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The problem of a point force acting in an unbounded, three-dimensional, isotropic
elastic solid is considered. Kelvin solved this problem for homogeneous materials.
Here, the material is inhomogeneous; it is ‘functionally graded’. Specifically, the solid
is ‘exponentially graded’, which means that the Lamé moduli vary exponentially in
a given fixed direction. The solution for the Green’s function is obtained by Fourier
transforms, and consists of a singular part, given by the Kelvin solution, plus a non-
singular remainder. This grading term is not obtained in simple closed form, but
as the sum of single integrals over finite intervals of modified Bessel functions, and
double integrals over finite regions of elementary functions. Knowledge of this new
fundamental solution for graded materials permits the development of boundary-
integral methods for these technologically important inhomogeneous solids.

Keywords: fundamental solutions; boundary-element methods;

functionally graded materials; exponential grading

1. Introduction

Lord Kelvin obtained the Green’s function G0 for a three-dimensional homogeneous
isotropic elastic solid in 1848 (Love 1927, § 130). This gives the displacement at a
point when a point force is acting at another point. G0 is used widely as a basic ingre-
dient in integral-equation methods for solving elastostatic boundary-value problems.

Kelvin’s solution may be generalized in two directions. First, the elastic solid could
be anisotropic. In general, the three-dimensional Green’s function cannot then be
found in closed form, although it can be reduced to the evaluation of a single integral
over a finite interval (see (1.2) below). For references to the extensive literature on
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anisotropic Green’s functions, see Nakamura & Tanuma (1997), Ting & Lee (1997)
and Pan & Yuan (2000). The incorporation of anisotropic Green’s functions into a
boundary-integral analysis is described in the book by Schclar (1994).

A second generalization is to consider inhomogeneous elastic solids. Very little
can be achieved, analytically, if the material properties are allowed to vary in a
smooth but arbitrary manner. For such media, it is usual to limit the analysis to
the construction of a ‘parametrix’ (Garabedian 1964, p. 168; McLean 2000, p. 192)
or ‘Levi function’. These may be regarded as ‘approximate Green’s functions’: for-
mally, the Green’s function G satisfies AG = δ, whereas a Levi function L satisfies
AL = δ+R, where R is a smooth ‘remainder’ and A is the governing differential oper-
ator. Recently, Pomp (1998) has devised a numerical algorithm for constructing Levi
functions with a small remainder. Chapter 2 of his book gives a good review of the
known methods for finding Green’s functions when the governing partial differential
equation has variable coefficients.

Rather than looking for general techniques, we concentrate here on a specific inho-
mogeneous material, one that has found application to functionally graded materials.
Thus, we assume that the material properties vary in a simple, explicit manner. Here,
we consider exponential variations, and suppose that the solid is isotropic with Lamé
moduli given by

λ(x) = λ0 exp(2β · x) and µ(x) = µ0 exp(2β · x), (1.1)

where λ0 and µ0 are constants, and β is a given constant vector. We say that the
solid is exponentially graded in the direction of β. Evidently, Poisson’s ratio ν is
constant for such a solid.

The assumption (1.1) is typical in the engineering literature devoted to functionally
graded materials (FGMs). The papers by Hirai (1995) and Markworth et al . (1995),
and the books by Suresh & Mortensen (1998) and Miyamoto et al . (1999), provide
a good overview of current FGM research.

Inhomogeneous materials with grading in one direction have been studied exten-
sively. For example, Booker et al . (1985) have considered an elastic half-space z > 0
with point-force loading on z = 0. They took ν to be constant and µ(z) = µ0z

α.
As a special case, they recovered Gibson’s solution (Gibson 1967) for α = 1 and
ν = 1

2 ; such incompressible isotropic inhomogeneous materials are reasonable mod-
els for certain soils. Exponential grading, µ(z) = µ0e

βz, has also been studied in this
context by Giannakopoulos & Suresh (1997); see also the recent review by Suresh
(2001).

Ben-Menahem (1987) has considered the elastodynamic Green’s function for un-
bounded isotropic inhomogeneous solids. He gave a general analysis but was only
able to obtain solutions when λ(x) and µ(x) have certain specific functional forms;
these do not include exponential grading (1.1). Elastodynamic half-space problems,
with µ(z) = µ1 + µ0e

βz, have been considered in several papers by Vrettos (1991,
1999).

In this paper, we show first that the Green’s function G corresponding to (1.1) can
be written as

G(x;x′) = exp{−β · (x + x′)}{G0(x;x′) + G
g(x;x′)},

where G0 is the Kelvin solution, and the additional grading term Gg is bounded.
It is given as a three-dimensional Fourier integral, and the main task is to evaluate
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this integral. We show that it can be reduced to an explicit term, some single inte-
grals of modified Bessel functions over a finite interval, and some double integrals of
elementary functions over finite regions.

