. ~33! reducesto

un912r21un81@k2~r !1K~r !2n~n11!r22#un50, ~36!

which is a linear second-orderdifferential equation for
un(r). If we havesolutionsof this equation,we canthenuse

the methodof separationof variablesfor variousscattering
problemsinvolving inhomogeneousspheres.Two suchprob-
lemsaredescribednext.

IV. TWO SCATTERING PROBLEMS

Acoustic scatteringby spheres,with various boundary
conditions,is a textbooktopic ~MorseandIngard,1986,Sec.
8.2!. We shall modify the familiar methodof separationof
variablesso asto treat inhomogeneousspheres.

Consideran inhomogeneoussphereof radiusa centered
at the origin. Without loss of generality, we can take the
incidentpressurefield as

p inc

r0c0
2 5e ik0z

5 (
n50

`

~2n11!in jn~k0r !Pn~cosu !,

where jn(w) is a sphericalBesselfunction. Then, we can
write the total pressurefield outsidethe sphere,in r.a, as

p0~r,u !5r0c0
2(

n50

`

~2n11!in$ jn~k0r !

1Anhn~k0r !%Pn~cosu !, ~37!

where hn(w)[hn
(1)(w) is a sphericalHankel function and

the dimensionlesscoefficientsAn are to be found. This ex-
pressionfor p0 satisfiesthe Helmholtz equationand,more-
over, p02p inc satisfiesthe Sommerfieldradiationcondition
at infinity.

A. An inhomogeneous sphere

Inside thesphere(r,a), we write

u~r,u !5r0
1/2c0

2(
n50

`

~2n11!inBnun~r !Pn~cosu !, ~38!

wherethe dimensionlesscoefficientsBn areto be found and
un(r) is a solutionof Eq. ~36! that is regularat r50; some
explicit solutionswill be given later.

We find An andBn by enforcingthe transmissioncondi-
tions acrossthe interfaceat r5a. Let

ra5 lim
r→a2

r~r ! and ka5 lim
r→a2

@r8~r !/r~r !#,

so that ra is the surfacevalueof the interior density. Then,
the interfaceconditionsare

p05ra
1/2u and r0

21 ]p0

]r
5ra

21/2S ]u

]r
1kau D ~39!

on r5a. SubstitutingEqs.~37! and ~38!, makinguseof the
orthogonalityof the Legendrepolynomials,gives

jn~k0a !1Anhn~k0a !5sBnun~a !,

k0$ jn8~k0a !1Anhn8~k0a !%5s21Bn$un8~a !1kaun~a !%

for n50,1,2,...,wheres5(ra /r0)1/2. Thesetwo equations
canbe solvedfor An andBn

AnD5~k0s !21jn~k0a !$un8~a !1kaun~a !%2s jn8~k0a !un~a !

andBnD5i(k0a)22, where

D5shn8~k0a !un~a !2~k0s !21hn~k0a !$un8~a !1kaun~a !%.
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B. A homogeneous sphere with an inhomogeneous
coating

Supposethatthespherer,a consistsof a homogeneous
core r,b ~with density rc and sound speedcc) with an
inhomogeneousconcentriccoating,b,r,a.

In the coating,we canwrite

u~r,u !5r0
1/2c0

2(
n50

`

~2n11!

3in$Bnun~r !1Cnvn~r !%Pn~cosu !,

whereun(r) andvn(r) aresolutionsof Eq. ~36!. We suppose
that un(r) is regularat r50, whereasvn(r) is singularat r
50. In the homogeneouscore,the pressurefield is

pc~r,u !5r0c0
2(

n50

`

~2n11!inDn jn~kcr !Pn~cosu !,

wherekc5v/cc .
We have to enforce two transmissionconditions at r

5a andtwo at r5b. Let

rb5 lim
r→b1

r~r ! and kb5 lim
r→b1

@r8~r !/r~r !#.

Then,the interfaceconditionsareEq. ~39! and

pc5rb
1/2u and rc

21 ]pc

]r
5rb

21/2S ]u

]r
1kbu D

on r5b. Thesefour conditionscanbeusedto determineAn ,
Bn , Cn , andDn in a straightforwardway.

V. EXPONENTIAL VARIATIONS IN r

Let us assumespecific functional forms for r(r) and
k(r)5v/@c(r)#, namely

r~r !5r1e2br and @k~r !#2
5k1

2
12ar21. ~40!

