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Acousticscatteringproblemsare consideredvhenthe materialparametergdensityp and speedof
soundc) aresphericallysymmetricfunctionsof position.Explicit separatedolutionsarederived(i)

whenp(r)=exp(3r) andc™? is alinearfunctionof r ~1, and (ii) whenp(r)=exp(r? andc™

2

is a linear function of r2. In both casesthe radial parts of the solutionsare given in terms of
Coulombwave functionsor Whittaker functions;theseare well-studiedspecialfunctions, closely
relatedto confluenthypeigeometricfunctions.Two problemsare discussedn detail: scatteringby
an inhomogeneousphereembeddedn a homogeneoudluid, and scatteringby a homogeneous
sphere with a concentric inhomogeneouscoating. © 2002 Acoustical Society of America.

[DOI: 10.1121/1.1470501
PACS numbers: 43.20.Fn[ANN]

I. INTRODUCTION

Soundpropagationin inhomogeneousedia continues
to be of interest.Much is known about layered, stratified
media, where the propertiesof the media (density p and
speedof soundc) dependon onecoordinatez, say wherex,
y, and z are Cartesiancoordinates(Brekhovskikh, 1960.
Such situations have obvious application to underwater
acoustics.

For time-harmonicmotionsof frequencyw the govern-
ing equationis

p div(p~*gradp) +k?p=0, 1)

wherek= w/c andp is the acousticpressurelf the densityis
constantEq. (1) reduceso

V2p+kjn(r)p=0, (2)

whereV?=div grad, n(r)=[co/c(r)]? is the (squareof the)

refractive index at positionr, ko= w/cgy, andc, is a constant
soundspeedWe assumeéhatn(r)—1 asr—oo in all direc-
tions; this excludeslayeredmedia,of course.

Thereis a considerablditeratureon Eq. (2), especially
in the contextof quantummechanicssomeof this will be
mentionedbelow In addition, severalpoint-sourcesolutions
(Greens functiong are known for variousfunctional forms
of n(r); seelLi et al. (1990 for a review

For scatteringproblemsin acoustics,there are essen-
tially three casesdependingon propertiesof n. First, sup-
pose that [1—n(r)] has compact support, so that n(r)
=1 for r=|r|>a, say Supposeurtherthat n(r) is smooth
for all r in three-dimensionapaceThen,onecanreducethe
scatteringproblemto an integral equationover D, the finite
region in which n(r)#1. One such is the Lippmann-
Schwingerequation(see,for example , Ahner, 1977; Colton
and Kress, 1992, Sec. 8.2; and Newton, 1982, Sec. 10.3.
Asymptoticapproximationareavailablefor kpa<1 (Ahner,
1977; Kriegsmannet al., 1983; Kriegsmannet al. (1983
alsodiscussEq. (1) briefly.
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Second,we could have situationsin which [1—n(r)]
doesnot havecompactsupport,but is suchthatn(r)—1 as
r—oo. The correspondingscatteringproblemsare uncom-
monin acoustics.

Third, we could haven(r)=1 outsideD with n discon-
tinuous acrossdD, the boundaryof D. The corresponding
scattering problem will require transmission conditions
acrossthe interfacedD. If the materialin D is actually ho-
mogeneousso that n(r)=n,, a constant,for all reD,
boundaryintegralequationsover ¢D canbe used;seeKlein-
manandMartin (1988 for a review

In this paper we are mainly concernedwith this third
classof problem:acousticscatteringby a boundedinhomo-
geneityembeddedn an unboundechomogeneousnedium.
We begin(Sec.Il) with a derivationof the partial differential
equation(1): this equationgovernsthe acousticpressuren
an otherwise stationary but inhomogeneouscompressible
fluid. We give this derivationbecausesometextbookdiscus-
sionsare flawed.We thensupposehatthe inhomogeneityis
spherically symmetric, so that p and ¢ are assumedo be
given functions of the sphericalpolar coordinater (only).
Such problemshave beenstudied by severalauthors.For
problemsof the first type [smoothn with n(r)=1 for r
>a], Ahner (1977 hasgivenlow-frequencyexpansionskor
the secondtype [smooth n, with n(r)—21 rapidly as r
—o0], Colton (1978 hasusedso-called ‘transformationop-
erators,” which map solutionsof the Helmholtzequation

(V2+k3)u=0, (3)

into solutionsof Eg. (2); seealso Colton and Kress(1978.