It is of interest to compare the calculation for an exponentially graded but isotropic
material with that for a homogeneous but anisotropic material. In the latter, the
Fourier integral over ξ involves the vector r = x−x′. The integral simplifies by choos-
ing spherical polar coordinates with r along the polar axis. Moreover, the integrand
contains [Q(ξ)]−1, where Qiℓ(ξ) = Cijkℓξjξk and Cijkℓ are the constant stiffnesses;
thus, Q is homogeneous (Q(tξ) = t2Q(ξ) for any t �= 0), and this fact simplifies the
calculation. Specifically, we have

G = (2π)−3

∫

[Q(ξ)]−1 exp(−iξ · r) dξ

= (2π)−3

∫∫

ξ−2[Q(ξ̂)]−1 cos(ξr cos ϕ)ξ2 dξ dξ̂,

where r = |r|, ξ = |ξ|, ξ = ξξ̂ and we have observed that both G and Q are real.
Using spherical polar coordinates (ξ, ϕ, χ), where ϕ = 0 is the polar axis, we have
dξ̂ = sinϕ dϕ dχ, whence

G = (2π)−3 lim
X→∞

∫ π

0

S(ϕ)

∫ X

0

cos(ξr cos ϕ) dξ sinϕ dϕ

=
1

8π3r
lim

X→∞

∫ 1

−1

S(cos−1 µ)
sin (Xrµ)

µ
dµ,

where

S(ϕ) =

∫ 2π

0

[Q(ξ̂)]−1 dχ.

Note that we have evaluated the integral over ξ and then put µ = cos ϕ. The integral
over µ is known as a Dirichlet integral ; its limiting value as X → ∞ is πS(0) (Knopp
1951, § 49C, p. 365), whence

G =
1

8π2r

∮

[Q(ξ̂)]−1 dχ, (1.2)

where the integral is taken around the unit circle, centred at the origin and lying in
the plane perpendicular to r. This derivation can be found on p. 412 of the book
by Synge (1957); other derivations (involving divergent integrals and generalized
functions) are available. For a generalization, see McLean (2000, Theorem 6.8).

For the exponentially graded material, we do not have homogeneity and we have
three distinguished directions, associated with ξ, r and β. It turns out to be advan-
tageous to use spherical polar coordinates with β along the polar axis.

A knowledge of G for an exponentially graded elastic solid permits the treatment
of a variety of problems involving FGMs. For example, problems of stress analysis
can be solved using boundary-integral equations. Previous work in this area includes
the papers by Shaw & Gipson (1995) and by Azis & Clements (2001); the latter
paper considers Lamé moduli proportional to (β · x + c)2, where c is a constant.

Another class of problems concerns fracture mechanics. A review of crack prob-
lems in inhomogeneous media has been given by Erdogan (1998). Most work has been
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devoted to two-dimensional problems with cracks aligned with the grading direction;
these limitations may be removed using the Green’s function derived below. Prop-
agating cracks can also be modelled effectively using boundary-integral equations.
This approach is advantageous for two main reasons. First, the crack-tip singularity
can be incorporated readily, leading to very accurate stress-intensity factors. Second,
the re-meshing task is much simpler as the crack propagates.

2. Governing equations

Consider an anisotropic inhomogeneous elastic solid with stiffnesses cijkℓ(x), where
cijkℓ = cjikℓ = ckℓij and a typical point has position vector x = (x1, x2, x3) with
respect to O, the origin of Cartesian coordinates. The Green’s function G(x;x′)
satisfies

∂

∂xj

{

cijkℓ(x)
∂Gℓm

∂xk

}

= −δimδ(x − x′), i = 1, 2, 3, (2.1)

where δij is the Kronecker delta and δ(x) is the three-dimensional Dirac delta. As
usual, Gij(x;x′) gives the ith component of the displacement at x due to a point
force acting in the jth direction at x′. Also, a standard argument using the reciprocal
theorem and cijkℓ = cℓkji (see, for example, Bonnet 1999, p. 72) ensures that G is
symmetric:

Gij(x;x′) = Gji(x
′;x). (2.2)

Evaluating the left-hand side of (2.1) gives

cijkℓ(x)
∂2Gℓm

∂xj∂xk
+

(

∂

∂xj
cijkℓ(x)

)

∂Gℓm

∂xk
= −δimδ(x − x′), i = 1, 2, 3. (2.3)

We consider a particular inhomogeneous material in which the stiffnesses vary
exponentially, so that

cijkℓ(x) = Cijkℓ exp(2β · x), (2.4)

where β = (β1, β2, β3) and Cijkℓ and βi are given constants; the factor of 2 in the
exponent is inserted for later algebraic convenience. Hence

(∂/∂xj)cijkℓ(x) = 2Cijkℓβj exp(2β · x) = 2βjcijkℓ(x) (2.5)

and so (2.3) becomes

Cijkℓ
∂2Gℓm

∂xj∂xk
+ 2βjCijkℓ

∂Gℓm

∂xk
= −δim exp(−2β · x)δ(x − x′)

= −δim exp(−2β · x′)δ(x − x′) (2.6)

for i = 1, 2, 3. Note that we can replace the right-hand side of (2.6) by

−δim exp(−β · [px + p′x′])δ(x − x′), (2.7)

where p and p′ are any constants that satisfy the constraint p+p′ = 2; this flexibility
will be exploited soon.