Here,r1 , b, k1
2, anda arefour adjustableconstants.We find

that Eq. ~36! becomes

un912r21un81@k1
2
2b2

12~a1b !r21

2n~n11!r22#un50. ~41!

Equation~41! hasa regularsingularityat r50, an irregular
singularityat r5`, andno others.Therefore,it canbetrans-
formedinto theconfluenthypergeometricequation.Makethe
substitution

un~r !5r21wn~x ! with x5dr

in Eq. ~41!, giving

wn9~x !1Fk1
2
2b2

d2 1

2

x

a1b

d
2

n~n11!

x2 Gwn~x !50, ~42!

whered is a parameterat our disposal.Therearenow three
cases,dependingon the relativesizesof k1

2 andb2.

A. Case I „k1
2
Ìb2…

Choosed2
5k1

2
2b2 andseth52(a1b)/d. Then,Eq.

~42! becomes

wn9~x !1@122hx21
2n~n11!x22#wn~x !50,

which is the Coulomb wave equation ~AbramowitzandSte-
gun,1965,Chap.14!. Its generalsolution is

wn~x !5AnFn~h,x !1BnGn~h,x !,

whereAn and Bn are arbitrary constants,Fn is the regular
Coulombwave function ~boundedat x50), and Gn is the
irregular Coulomb wave function. Thesefunctions arise in
nuclearphysics ~Biedenharnand Brussard,1965, Chap.3,
Sec.4!.

Unsurprisingly, Coulombwave functionsare wavelike,
in the sensethat

Gn~h,x !1iFn~h,x !;e i~x2w ! as x→`,

wherew5h log2x1
1
2np2sn andsn is known @Abramowitz

andStegun,1965,Eq. ~14.6.5!#. Moreover,

Fn~0,x !5x jn~x ! and Gn~0,x !52xyn~x !,

where jn and yn are sphericalBesselfunctions,so that the
known solutionsfor homogeneousmediaarerecovered.

B. Case II „k1
2
Äb2…

Choosed58(a1b), andthenEq. ~42! becomes

wn9~x !1@ 1
4 x21

2n~n11!x22#wn~x !50, ~43!

which is relatedto Bessel’s equation;the generalsolutionof
Eq. ~43! is

wn~x !5Ax$AnJ2n11~Ax !1BnY 2n11~Ax !%.

C. Case III „k1
2
Ëb2…

Choosed2
54(b2

2k1
2) and set k52(a1b)/d and m

5n1
1
2. Then,Eq. ~42! becomes

wn9~x !1@2
1
41kx21

1~ 1
42m2!x22#wn~x !50, ~44!

which is knownasWhittaker’s equation. Its generalsolution
is given by

wn~x !5AnM k,m~x !1BnWk,m~x !,

where M k,m and Wk,m are Whittaker functions; theseare
discussedby Whittaker and Watson ~1927, Chap. 16!, by
Erdélyi et al. ~1953, Sec.6.9!, by Abramowitz and Stegun
~1965,Chap.13!, and by Buchholz~1969!. The occurrence
of Whittaker functions is a little surprising,becausethese
functionsdo not exhibit wavelikebehavior. Thus

M k,m~x !;x2kex/2 and Wk,m~x !;xke2x/2

asx→`. Moreover@Buchholz,1969,Sec.2, Eqs.~11a! and
~29a!#

M 0,m~x !5ApxIm~x ! and W0,m~x !5Ax/pKm~x !,

whereIm andKm aremodifiedBesselfunctions.We remark
thatWhittakerfunctionsalsooccurwhensolving thesteady-
state heat-conductionequation, div@k(r)gradu#50, when
k(r) variesexponentiallywith r; seeMartin ~2002!. The so-
lutions describedabove can be insertedinto the formulas
obtainedby themethodof separationof variablesin Sec.IV.
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VI. GAUSSIAN SPHERES

Onedrawbackof thefunctionalformsin Eq. ~40! is that
the correspondingsoundspeedsatisfiesc(0)50 ~unlessa
50), so that Eq. ~40! may not be suitablefor an inhomoge-
neoussphere.~This objection doesnot apply if the sphere
hasa homogeneouscore,asdescribedin Sec.IV B.!

As an alternative,we can makeprogressby supposing
that the densityis a Gaussianandthat k2(r) is linear in r2.
Thus,we supposethat

r~r !5r1e2br2
and @k~r !#2

5k1
2
1gr2, ~45!

wherer1 , b, k1
2, andg areadjustableconstants.We find that

Eq. ~36! becomes

un912r21un81@~g2b2!r2
1~k1

2
23b !2n~n11!r22#un50.

