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Abstract

Incompressibility is established for three- and two-dimensional deformations of an anisotropic

linearly elastic material, as conditions to be satis�ed by the elastic compliances. These conditions

make it straightforward to derive results for incompressible materials from those established for

compressible materials. As an illustration, the explicit secular equation is obtained for surface

waves in incompressible monoclinic materials with the symmetry plane at x3 = 0. This equation

also covers the case of incompressible orthotropic materials. The displacements and stresses for

surface waves are often expressed in terms of the elastic sti�nesses, which can be unbounded

in the incompressible limit. An alternative formalism in terms of the elastic compliances pre-

sented recently by Ting (Proc. R. Soc. London (2002), in press) is employed so that surface

wave solutions in the incompressible limit can be obtained. A di�erent formalism, also by Ting

(Proc. R. Soc. London A 455 (1999) 69), is employed to study the solutions to two-dimensional

elastostatic problems. In the special case of incompressible monoclinic materials with the sym-

metry plane at x3 = 0, one of the three Barnett–Lothe tensors S vanishes while the other two

tensors H and L are the inverse of each other. Moreover, H and L are diagonal with the �rst

two diagonal elements being identical. Many interesting physical phenomena can be deduced

using this property. For instance, there is no interpenetration of the interface crack surfaces in

an incompressible bimaterial. When only the inplane deformation is considered, the image force

due to a line dislocation in a half-space or in a bimaterial depends on the magnitude, not on the

direction, of the Burgers vector. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Linear isotropic elasticity is characterized by two material constants, which can be

taken as the shear modulus � and Poisson’s ratio �. These constants satisfy �¿ 0 and

−1¡�¡ 1=2. The incompressible limit is � → 1=2. To see why this is so, we write

down Hooke’s law, relating the stress components �ij to the strain components �ks as

�ij = �

(

2�ij +
2�

1 − 2�
�ij�kk

)

: (1.1)

In the above, �ij is the Kronecker delta and repeated indices imply summation. Con-

tracting, we obtain

�ii =
1 − 2�

2�(1 + �)
�ii =

�

�(1 + �)
�ii ; (1.2)

where � is a Lam�e constant. If the material is incompressible, �ii = 0 for any stresses,

whence (1:2)1 gives �= 1=2.

Let us now turn to linear anisotropic elasticity, and consider the corresponding

incompressible limit. For such materials, we have �ij =Cijks�ks where the C’s are

the elastic sti�nesses. In the special case of isotropy, the non-trivial sti�nesses are

C1111 =C2222 =C3333 = �+ 2�, C1122 =C1133 =C2233 = � and C1212 =C1313 =C2323 = �.

From (1:2)2 the incompressible limit corresponds to � → ∞. This suggests that, in

general, some of the sti�nesses will become unbounded in the incompressible limit,

and therefore it will be safer to work with the elastic compliance matrix s rather than

with the elastic sti�ness matrix C. This is so because s is the inverse of C, and possible

in�nite components of C will simply correspond to some components (or combination

of components) of s being equal to zero.

In order to consider incompressible linearly elastic anisotropic materials directly,

some authors have modi�ed the stress–strain law by introducing a hydrostatic pressure

P, as �ij = − P�ij + Cijks�ks. Incompressibility is then imposed by supplementing the

condition �ii = 0. Although formally acceptable, and supported by similar considerations

in �nite elasticity, this approach is risky as it may lead to potentially meaningless

results, when the sti�nesses appear in the �nal expressions.

For example, consider some recent developments in the theory of surface waves

in linear anisotropic elastic materials. For compressible materials the secular equation

was obtained explicitly for monoclinic materials with the symmetry plane at x3 = 0

(Destrade, 2001a; Ting, 2002). At the same time, some attention has been given to

the consideration of interface waves in anisotropic materials which are incompressible

(see, for instance, Nair and Sotiropoulos (1999) or Destrade (2001b) and the references

therein). In this paper we show that results obtained in the general (compressible)

case can be easily specialized to the incompressible case, simply by imposing the

conditions for incompressibility on the elastic compliances, without having to introduce

an arbitrary pressure.