We can write (2.6) as

cijkℓ(x
′)

∂2Gℓm

∂xj∂xk
+ 2βjcijkℓ(x

′)
∂Gℓm

∂xk
= −δimδ(x − x′), i = 1, 2, 3,
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which we recognize as (2.3) with the variable coefficients ‘frozen’ at x = x′, having
used (2.5). We remark that Pomp’s algorithm (1998, § 2.4) begins by freezing the
coefficients of the second-order derivatives only.

Alternatively, we may work with (2.6) directly. We introduce G0, the Green’s
function for a homogeneous solid with constant stiffnesses Cijkℓ, defined by

Cijkℓ
∂2G0

ℓm

∂xj∂xk
= −δimδ(x − x′), i = 1, 2, 3. (2.8)

Comparing these equations with (2.6) suggests writing

G(x;x′) = exp(−2β · x′){G0(x;x′) + G
1(x;x′)}, (2.9)

whence G1 is found to satisfy

Cijkℓ
∂2G1

ℓm

∂xj∂xk
+ 2βjCijkℓ

∂G1
ℓm

∂xk
= −2βjCijkℓ

∂G0
ℓm

∂xk
(2.10)

for i = 1, 2, 3. This is a system of three coupled second-order partial differential
equations, with constant coefficients. However, the decomposition (2.9) has a disad-
vantage: the symmetry property (2.2) is not inherited by G1. Thus, we change the
right-hand side of (2.6), using (2.7) with p = p′ = 1, giving

Cijkℓ
∂2Gℓm

∂xj∂xk
+ 2βjCijkℓ

∂Gℓm

∂xk
= −δim exp{−β · (x + x′)}δ(x − x′), (2.11)

and we replace (2.9) by

G(x;x′) = exp{−β · (x + x′)}{G0(x;x′) + G
g(x;x′)}, (2.12)

so that
Gg

ij(x;x′) = Gg
ji(x

′;x).

To find an equation for the grading term Gg, we simply substitute (2.12) in (2.11),
making use of (2.8); the result is

Cijkℓ
∂2Gg

ℓm

∂xj∂xk
+ LiℓG

g
ℓm(x;x′) = −LiℓG

0
ℓm(x;x′) (2.13)

for i = 1, 2, 3, where the first-order differential operator Liℓ is defined by

Liℓ = (Cijkℓ − Cikjℓ)βj(∂/∂xk) − Cijkℓβjβk.

3. Fourier transforms

We solve the system (2.13) using three-dimensional Fourier transforms, which we
define by

F{u} = û(ξ) =

∫

u(x) exp(iξ · x) dx,

F−1{û} = u(x) = (2π)−3

∫

û(ξ) exp(−iξ · x) dξ.
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Thus, we find that the Fourier transform of (2.13) is given by

{Qiℓ(ξ) + Biℓ(β, ξ)}Ĝg
ℓm(ξ;x′) = −Biℓ(β, ξ)Ĝ0

ℓm(ξ;x′),

where

Qiℓ(ξ) = Cijkℓξjξk and Biℓ(β, ξ) = i(Cijkℓ − Cikjℓ)βjξk + Cijkℓβjβk.

Note that if we define a complex vector γ by γ = ξ + iβ, then

Qiℓ + Biℓ = Cijkℓγj γ̄k, (3.1)

where the overbar denotes complex conjugation: γ = ξ − iβ.
From (2.8), we have

Qiℓ(ξ)Ĝ0
ℓm(ξ;x′) = δim exp(iξ · x′),

whence

Ĝg
ℓm(ξ;x′) = Eℓm(β, ξ) exp(iξ · x′),

where

E(β, ξ) = −{Q(ξ) + B(β, ξ)}−1
B(β, ξ)[Q(ξ)]−1. (3.2)

Inverting the Fourier transform, we obtain

G
g(x;x′) = (2π)−3

∫

E(β, ξ) exp(−ir · ξ) dξ, (3.3)

where r = x−x′. It remains to evaluate this three-dimensional integral over ξ. Note
that E(0, ξ) = B(0, ξ) = 0 so that Gg = 0 when there is no grading.

So far, our specification of G has been incomplete: to any solution of (2.1), we can
always add any solution of the corresponding homogeneous equation (with zero on
the right-hand side). Thus, we define G by (2.12), wherein G0 is a specified solution
of (2.8) (such as the Kelvin solution for isotropic materials) and Gg is given by (3.3).

We conclude this section by noting a few properties of E. First, (2.2) implies that

Eij(β, ξ) = Eji(β,−ξ). (3.4)

Second, as Gg is real, we have

E(β, ξ) = E(β,−ξ). (3.5)

Third, as a useful check on calculations, we note that B(ξ, ξ) = Q(ξ), whence
E(ξ, ξ) = −1

2 [Q(ξ)]−1.