To simplify this equation, make the substitution un(r)
5r23/2wn(x) with x5dr2, whered is a disposableparam-
eter. This gives

wn9(x)1Fg2b2

d2 1

k1
2
23b

4dx
2H n~n11!2

3

16J x22Gwn~x !

50. ~46!

As in Sec.V, thereare now threecases,dependingon the
sign of g2b2. For example,we obtain the Coulombwave
equationif g.b2 and Whittaker’s equationif g,b2. Ex-
plicit solutionsfollow readily, but arenot recordedhere.

VII. CONCLUSIONS

In this paper, we havedonetwo things.First, we have
given a derivationof Bergmann’s equationfor soundwaves
in inhomogeneousmedia, where both the ambientdensity
andsoundspeedcanvary with position ~but not time!. Sec-
ond,we havestudiedthe scatteringof wavesby an inhomo-
geneoussphere;for certainexponentialvariationsin theden-
sity, suchscatteringproblemscanbesolvedby themethodof
separationof variables,wheretheradialdependenceinvolves
some less-familiar but well-studied special functions. Per-
haps the main value of thesesolutions is to provide non-
trivial benchmarksagainstwhich numericalschemes~based,
for example,on volumeintegralequations! canbe tested.
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Erdélyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F. G. ~1953!.

Higher Transcendental Functions ~McGraw-Hill, New York!, Vol. 1.
Frisk, G. V., andDeSanto,J.A. ~1970!. ‘‘Scatteringby sphericallysymmet-

ric inhomogeneities,’’ J. Acoust.Soc.Am. 47, 172–180.
Kai, L., andMassoli,P. ~1994!. ‘‘Scatteringof electromagnetic-planewaves

by radially inhomogeneousspheres:A finely stratified spheremodel,’’
Appl. Opt. 33, 501–511.

Kleinman,R. E., andMartin, P. A. ~1988!. ‘‘On singleintegralequationsfor
the transmissionproblemof acoustics,’’ SIAM ~Soc.Ind. Appl. Math.! J.
Appl. Math. 48, 307–325.

Kriegsmann,G. A., andReiss,E. L. ~1983!. ‘‘Low frequencyscatteringby
local inhomogeneities,’’ SIAM ~Soc.Ind. Appl. Math.! J.Appl. Math. 43,
923–934.

Li, Y. L., Liu, C. H., andFranke,S. J. ~1990!. ‘‘Three-dimensionalGreen’s
function for wavepropagationin a linearly inhomogeneousmedium—the
exactanalyticsolution,’’ J. Acoust.Soc.Am. 87, 2285–2291.

Lighthill, J. ~1978!. Waves in Fluids ~University Press,Cambridge!.
Martin, P. A. ~2002!. ‘‘On functionally gradedballs and cones,’’ J. Eng.

Math. ~in press!.
Morse, P. M., and Ingard, K. U. ~1986!. Theoretical Acoustics ~Princeton

University Press,Princeton!.
Newton,R. G. ~1982!. Scattering Theory of Waves and Particles, 2nd ed.

~Springer, New York!.
Ostashev, V. E. ~1997!. Acoustics in Moving Inhomogeneous Media ~Spon,

London!.
Perelman,A. Y. ~1996!. ‘‘Scatteringby particleswith radially variablere-

fractive indices,’’ Appl. Opt. 35, 5452–5460.
Pierce,A. D. ~1989!. Acoustics ~AcousticalSocietyof America,New York!.
Pierce,A. D. ~1990!. ‘‘Wave equationfor sound in fluids with unsteady

inhomogeneousflow,’’ J. Acoust.Soc.Am. 87, 2292–2299.
Sleeman,B. D. ~1980!. ‘‘Acoustic scatteringby inhomogeneousmedia,’’ Q.

J. Mech.Appl. Math. 33, 373–383.
Whittaker, E. T., andWatson,G. N. ~1927!. A Course of Modern Analysis,

4th ed. ~University Press,Cambridge!.
Wyatt, P. J. ~1962!. ‘‘Scatteringof electromagneticplanewavesfrom inho-

mogeneoussphericallysymmetricobjects,’’ Phys. Rev. 127, 1837–1843.
Errata:134 ~1964! AB1.

2018 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002 P. A. Martin: Scattering by inhomogeneous spheres