ColtonandKress(1979 haveextendedhis approacho con-
sider related transmission problems; see also Sleeman
(1980. Frisk and DeSanto(1970 haveexploitedthe notion
of a Jostfunction from quantummechanicsso asto obtain
approximatesolutionsof Eq. (2).

We consideracousticscatteringby an inhomogeneous
sphereof a radiusa. The mediumin r>a is homogeneous,
with densityp, andsoundspeedc,. For time-harmoniamo-
tions, the acousticpressurep is governedby Eq. (3). Inside
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the spherer<a, the governingequationis Eq. (1). Across
r=a, we imposecontinuity of pressureandnormalvelocity,
the latter condition being equivalent to continuity of
p~Y(dplar). This givesa transmission problem. If theinte-
rior is homogeneouswith p=p,; and c=c; constantsthe
problem can be solved exactly by separationof variables.
We will show that this method can be extendedto certain
functional forms for p(r) andc(r). We also considerscat-
tering by a spherewith a homogeneousoreandaninhomo-
geneougoating.

There are many paperson analogouselectromagnetic
scatteringoroblems.For an early treatmentseethe paperby
Wyatt (1962. One populartechniqueis to replacethe inho-
mogeneoussphereby many concentriclayers, and then to
use a simple approximationto the refractive index within
eachlayer; see for example Perelman1996. Kai andMas-
soli (1994 havereportedthe resultsof computationsvith as
many as 10000 layers.

In this paper we considerthe following specificfunc-
tional forms

() p(r)=p.e” and[k(r)]’=ki+ar
(i) p(r)=pie P and[k(r)]?=k2+ ar?.

Here,p, B, ki, and « are adjustableparametersFor both
(i) and (ii), explicit solutionsof Eq. (1) are derived. The
radial partsof thesesolutionsare given in termsof known
special functions, namely Coulomb wave functions and
Whittakerfunctions.Thesesolutionsthenpermitthe explicit
solution of various scatteringproblemsfor inhomogeneous
spheresSuchsolutionscanserveasbenchmark$or numeri-
cal methods but they also haveintrinsic interest.

Il. GOVERNING EQUATIONS

In the linear theory of acousticsfor an inhomogeneous
medium, the basicequationis (Morse and Ingard, 1986, p.
408

p div(p~tgradP)=c~?(5?P/t?), 4

whereP(r,t) istheacousticpressuret positionr andtimet,
p(r) isthedensity andc(r) is the speedof sound.For time-
harmonicmotions,with P=Re{pe~'“'}, we obtain Eq. (1).

According to Pierce(1990, Eq. (4) wasfirst given by
Bergmann(1946. However the derivation of Eq. (4) does
not seemto be well known. In particular Eq. (4) cannotbe
derivedwithout mentioningthe entropy

A. Derivation of Bergmann’s equation

The exactequationsfor the motion of aninviscid com-
pressiblefluid are (Batchelor 1967, Sec. 3.6; Ostashey
1997,Sec.2.1.])

D 5 dive—0 5
a-i—p ivv=0, (5)
528 gradb=0 6
ppp toradP=0, (6)
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Here,p is thedensity v is thevelocity, P is the pressureand
S is the entropyper unit mass;all thesequantitiesmay de-
pendonr andt. Theywill berelatedto the quantitiesin Eq.
(4) later The materialderivativeis definedby (Df/Dt)(r,t)
=gf/at+(v-V)f. In writing Eq. (6), we haveassumedhat
thereareno bodyforces.Equation(7) meanghatthe flow is
isentropic (Batcheloy 1967,p. 156).

We alsorequirean equationof state.As usual,we sup-
posethat

BB
It follows that gradP =2 gradp + h gradS, where
©(p,9=(PIdp)s and h(p,S)=(dPI3S);.
The temperature:f satisfies [Batcheloy 1967, Eq.
(3.6.6]
T .DP

_DT_ -
ot " bt

wherev is the ratio of the specificheatat constantpressure
to the coefficientof thermalexpansionThus

=, DT _ icz D_Z’

Dt p Dt

using Egs.(5), (7), and(8). 5

For linear acoustics,we supposethat P=Py+ Py, v
=votvy, p=potp1, S=S+S;, T=To+T;, CT=co
+c¢4, andh=hy+h;, wherethe ambientflow is denotedby
the subscript0 andthe small acousticdisturbancés denoted
by the subscriptl. (The quantitiesof mostinterestare P,
v1, po, S, andcy.) We requirethat the ambientflow sat-
isfiesEgs.(5)—(9) exactly andthenwe derivea setof linear
equationggoverningthe small acousticdisturbance.