4. Isotropy

If the underlying homogeneous medium is isotropic, we have

Cijkℓ = λ0δijδkℓ + µ0(δikδjℓ + δiℓδjk),

where λ0 and µ0 are the (constant) Lamé moduli. Note that λ0/µ0 = 2ν/(1 − 2ν),
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where ν is Poisson’s ratio. From (2.4), the corresponding graded medium has Lamé
moduli given by

λ(x) = λ0 exp(2β · x) and µ(x) = µ0 exp(2β · x),

and so it has the same constant Poisson’s ratio, ν.
We readily obtain

Qiℓ(ξ) = µ0{ξ2δiℓ + (1 − 2ν)−1ξiξℓ}

and

Q−1
iℓ (ξ) = (µ0ξ

4)−1{ξ2δiℓ − [2(1 − ν)]−1ξiξℓ},

where ξ2 = |ξ|2 (see, for example, Mura 1982, eqn (3.33)). Similarly,

Biℓ(β, ξ) = µ0{β2δiℓ + (1 − 2ν)−1[βiβℓ + (4ν − 1)i(βiξℓ − βℓξi)]},

where β2 = |β|2.
Let C = ξ · β, α = (1 − 2ν)−1, κ = (1 − ν)−1 and σ = 4ν − 1. Then we find that

(BQ
−1)ℓm = ξ−4{β2ξ2δℓm + 1

2κξℓξm(iασC − β2) + αξ2βℓβm

− iασξ2ξℓβm + 1
2κβℓξm(iσξ2 − αC)}. (4.1)

Using (3.1), we have

(Q + B)ij = µ0{γ2δij + 2ναγiγ̄j + γ̄iγj},

where γ2 = γj γ̄j . Then, using a general result given in Appendix A, we obtain

(Q + B)−1
jℓ = (µ0γ

2∆)−1{∆δjℓ − 1
2κξjξℓ(γ

2 + 8νβ2) − 1
2κβjβℓ(γ

2 + 8νξ2)

+ 1
2κξjβℓ(8νC + iσγ2) + 1

2κβjξℓ(8νC − iσγ2)}, (4.2)

where C = ξ · β = ξβ cos θ,

∆ = ξ4 + 2ξ2β2q + β4 and q = 1 + 2νκ sin2 θ.

Then a lengthy calculation, using (3.2), (4.1) and (4.2), gives

Ejℓ(β, ξ) = −(µ0γ
2ξ4∆)−1{ξ2β2∆δjℓ + 1

2κΩjℓ}, (4.3)

where

Ωjℓ(β, ξ) = Aξjξℓ + Bξjβℓ + B̄βjξℓ + Cβjβℓ, (4.4)

A = ξ4(γ2 + 8νβ2) − γ2∆, B = −ξ4(8νC + iσγ2) and C = ξ4(γ2 + 8νξ2).

One can check that these expressions satisfy (3.4) and (3.5).

5. The triple integral

There are three vectors in the triple integral (3.3), namely, r, β and ξ. We can regard
r and β as fixed, and integrate over ξ using spherical polar coordinates.

From (4.3), we have
Ejℓ = Eδjℓ + Hjℓ, (5.1)

where
E = −β2(µ0γ

2ξ2)−1 and Hjℓ = −1
2κ(µ0γ

2ξ4∆)−1Ωjℓ.

Thus, there are two contributions to Gg, coming from the two terms on the right-hand
side of (5.1); we consider them separately.
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(a) The first term

We can easily evaluate the contribution due to E, using spherical polar coordinates
(ξ, ϕ, χ), with the polar axis (ϕ = 0) in the direction of r. Thus, we obtain

1

(2π)3

∫

E exp(−ir · ξ) dξ =
−β2

(2π)2µ0

∫ ∞

0

1

γ2ξ2

∫ π

0

e−iξr cos ϕ sinϕ dϕξ2 dξ

=
−β2

2π2µ0r

∫ ∞

0

sin ξr

ξ(ξ2 + β2)
dξ

= −(4πµ0r)
−1(1 − e−βr), (5.2)

using a standard contour-integral method for the ξ-integral.

(b) The second term

The second term on the right-hand side of (5.1) is more complicated. In order
to treat this term, it is better to take β as defining the polar axis of spherical
coordinates (not r, as is commonly done). The reason for this choice is that we have
already introduced θ, the angle between ξ and β (ξ · β = ξβ cos θ), and this angle
appears in ∆ and C.

Let n and m be any two mutually perpendicular unit vectors in the plane perpen-
dicular to β. Let β = ββ̂, so that {n,m, β̂} forms an orthonormal right-handed triad.
In terms of the global, fixed, Cartesian coordinates, we have n = (ni), m = (mi) and
β̂ = (β̂i). For example, we can take

n = β−1
0 (β3, 0,−β1) and m = (ββ0)

−1(−β1β2, β
2
0 ,−β2β3)

provided β0 ≡ (β2
1 + β2

3)1/2 �= 0.
Let (ξ, θ, φ) be the spherical polar coordinates of the point at ξ, so that

ξ · n = ξ sin θ cos φ, ξ · m = ξ sin θ sinφ and ξ · β̂ = ξ cos θ.