We adopt the following plan for the paper. In Section 2, we recall the three-

dimensional stress–strain laws of linear anisotropic elasticity, and establish that the
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constraint of incompressibility yields simple mathematical conditions, which are writ-

ten for the elastic compliances s��. Unlike the case of isotropic elastic materials, the

conditions of incompressibility are di�erent for two-dimensional deformations. These

conditions are established in Section 3 and written for the reduced elastic compliances

s′a�. In both sections, a necessary and su�cient condition for the strain energy density

to be positive semide�nite is presented. We show in Section 4 how simple it is to de-

duce an explicit secular equation for surface waves in a monoclinic material with the

symmetry plane at x3 = 0 for the incompressible case from that for the compressible

case. The secular equation is only a part of the surface wave solution. In the litera-

ture, the stresses and displacements for surface waves in an anisotropic elastic material

are expressed in terms of the elastic sti�nesses, as brie
y summarized in Section 5.

These expressions have to be converted to ones for the reduced elastic compliances.

This has been done by Ting (2002) and is outlined in Section 6. The conversion

presented in Section 6 does not apply to elastostatics. A di�erent formulation, again

by Ting (1999), is reviewed in Section 7. In Section 8 we consider the special case

of incompressible monoclinic materials with the symmetry plane at x3 = 0 under a static

loading. Interesting physical phenomena are discovered due to the incompressibility of

the material.

2. Incompressibility for three-dimensional deformations

When the displacement u in an anisotropic linear elastic material depends on the

three material coordinates x1; x2; x3, the deformation is three-dimensional. The relation

between the strains �� and the stresses �� in the contracted notation (Voigt, 1910) is

�� = s����; (2.1)

where s�� are the elastic compliances. In an incompressible material the vanishing of

the volume change is given by

�1 + �2 + �3 = (s1� + s2� + s3�)�� = 0: (2.2)

If this is to hold for any stresses we must have

s1� + s2� + s3� = 0 for �= 1; 2; 3; 4; 5; 6: (2.3)

There are six conditions for incompressibility. When the material is isotropic (see, for

example, Ting, 1996, p. 52), (2.3) is trivially satis�ed for �= 4; 5; 6 while for �= 1; 2; 3

it recovers the single condition that �= 1=2. The number of conditions for incompress-

ibility is also one for cubic materials. It is two for transversely isotropic, tetragonal, and

trigonal materials; three for orthotropic materials; and four for monoclinic materials.

If the right-hand side of the equation in (2.3) is replaced by a non-zero constant

for �= 1; 2; 3, (2.3) gives the condition for the material to have a uniform contraction

under a uniform pressure (Ting, 2001). Isotropic and cubic materials are the only ones

that can have a uniform contraction under a uniform pressure without any conditions

on the elastic constants.
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We show that (2.3) is structurally invariant (Ting, 2000). If (2.3) holds for a

coordinate system xj, it holds for any other coordinate system x∗i obtained from xj by

an orthogonal transformation 
ij, say. Let

x∗i =
ijxj 
ik
jk = �ij =
ki
kj : (2.4)

In the four-index tensor notation, the elastic compliances sijks referred to the rotated

coordinate system x∗i become

s∗ijks =
ip
jq
kr
stspqrt : (2.5)

By contracting i= j and using (2:4)3, this yields

s∗iiks =
kr
stspprt : (2.6)

However, (2.3) in the four-index tensor notation is spprt = 0. Eq. (2.6) then gives

s∗iiks = 0. This completes the proof.

The constraint (2.3) says that the �rst three rows of the 6 × 6 matrix s are linearly

dependent. This means that s is singular, and that the rank of s is at most �ve. We

assume that the rank is �ve, because that is the case for isotropic materials. The strain

energy density cannot be negative for an incompressible material. Hence s must be

positive semide�nite. The rank of s being �ve implies that there exists a 5×5 submatrix

that is non-singular. According to Theorems 9:17:1 and 9:17:2 presented by Hohn

(1965), a necessary and su�cient condition for the matrix s of rank �ve to be positive

semide�nite is that the �ve leading principal minors of a non-singular submatrix be

positive. It means that this non-singular submatrix must be positive de�nite.