From Eq. (8), we obtainPy=P(pq,S;) andthen

P1=cdp1+hoSy,

wherec2=%(py,So) andho=h(po,So).
The leading-order equations, governing the ambient
flow, follow from Egs.(5)—(7) and(9)

)

®

C)

=—v¢%divo,

(10

dpo .
i T div(poo) =0,

(11
&UO

PO[W_F(UO'V)UO] = —gradP,

=—c3gradpo—hogradS,, (12

J
—So+vo-gradSO=O,

P (13
JTo o
W—’—(DOIV)TO:_VCOTOdlva' (14)

Having selectedan ambientflow, the acousticdistur
banceis thengovernedoy
apy

—— +div(p1vo+pev1) =0,

m (15
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Po

(901
W"'(UO'V)Ul‘l_(Ul'V)vO]

avo
+p; WJF(UO'V)UO =—gradP,, (16
S,
W+v0-gradsl+v1-gradsozo. (17)

We couldderiveanequationfor T4, butit will notbeneeded
below

1. Homogeneous fluid at rest

This is the textbookcase(Lighthill, 1978;Pierce,1989;
DeSanto,1992, where the ambientflow haswvy=0, with
Pao, pos So, Tg, €, andhg all constantThesechoicessat-
isfy Egs.(11)—(14) identically Then,Egs.(15)—(17) reduce
to

P
P1y odive,=0, (18)
at

1 _ dP 19
po—y = —gradPy, (19
S, 20
(9'[ - ] ( )

togetherwith Eq. (10). Multiplying Eq. (18) by cé and Eq.
(20) by the thermodynamiccoefficient hy and adding the
results,gives

P

—— +poc5divv,=0.

at (21)

Then,eliminatingv, betweerthis equationandEg. (19), we
obtain the familiar wave equation, V2P, =c, %(#?P4/dt?),
for the acousticpressureThe other acousticquantities,v q,
p1, andS;, canthenbe calculatedin termsof P, .

In practice the dependencen entropyis oftenignored,
so that Eq. (8) is replacedby P=P(p) whenh=0 and S,
=0. However we claim that entropy should be retained
whenthe fluid is not homogeneous.

2. Constant entropy

Supposehat S, is constantso that Eq. (13) is satisfied
identically Equation(12) reducego

(91)0 2 1

7+(v0'v)vo:_copo gradpg. (22
If we assumehatuv is a constantvector Egs.(22) and(11)
imply that p, is constantEquation(12) thenimpliesthat Py
is afunctionof t only. But, Po=P(pq,Sp), sothatP is also
a constant.Thus, constantS, and constantv, imply that pg
and P, areconstantoo. Also, Ty mustsatisfy Eq. (14) with
zeroon the right-handside.

Furtherremarkson the assumptiorof consantS, in the
contextof stratifiedmediacanbe foundin thebook byOsta-
shev(1997,Sec.2.2.9.

DeSanto(1992, Appendix 1 A) argued that the second
termon the left-handside of Eq. (22) is negligible,andthen
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deducedthat vy cannotbe constantin an inhomogeneous
fluid. In fact, if the right-handside of Eq. (22) doesnot
dependon t, we canintegrate,thus showingthat |vo| must
grow linearly with t. This is an unpleasantonsequencef
neglectingentropy

The derivation given by Morse and Ingard (1986, p.
408) is flawed. They begin (their first displayedequationon
p. 408 with
J
ﬁ=%+vo-gradpo
(in our notation, which is incorrect;cf. Eq. (11). Next, they
““add a soundwave,with its velocity u, its pressure, andits
additionaldensity changes,” so thatu=v,, p=P,, and
6=p in our notation.Thefollowing equationsareerroneous
becausein their Eq. (23), they haveu in placeof v, so that
their u is bothvy anduv!

_Dro

(23

3. Zero ambient velocity

Supposeinsteadthatv,=0. Then,Egs.(11), (13), and
(14) imply that pg, Sy, Tg, Cg, andhg do not dependon t.
Equation(12) will alsobe satisfied,providedthat

c3 gradpy+ ho gradS,=0. (24)

This constrainpermitsusto havespatialvariationsin c3 and
po Within a stationaryfluid.
For the acousticdisturbanceEgs. (15)—(17) reduceto

J

T+ div(pop1) =0, (25
J

po%JrgradPl:O, (26)

S, B

—+uv,-gradS,=0. (27)

ot

Making useof Eq. (10), we combineEgs. (25 and (27) to
give

P,

ot + C(z) diV(povl) + h0v1~ gradSOZO

(28)

Usingthe constraint(24) soasto eliminateS, from Eq. (28),

we obtain Eqg. (21) again (exceptnow p, and CS are not
requiredto be constants Finally, by eliminatingv ; between
Egs. (26) and (21), we obtain Bergmanns equation (4),

whereinp=p,, P=P; andc=c,.