Similarly, let (r, Θ, Φ) be the spherical polar coordinates of the point at r, so that

r · n = r sinΘ cos Φ, r · m = r sinΘ sinΦ and r · β̂ = r cos Θ.

Hence, putting X = r sinΘ and Z = r cos Θ, we obtain

r · ξ = ξX sin θ cos(φ − Φ) + ξZ cos θ.

The first step is to integrate over φ. Extracting the dependence on φ, we see that
Ωjℓ, defined by (4.4), can be written as

Ωjℓ = Ω0
jℓ + Ω1

jℓ cos φ + Ω̃1
jℓ sinφ + Ω2

jℓ cos 2φ + Ω̃2
jℓ sin 2φ,

where

Ω0
jℓ = 1

2A(njnℓ + mjmℓ)ξ
2 sin2 θ + {Aξ2 cos2 θ + (B + B̄)C + Cβ2}β̂j β̂ℓ,

Ω1
jℓ = 1

2A(nj β̂ℓ + β̂jnℓ)ξ
2 sin 2θ + (Bnj β̂ℓ + B̄β̂jnℓ)ξβ sin θ,

Ω̃1
jℓ = 1

2A(mj β̂ℓ + β̂jmℓ)ξ
2 sin 2θ + (Bmj β̂ℓ + B̄β̂jmℓ)ξβ sin θ,

Ω2
jℓ = 1

2A(njnℓ − mjmℓ)ξ
2 sin2 θ,

Ω̃2
jℓ = 1

2A(njmℓ + mjnℓ)ξ
2 sin2 θ.

Proc. R. Soc. Lond. A (2002)



Exponentially graded elastic solids 1939

Then, as we can integrate over any interval of length 2π, we can use
∫ π

−π

e−iξX sin θ cos(φ−Φ)

(

cos nφ
sinnφ

)

dφ = 2π(−i)nJn(ξX sin θ)

(

cos nΦ
sinnΦ

)

,

where Jn(w) is a Bessel function. Hence
∫ π

−π

Ωjℓ exp (−ir · ξ) dφ = 2πe−iξZ cos θ{Rjℓ(ξ, θ) − iIjℓ(ξ, θ)},

where

Rjℓ(ξ, θ) = Ω0
jℓJ0(ξX sin θ) − [Ω2

jℓ cos 2Φ + Ω̃2
jℓ sin 2Φ]J2(ξX sin θ)

and

Ijℓ(ξ, θ) = [Ω1
jℓ cos Φ + Ω̃1

jℓ sinΦ]J1(ξX sin θ).

Next, consider the integration over θ. As

Rjℓ(ξ, π − θ) = Rjℓ(ξ, θ) and Ijℓ(ξ, π − θ) = −Ijℓ(ξ, θ),

we find that
∫ π

0

∫ π

−π

Ωjℓ exp(−ir · ξ)
sin θ

∆
dφ dθ

= 4π

∫ π/2

0

{Rjℓ(ξ, θ) cos (ξZ cos θ) + Im{Ijℓ(ξ, θ)e
−iξZ cos θ}}

sin θ

∆
dθ,

which is evidently real. If we put

sj = nj cos Φ + mj sinΦ,

we see that

Im{Ijℓe
−iξZ cos θ} = Im{Ijℓ} cos(ξZ cos θ) − Re{Ijℓ} sin(ξZ cos θ)

= {1
2(sj β̂ℓ + β̂jsℓ)(2ξ2q + β2)β2 sin 2θ sin(ξZ cos θ)

− σ(sj β̂ℓ − β̂jsℓ)ξ
3β sin θ cos(ξZ cos θ)}ξ2γ2J1(ξX sin θ),

which is an even function of ξ; Rjℓ is also an even function of ξ.
Finally, consider the integration over ξ. The order of integration can be inter-

changed (as the relevant integrals are absolutely convergent), and so we obtain

1

(2π)3

∫

Hjℓ exp(−ir · ξ) dξ =
−κβ

8π2µ0

∫ π/2

0

Mjℓ(θ) sin θ dθ, (5.3)

where

Mjℓ(θ) =
1

β

∫ ∞

−∞

{Rjℓ cos (ξZ cos θ) + Im(Ijℓe
−iξZ cos θ)}

dξ

ξ2γ2∆

=
1

β

∫ ∞

−∞

(Rjℓ + iIjℓ)e
iξZ cos θ dξ

ξ2γ2∆
.
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Explicitly, if we put

k = βZ cos θ = βr cos θ cos Θ, K = βX sin θ = βr sin θ sinΘ � 0,

ξ = βx and D(x) = x4 + 2x2q + 1,

we can express Mjℓ as

Mjℓ =
2

∑

n=0

M
(n)
jℓ + M̃

(1)
jℓ , (5.4)

where

M
(n)
jℓ =

∫ ∞

−∞

fn(x)Jn(Kx)eikx

(x2 + 1)D(x)
dx, n = 0, 2, (5.5)

M
(1)
jℓ =

∫ ∞

−∞

f1(x)

D(x)
J1(Kx)eikx dx and M̃

(1)
jℓ =

∫ ∞

−∞

f̃1(x)

D(x)
J1(Kx)eikx dx.