To apply the theorem we write the matrix s satisfying the constraint (2.3) in the

form

s=



























s22 + 2s23 + s33

−(s22 + s23) s22

−(s23 + s33) s23 s33

−(s24 + s34) s24 s34 s44

−(s25 + s35) s25 s35 s45 s55

−(s26 + s36) s26 s36 s46 s56 s66



























: (2.7)

Only the lower triangle of the matrix is shown since it is symmetric. The 5×5 submatrix

on the lower right corner of s can be prescribed arbitrarily. The elements in the �rst

column (and hence the �rst row) of s are then determined. We will therefore take

the 5 × 5 submatrix on the lower right corner of s to be positive de�nite. Before we

write down the leading principal minors of this submatrix, we introduce the following

notation for the minors of s. Let s (n1; : : : ; nk |m1; : : : ; mk) be the k × k minor of the

matrix s��, the elements of which belong to the rows of s�� numbered n1; : : : ; nk and

columns numbered m1; : : : ; mk ; 16 k6 6. A principal minor is s (n1; : : : ; nk | n1; : : : ; nk),

which is written as s (n1; : : : ; nk) for simplicity. If the leading principal minors are taken
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from the lower right corner of the submatrix, a necessary and su�cient condition for

the matrix s to be positive semide�nite is

s66¿ 0; s (5; 6)¿ 0; s (4; 5; 6)¿ 0; s (3; 4; 5; 6)¿ 0; s (2; 3; 4; 5; 6)¿ 0: (2.8)

If they are taken from the top left corner of the submatrix, we have

s22¿ 0; s (2; 3)¿ 0; s (2; 3; 4)¿ 0; s (2; 3; 4; 5)¿ 0; s (2; 3; 4; 5; 6)¿ 0: (2.9)

Eq. (2.8) or (2.9) is the necessary and su�cient condition for the matrix s to be

positive semide�nite.

The �rst two inequalities in (2.9) are the necessary and su�cient conditions for the

3×3 submatrix on the top left corner of the matrix s to be positive semide�nite. When

the three equations for �= 1; 2; 3 in (2.3) are solved for s12; s23; s31, we have

s12 = 1
2
(s33 − s11 − s22);

s23 = 1
2
(s11 − s22 − s33);

s31 = 1
2
(s22 − s33 − s11): (2.10)

Hence s11; s22; s33 are all we need to prescribe the 3 × 3 submatrix. The s11; s22; s33

are, respectively, 1=E1; 1=E2; 1=E3, where Ei are the Young’s moduli. With the s23

given in (2.10), the second inequality in (2.9) is

s (2; 3) = s22s33 − 1
4
(s11 − s22 − s33)2¿ 0: (2.11)

Since s22¿ 0; (2.11) tells us that s33¿ 0. Eq. (2.11) can then be written as
[

(√
s22 +

√
s33

)2 − s11

] [

s11 −
(√
s22 −

√
s33

)2
]

¿ 0: (2.12)

It tells us that s11¿ 0. This is rewritten in a form symmetric with respect to s11; s22; s33

as

(U + V +W )(U + V −W )(V +W − U )(W + U − V )¿ 0; (2.13)

where U =
√
s11; V =

√
s22; W =

√
s33. Scott (2000) obtained the same inequality in-

volving the area modulus of elasticity. From Hero’s formula, the left-hand side of

(2.13) is, after taking the square root and dividing the result by 4, the area of a trian-

gle whose three sides are U; V; W . Thus
√
s11;

√
s22;

√
s33 must form a triangle with

a non-zero area for the 3 × 3 submatrix to be positive semide�nite.

Another geometrical interpretation of the constraint on s11; s22; s33 can be made by

noticing that (2.13) is equivalent to

V +W ¿U ¿ |V −W |: (2.14)

In a rectangular coordinate system U; V; W , the point (U; V; W ) is inside a triangular

cone (or pyramid) in the space U ¿ 0; V ¿ 0; W ¿ 0. The three edges of the cone lie

on the three coordinate planes making an equal angle (�=4) with the coordinate axes.
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Eq. (2.11) can be written in a symmetric form as

s (2; 3) = 1
2
(s11s22 + s22s33 + s33s11) − 1

4
(s11 + s22 + s33)2¿ 0: (2.15)

Hence the three 2 × 2 minors s (2; 3); s (3; 1) and s (1; 2) are identical.

3. Incompressibility for two-dimensional deformations

When the displacement u depends on x1; x2 but not on x3, the deformation is

two-dimensional. In this case �3 = u3;3 = 0 and (2.1) is replaced by

�� = s′����; (3.1)

where

s′�� = s�� −
s�3s3�

s33

(3.2)

are the reduced elastic compliances (Lekhnitskii, 1963). It should be noted that

s′�3 = s′3a = 0. With (3.1) the incompressibility condition �1 + �2 = 0 yields

s′1� + s′2� = 0; for �= 1; 2; 4; 5; 6: (3.3)

When the material is isotropic (see, for example, Ting, 1996, p. 53), (3.3) is trivially

satis�ed for �= 4; 5; 6 while for �= 1; 2 it recovers the condition that �= 1=2.