B. Reduced equations

We can reduce Begmanns equationto an equation
without first derivatives by introducing a new dependent
variable (Begmann,1946); thus,define

P=p"U, (29)
whenceU is found to satisfy
V2U+KU=c 2(5?U/at?), (30

where
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K=3p"'V?p—3p~?|gradp|? (3D
- _ p1/2v2(p—1/2)_ (32)

Equations(29)—(31) [but notEq. (32)] canbe foundin Bre-
hovskikh (1960, p. 171).

Evidently, Eg. (30) canbe reducedto a partial differen-
tial equation with constant coefficients if, for example,
V2(p Y)=xp Y2 and c=c;, where\ and c; are con-
stants.

For time-harmonic problems, we can write U
=Re{ue '“"Y andv=Re{we'“'}, whenceu satisfies

V2u+(k*+K)u=0, (33

wherek?= w?/c?, andthenthe fluid velocity is given by w
=(iwp) *grad(p ).

In a homogeneousegion, we havep=p,;, c=c4, and
k=k;=wl/cq, all constants.Then, K=0 and Eq. (33) re-
ducesto the standardHelmholtzequationlf p is constanbut
c is not, we still have K=0 and then Eq. (33) is usually
written asEg. (2); see for example ColtonandKress(1992,
Chap.8).

Finally, we can write Eq. (33) as V2u+ (k—V)u=0,
wherek? is a constantandV=kZ—k?—K, which we recog-
nize asSchrodinger’s equation with potential V [Newton,
1982,Eq. (10.59].

Ill. SPHERICAL SYMMETRY

Introduce sphericalpolar coordinatesy, 6, and ¢. As-
sumethat the inhomogeneousnedium is spherically sym-
metric. Then, as V{f(r)}=r"2[r%f']" [where f'(r)
=df/dr], we find that

K(r)=r"Xp'lp)+3(p"Ip)—3(p'lp)*.

Next, we seeksolutionsof Eg. (33) in the form

u(ria’d’):un(r)Yn( 0, ¢), (34)

wheren is aninteger Y,, is a sphericalharmonic,andu,(r)
is to befound by substitutingEq. (34) in Eq. (33). [A typical
sphericalharmonicis ATP(cos#)eé™, where P is an as-
sociatedLegendrefunction and A})' is a normalizationcon-
stant]

We have

V2(u,Y,)=u,V2Y,+2(gradu,) - (gradY,) + Y,V2u,.
(35

But (graduy,) - (gradY,) =0 becausel, is afunctionof r and
Y, is a function of § and ¢. We also know thatr"Y,, is a
separatedolutionof Laplaces equation,so that

0=V3r"Y }=r"V2Y, +Y,V3{rm,

by Eq. (35 and V#{r"}=n(n+1)r""2? whence V?Y,=
—n(n+1)r2Y,, andthenEq. (35) gives

V2(u,Y,) ={V2u,—n(n+1)r 2u,lY,.
Hence,Eqg. (33) reducego

ur+2r tul +[k3(r)+K(r)—n(n+1)r ?Ju,=0, (36)
which is a linear second-orderdifferential equation for

u,(r). If we havesolutionsof this equationwe canthenuse
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the methodof separatiorof variablesfor variousscattering
problemsinvolving inhomogeneouspheresTwo suchprob-
lems are describednext.

IV. TWO SCATTERING PROBLEMS

Acoustic scatteringby sphereswith various boundary
conditions,is a textbooktopic (Morseandingard,1986,Sec.
8.2). We shall modify the familiar methodof separationof
variablesso asto treatinhomogeneouspheres.