Here, the integrands contain polynomials in x, defined by

f0(x) = 1
2{8νx4 − (x2 + 1)(2x2q + 1)}(njnℓ + mjmℓ) sin2 θ

+ {8νx4 sin2 θ + (x2 + 1)[x2 − (2x2q + 1) cos2 θ]}β̂j β̂ℓ,

f1(x) = −x3σ(sj β̂ℓ − β̂jsℓ) sin θ,

f̃1(x) = −1
2 i(sj β̂ℓ + β̂jsℓ)(2x2q + 1) sin 2θ,

f2(x) = −1
2 [8νx4 − (x2 + 1)(2x2q + 1)]{nj(nℓ cos 2Φ + mℓ sin 2Φ)

+ mj(nℓ sin 2Φ − mℓ cos 2Φ)} sin2 θ.

We have written Mjℓ as (5.4) because M
(n)
jℓ are all even functions of k, whereas M̃

(1)
jℓ

is an odd function of k. Hence, when we consider methods for evaluating Mjℓ, we
can assume, without loss of generality, that

k � 0 and K � 0.

(c) Evaluation of Mjℓ

Sometimes, we can evaluate integrals such as M
(n)
jℓ directly using the calculus of

residues. For example, consider
∫

Γ

fn(z)Jn(Kz)eikz

(z2 + 1)D(z)
dz, n = 0, 2,

where Γ is a closed contour in the complex z-plane to be chosen later. The integrand
has simple poles at

z = ±iys, s = 0, 1, 2,

where

y0 = 1, y1 =

√

q +
√

q2 − 1, y2 =

√

q −
√

q2 − 1

and q = 1 + 2νκ sin2 θ.
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Now, as z → ∞, we have

fn(z){(z2 + 1)D(z)}−1 = O(z−2) (n = 0, 2),

and Jn(Kz) ∼ {2/(πK)}1/2z−1/2 cos(Kz − 1
2nπ − 1

4π). This suggests that the choice
of method for evaluating Mjℓ will depend on the sign of

k − K = βr cos(θ + Θ).

If k � K � 0, we can take Γ = SR ∪ LR, where SR is a semicircular contour in
the upper half of the z-plane, of radius R, and LR is a piece of the real axis. There
is no contribution from SR as R → ∞, because the exponential growth of the Bessel
functions is dominated by the exponential decay of eikz. Proceeding in the standard
way, we calculate the residues at the three poles within Γ , and obtain

M
(n)
jℓ = 2πi

2
∑

s=0

M(n)
s Jn(iKys)e

−kys , n = 0, 2, (5.6)

where

M
(n)
0 =

fn(i)

2iD(i)
and M(n)

s =
fn(iys)

(1 − y2
s)D′(iys)

for s = 1, 2;

we have D(i) = −4νκ sin2 θ and D′(iys) = 4iys(q − y2
s) for s = 1, 2.

The expression (5.6) is real, because f0(iy) and f2(iy) are real when y is real,
J0(iy) = I0(y) and J2(iy) = −I2(y), where In(w) is a modified Bessel function.
Similarly,

M
(1)
jℓ = 2πi

2
∑

s=1

M(1)
s J1(iKys)e

−kys and M̃
(1)
jℓ = 2πi

2
∑

s=1

M̃(1)
s J1(iKys)e

−kys ,

(5.7)
where

M(1)
s =

f1(iys)

D′(iys)
and M̃(1)

s =
f̃1(iys)

D′(iys)
.

Note that the expressions (5.7) are real because f1(iy) and f̃1(iy) are pure imaginary
and J1(iy) = iI1(y).

If 0 � k < K, the Bessel functions are dominant. There are some standard tricks
for dealing with such situations. One involves the identity

Jn(Kz) = 1
2{H(1)

n (Kz) + H(2)
n (Kz)}, (5.8)

where H
(1)
n (w) and H

(2)
n (w) are Hankel functions. (This is analogous to writing

cos z = 1
2(eiz + e−iz).) However, methods based on (5.8) seem to fail here.

Instead, we proceed indirectly, and use a method suggested by Watson (1944,
p. 425) in which the Bessel function is replaced by one of its integral representations;
for even n, we choose

Jn(Kx) =
2

π

∫ π/2

0

cos (Kx sin η) cos(nη) dη.
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If we substitute this expression in (5.5) and interchange the order of integration, we
obtain

M
(n)
jℓ = M+ + M−, n = 0, 2,

where

M± =
1

π

∫ π/2

0

cos(nη)

∫ ∞

−∞

fn(x)

(x2 + 1)D(x)
eix(k±K sin η) dxdη.

The two inner integrals over x are easily evaluated by residues. As k + K sin η > 0,
we can always evaluate M+ using a semicircular contour in the upper half-plane.
However, k − K sin η will change sign if k < K.

As a check, suppose first that k � K � 0. Then we obtain

M± = 2i
2

∑

s=0

M(n)
s e−kys

∫ π/2

0

e∓Kys sin η cos(nη) dη. (5.9)

When these are combined, using

2

∫ π/2

0

cosh (Kys sin η) cos(nη) dη = πinIn(Kys), n even, (5.10)

we recover (5.6).
Suppose, now, that 0 � k < K. Define η0 by k = K sin η0, with 0 � η0 < 1

2π.
Then

M− =
1

π

∫ η0

0

cos(nη)

∫ ∞

−∞

fn(x)

(x2 + 1)D(x)
eix(k−K sin η) dxdη

+
1

π

∫ π/2

η0

cos(nη)

∫ ∞

−∞

fn(x)

(x2 + 1)D(x)
e−ix(K sin η−k) dxdη.

Evaluate the first x-integral as before, and evaluate the second x-integral using a
semicircular contour in the lower half-plane. As fn(x) and D(x) are even functions
of x, we find that

M− = 2i
2

∑

s=0

M(n)
s

{

e−kys

∫ η0

0

eKys sin η cos(nη) dη

+ ekys

∫ π/2

η0

e−Kys sin η cos(nη) dη

}

= 2i

2
∑

s=0

M(n)
s

{

e−kys

∫ π/2

0

eKys sin η cos(nη) dη

+ 2

∫ π/2

η0

sinh (ys[k − K sin η]) cos(nη) dη

}

.

The first integral on the right-hand side is exactly the same as in (5.9), obtained
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there when k � K. Thus, for any non-negative choices of k and K, we have

M
(n)
jℓ = 2πi

2
∑

s=0

M(n)
s

{

e−kys inIn(Kys)

+
2

π
H(K − k)

∫ π/2

η0

sinh (ys[k − K sin η]) cos(nη) dη

}

,

(5.11)

where H(x) is the Heaviside unit function and n = 0, 2.
Similar calculations succeed for M

(1)
jℓ and M̃

(1)
jℓ . We use

J1(Kx) =
2

π

∫ π/2

0

sin (Kx sin η) sin η dη.

If k � K � 0, we recover (5.7), making use of

2

∫ π/2

0

sinh (Kys sin η) sin η dη = πI1(Kys). (5.12)

If 0 � k < K, we obtain

M
(1)
jℓ = 2π

2
∑

s=1

M(1)
s

{

−e−kysI1(Kys)

+
2

π
H(K − k)

∫ π/2

η0

cosh (ys[k − K sin η]) sin η dη

}

. (5.13)

There is an identical formula for M̃
(1)
jℓ : replace M

(1)
s with M̃

(1)
s .

The remaining integrals in (5.11) and (5.13) cannot be evaluated in closed form.
However, we have succeeded in replacing infinite integrals of Bessel functions by finite
integrals of exponentials.

We now collect up the results for Mjℓ and substitute in (5.3), taking account of
the fact that k will be negative when 1

2π < Θ < π. Let θm = |12π − Θ|. Define ηm by
|k| = K sin ηm, with 0 � ηm < 1

2π. Then we obtain

∫

Hjℓ exp(−ir · ξ)
dξ

(2π)3
=

−κβ

4πµ0

2
∑

s=0

2
∑

n=0

∫ π/2

0

R(n)
s (θ)e−|k|ysIn(Kys) sin θ dθ

−
κβ

2π2µ0

2
∑

s=0

∫ π/2

θm

R(0)
s sin θ

∫ π/2

ηm

sinhΨs dη dθ

+
κβ

2π2µ0

2
∑

s=0

∫ π/2

θm

R(2)
s sin θ

∫ π/2

ηm

sinhΨs cos 2η dη dθ

+
κβ

2π2µ0

2
∑

s=1

∫ π/2

θm

R(1)
s sin θ

∫ π/2

ηm

cosh Ψs sin η dη dθ,
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where

Ψs(θ, η) = ys(|k| − K sin η) = Kys(sin ηm − sin η);

R(0)
s = iM(0)

s , R(2)
s = −iM(2)

s , s = 0, 1, 2;

R
(1)
0 = 0, R(1)

s = −(M(1)
s + M̃(1)

s sgn(k)), s = 1, 2.

In these formulae, R
(n)
1 , R

(n)
2 , k, K, y1, y2 and ηm all depend on θ. All of the integrals

are real.
Eight double integrals remain, but this number can be reduced to six, using

cos 2η = 2 cos2 η − 1 and an integration by parts:
∫ π/2

ηm

sinhΨs cos 2η dη =
2 cos ηm

Kys
−

2

Kys

∫ π/2

ηm

cosh Ψs sin η dη −

∫ π/2

ηm

sinhΨs dη.