Consideraninhomogeneousphereof radiusa centered
at the origin. Without loss of generality we can take the
incidentpressurdield as

p‘—"‘;zeikozz > (2n+1)i" 1 (kor ) Py(cos6),

pOCO n=0
where j,(w) is a sphericalBesselfunction. Then, we can
write the total pressurdield outsidethe spherejn r>a, as

©

Polr,0)=poc 2, (2n+1)i™jn(ko)

+Anhn(kor )} Pn(cosd), (37)

where hn(w)Ehgl)(w) is a sphericalHankel function and
the dimensionlessoefficientsA, areto be found. This ex-
pressionfor p, satisfiesthe Helmholtz equationand, more-
over, pg— Pinc Satisfiesthe Sommerfieldradiation condition
at infinity.

A. An inhomogeneous sphere

Inside thesphere(r <a), we write

u(r,6) =p(1)/2C(2)ZO (2n+1)i"B,u,(r)P,(cosh), (38)

wherethe dimensionlesgoefficientsB,, areto be found and
uy(r) is asolutionof Eq. (36) thatis regularat r=0; some
explicit solutionswill be given later.

We find A,, andB,, by enforcingthe transmissiorcondi-
tions acrossthe interfaceatr=a. Let

pa= lim p(r) and xy= lim [p"(r)/p(r)],

r—a— r—a—

sothat p, is the surfacevalue of the interior density Then,
the interfaceconditionsare

9Po —1/2

au
/ —
Po=pa u and po ' —==p,

——I—Kau)

ar (39

onr=a. SubstitutingEgs. (37) and (38), makinguseof the
orthogonalityof the Legendrepolynomials,gives

jn(koa)+Aphp(koa)=0oBjun(a),
kofjn(koa) +Aghp(koa)} = o~ 'Br{us(@) + kaln(a)}

for n=0,1,2,...,where o= (p,/po)*>. Thesetwo equations
canbe solvedfor A, andB,

AnA = (ko)™ lj n(koa){ur;(a) + Kaun(a)} —0oj ﬁ(koa)un(a)
andB,A=i(kya) "2, where

A=ch/(kea)uy(a)— (Koo) ~thy(kea){u/(a) + kaun(a)}.
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B. A homogeneous sphere with an inhomogeneous
coating

Supposeéhatthe spherer <a consistsof ahomogeneous
core r<b (with density p. and soundspeedc.) with an
inhomogeneousoncentriccoating,b<r <a.

In the coating,we canwrite

u(r,0)=pg’c5 > (2n+1)
n=0

X1 Bpun(r)+Ch,(r)}P,(cosb),

whereu,(r) andv,(r) aresolutionsof Eg. (36). We suppose
thatu,(r) isregularatr =0, whereas,(r) is singularatr
=0. In the homogeneousore, the pressurdield is

oo

pc(r,6)=pocgn§=:0 (2n+1)i"D,j (Kol ) Py(COSO),

wherek.= w/c..
We have to enforcetwo transmissionconditionsat r
=a andtwo atr=b. Let

pp= lim p(r) and k= lim [p’(r)/p(r)].

r—b+ r—b+
Then,the interfaceconditionsare Eq. (39) and
Ju

— + kpU
gr b

ap
1/2 -1 c —1/2]
Pe=pp U and pc " —==pp

onr =h. Thesefour conditionscanbe usedto determineA,,
B,, C,, andD,, in a straightforwardway.
V. EXPONENTIAL VARIATIONS IN p

Let us assumespecific functional forms for p(r) and

k(r)=w/[c(r)], namely
p(r)=p.€*" and[k(r)]?=k2+2ar 1. (40)

Here,p1, B, kf, and« arefour adjustableconstantsWe find
that Eq. (36) becomes

ur+2rtul +[k3— B2+ 2(a+ B)rt
—n(n+1)r 2ju,=0. (41)

Equation(41) hasa regularsingularityat r=0, anirregular
singularityatr =, andno others.Thereforejt canbetrans-
formedinto the confluenthypegeometricequation Makethe
substitution

up(r)=r"twy(x) with x=6r

in Eq. (41), giving

kf—ﬁZJr 2 a+B n(n+l)
5° X & X2

where § is a parameteiat our disposal.Thereare now three
casesdependingon the relative sizesof kf and j32.

A. Case | (ki>p?)

Chooses?=k?— B2 andset = —(a+ B)/ 5. Then,Eq.
(42) becomes

wp(X) +

w,(X)=0, (42

Wh(X)+[1—27x"1=n(n+1)x 2w, (x)=0,
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which is the Coulomb wave equation (Abramowitz and Ste-
gun, 1965,Chap.14). Its generalsolutionis
Wi(X)=ApF,(7,X)+B,Gp(7,%),

where A, and B,, are arbitrary constantsfF,, is the regular
Coulombwave function (boundedat x=0), and G, is the
irregular Coulomb wave function. Thesefunctions arise in
nuclear physics (Biedenharnand Brussard,1965, Chap. 3,
Sec.4).