6. Discussion and conclusion

The Green’s function (or fundamental solution) for an exponentially graded elastic
solid can be written as

G(x;x′) = exp{−β · (x + x′)}{G0(x;x′) + G
g(x;x′)},

where G0 is the Kelvin solution and the vector β gives the grading direction and
magnitude. We have shown that the triple Fourier integral defining Gg can be reduced
to the sum of an explicit term (given by (5.2)), finite single integrals of modified
Bessel functions and finite double integrals of elementary functions. As this grading
term Gg is bounded as |x − x′| → 0 (the singularity is contained within the Kelvin
solution), having it available only as a computable quantity is not an impediment
for a boundary-integral implementation.

Given that we have to evaluate some double integrals, it may be preferable, com-
putationally, to replace the modified Bessel functions In by their integral representa-
tions, (5.10) or (5.12). Alternatively, we can express the double integrals as infinite
series of single integrals, using

cosh(Kys sin η) = I0(Kys) + 2

∞
∑

n=1

(−1)nI2n(Kys) cos 2nη

and

sinh(Kys sin η) = 2
∞
∑

n=0

(−1)nI2n+1(Kys) sin (2n + 1)η,

as these Fourier expansions make the η-integrals trivial. However, this is unlikely to
yield a good computational strategy.

Another alternative is to use the Bauer expansion for the exponential in (3.3),
namely

exp(−ir · ξ) = 4π
∞
∑

n=0

(−i)njn(ξr)

n
∑

m=−n

Y m
n (ξ̂)Y m

n (r̂),

where jn is a spherical Bessel function and Y m
n is a spherical harmonic (Watson

1944, § 11.5). This expansion separates the dependence on ξ, θ and φ. Moreover, the
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φ-integral is simple, and shows that only those values of m with |m| � 2 contribute.
The subsequent integrals are of the form

∫ ∞

0

∫ π

0

g(ξ, θ)jn(ξr)Pm
n (cos θ) dθ dξ, n = 0, 1, 2, . . . ,

where g is known and Pm
n is an associated Legendre function. These integrals seem

to be very complicated, so we did not pursue this approach further.
Further work is needed on various aspects of G(x;x′). First, efficient numerical

algorithms should be derived for the evaluation of the remaining integrals defining Gg.
Second, the derivatives of Gg are required in boundary-integral implementations. The
calculation of these derivatives is straightforward in principle but tedious in detail;
symbolic software should be useful here. (Note that, in one sense, the problem is
simpler than that for a homogeneous anisotropic solid: the integral in (1.2) is over a
circle that moves when r = x − x′ moves.) Third, it may be useful to examine the
behaviour of G(x;x′) in the far field, where r = |r| is large. Fourth, some special
cases may lead to simplifications in the final formulae; these may arise from special
material properties (such as incompressibility, for which ν = 1

2) or special grading
directions (such as when β is aligned with one of the coordinate axes). Finally, it
may be possible to extend the analysis to certain graded anisotropic materials. Work
on these various aspects is in progress.
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Appendix A. A matrix inversion

Let A be an n × n matrix, with entries given by

Aij = aδij + bγiγ̄j + cγ̄iγj .

Then, if it exists, the inverse matrix has the form

A−1
jk = Aδjk + Bγj γ̄k + Cγ̄jγk + Dγjγk + Eγ̄j γ̄k.

Multiplication gives 15 terms, which combine to give

AijA
−1
jk = aAδik + γiγ̄k{(a + bγ2)B + bEḠ + bA} + γ̄iγ̄k{(a + cγ2)E + cBG}

+ γ̄iγk{(a + cγ2)C + cDG + cA} + γiγk{(a + bγ2)D + bCḠ},

where γ2 = γj γ̄j and G = γjγj . As we want AA−1 = I, we obtain

Z

(

B
E

)

=

(

−bA
0

)

, Z

(

D
C

)

=

(

0
−cA

)

and aA = 1, where

Z =

(

a + bγ2 bḠ
cG a + cγ2

)
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is a complex 2 × 2 matrix with

Z ≡ detZ = (a + bγ2)(a + cγ2) − bc|G|2,

which is real if a, b and c are real; writing γj = ξj + iβj , we see that

Z = [a(b + c) + 4bcβ2 sin2 θ]ξ2 + a2 + a(b + c)β2,

where ξ2 = ξjξj , β2 = βjβj and ξ ·β = ξβ cos θ. So, if Z �= 0, we can solve for B and
E, and for D and C, whence

A−1
jk = (aZ)−1{Zδjk − b(a + cγ2)γj γ̄k − c(a + bγ2)γ̄jγk + bc(Ḡγjγk + Gγ̄j γ̄k)}

= (aZ)−1{Zδjk − [a(b + c) + 4bcβ2]ξjξk − [a(b + c) + 4bcξ2]βjβk

+ 4bcξβ(ξjβk + ξkβj) cos θ + ia(b − c)(ξjβk − ξkβj)}.
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