Unsurprisingly Coulombwave functions are wavelike,

in the sensethat
Gh(7,X)+iFp(7,x)~€e*"¢) a5 x—on,

where = 7 log 2x+ in7— oy, and o, is known [Abramowitz
and Stegun,1965,Eq. (14.6.5]. Moreovey
Fr(0X)=Xj,(x) and G,(0X)=—Xxy,(X),

wherej, andy, are sphericalBesselfunctions,so that the
known solutionsfor homogeneousediaare recovered.

B. Case Il (k?=p?)
Chooses=8(a+ B), andthenEq. (42) becomes

wh(X)+[ix t=n(n+1)x 2w, (x)=0, (43

which is relatedto Bessels equation;the generalsolution of
Eq.(43) is

Wo(X) = VX{Adzn s 1(X) + By Yan s 1(VX)}

C. Case Il (k?<g?)
Chooses’=4(B%—k?) andset k=2(a+B)/6 and u
=n+ 1. Then,Eq. (42) becomes

Wi(X)+[— 3+ kx " (5= w?)x 2wy (x) =0, (44)

which is known asWhittaker’s equation. Its generalsolution
is given by

Wi(X) =AM K,,U.(X) + BI"IWK,/,L(X)i

where M, , and W, , are Whittaker functions; theseare
discussedby Whittaker and Watson (1927, Chap. 16), by

Erddyi et al. (1953, Sec.6.9), by Abramowitz and Stegun
(1965, Chap.13), and by Buchholz(1969. The occurrence
of Whittaker functionsis a little surprising, becausethese

functionsdo not exhibit wavelike behavior Thus
— Kk XI2 Kna—XI2
M, (X)~x"“e“ and W, ,(x)~x“e™ ™

asx—oo. Moreover[Buchholz,1969,Sec.2, Egs.(11a) and
(299]

Mo,.(X) =Xl ,(x) and Wo,,(x) = Vx/ K ,(x),

wherel , andK , are modified Besselfunctions.We remark
that Whittakerfunctionsalsooccurwhensolving the steady-
state heat-conductionequation, div[ k(r)gradu]=0, when
k(r) variesexponentiallywith r; seeMartin (2002. The so-
lutions describedabove can be insertedinto the formulas
obtainedby the methodof separatiorof variablesin Sec.IV.
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VI. GAUSSIAN SPHERES

Onedrawbackof the functionalformsin Eq. (40) is that
the correspondingsoundspeedsatisfiesc(0)=0 (unlessa
=0), sothatEq. (40) may not be suitablefor aninhomoge-
neoussphere.(This objection doesnot apply if the sphere
hasa homogeneousore,asdescribedn Sec.IV B.)

As an alternative,we can make progressby supposing
that the densityis a Gaussiarandthat k?(r) is linearin r?.
Thus,we supposehat

p(r)=pse#" and [k(r)2=k3+ yr?, (45)

wherep,, B, k?, andy areadjustableonstantsWe find that
Eq. (36) becomes

un+2rtul +[(y— BHr2+(ki—38)—n(n+1)r 2Ju,=0.

To simplify this equation, make the substitution u,(r)

=r 3w, (x) with x=6r?, where § is a disposableparam-
eter This gives

y—B% Ki—3p

3
" —_ —_ -2
Wi (X) + 57 Jr—45 n(n+1 16])( W, (X)

=0. (46)

As in Sec.V, thereare now three cases,dependingon the
sign of y— 2. For example,we obtainthe Coulombwave
equationif y> 32 and Whittakers equationif y< 2. Ex-
plicit solutionsfollow readily but are not recordedhere.

VII. CONCLUSIONS

In this paper we havedonetwo things. First, we have
given a derivationof Bergmanns equationfor soundwaves
in inhomogeneousnedia, where both the ambient density
and soundspeedcanvary with position (but nottime). Sec-
ond, we havestudiedthe scatteringof wavesby aninhomo-
geneouspherefor certainexponentialvariationsin the den-
sity, suchscatteringoroblemscanbe solvedby the methodof
separatiorof variableswheretheradialdependencavolves
some less-familiar but well-studied special functions. Per
hapsthe main value of thesesolutionsis to provide non-
trivial benchmarksgainstwhich numericalschemegbased,
for example,on volumeintegral equations can be tested.
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