Under a rotation of the coordinate system about the x3-axis, Ting (2000) has shown

that the following relations for the elastic sti�nesses C�� in the contracted notation are

structurally invariant:

C16 + C26 =C11 − C22 = 0; C14 + C24 =C15 + C25 = 0: (3.4)

They are called Types 1A and 4A, respectively. He pointed out that (3.4) applies also

to s′��. Following his derivation it can be shown that

C11 + C12 =C12 + C22 =C16 + C26 = 0 (3.5)

is structurally invariant, and that it applies to s′��. Thus the incompressibility condition

(3.3) is structurally invariant under a rotation of the coordinate system about the

x3-axis.

The reduced elastic compliance matrix that satis�es (3.3) has the structure

s′ =





















s′22

−s′22 s′22

−s′24 s′24 s′44

−s′25 s′25 s′45 s′55

−s′26 s′26 s′46 s′56 s′66





















: (3.6)



M. Destrade et al. / J. Mech. Phys. Solids 50 (2002) 1453–1468 1459

The matrix s′ must be positive semide�nite. A necessary and su�cient condition for

the matrix s′ to be positive semide�nite is that the four leading principal minors of

the 4× 4 submatrix on the lower right corner of s′ be positive. If the leading principal

minors are taken from the lower right corner of the submatrix, a necessary and su�cient

condition for s′ to be positive semide�nite is

s′66¿ 0; s′(5; 6)¿ 0; s′(4; 5; 6)¿ 0; s′(2; 4; 5; 6)¿ 0: (3.7)

If they are taken from the top left corner of the submatrix, we have

s′22¿ 0; s′(2; 4)¿ 0; s′(2; 4; 5)¿ 0; s′(2; 4; 5; 6)¿ 0: (3.8)

Using (3.2), (3.3) can be rewritten as

s1� + s2� + ws3� = 0; w= − (s13 + s23)=s33: (3.9)

This is an identity when �= 3. An elastic compliance matrix that satis�es (3.9) has

the structure

s=



























s22 + 2ws23 + w2s33

−(s22 + ws23) s22

−(s23 + ws33) s23 s33

−(s24 + ws34) s24 s34 s44

−(s25 + ws35) s25 s35 s45 s55

−(s26 + ws36) s26 s36 s46 s56 s66



























; (3.10)

where w is arbitrary. It reduces to (2.7) when w= 1. Thus incompressibility in three-

dimensional deformations implies incompressibility in two-dimensional deformations,

but the converse need not hold. A necessary and su�cient condition for the matrix s

in (3.10) to be positive semide�nite is identical to the one in (2.8) or (2.9). It should

be noted that (2.8) or (2.9) does not involve w. If the matrix s in (3.10) is positive

semide�nite for any w, then s11 and s (1; 2), which can be computed easily, should be

non-negative for any w. It can be shown that

s11 =

(

w
√
s33 +

s23√
s33

)2

+
s (2; 3)

s33

; s (1; 2) =w2s (2; 3); (3.11)

so that s11 and s (1; 2) are indeed non-negative for any w. When w= 0, s (1; 2) = 0 but

the rank of the 3×3 submatrix on the top left corner of the matrix s is two for any w.

4. Secular equation for surface waves in incompressible monoclinic materials

The interest for considering incompressibility for surface waves in linear anisotropic

elasticity is threefold. From a historical perspective, it must be remembered that
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Lord Rayleigh (1885), the initiator of the theoretical study of elastic surface waves,

did treat the case of incompressible linearly isotropic elastic half-space. Although some

literature can be found on the subject of surface waves in incompressible, �nitely

elastic, stress-induced anisotropic half-spaces (Flavin, 1963; Wilson, 1973; Dowaikh

and Ogden, 1990; Chadwick, 1997), very few papers are placed within the coun-

terpart context of linearly elastic, anisotropic half-spaces, subject to the internal con-

straint of incompressibility. Second, from an experimental point of view, it is

accepted that certain elastic materials may be modeled as incompressible, linearly

elastic, anisotropic materials (Nair and Sotiropoulos, 1997, 1999; Sotiropoulos and

Nair, 1999; Sutcu, 1992; Guz and Guz, 1999). According to Nair and Sotiropoulos

(1997), such is the case for “polymer Kratons, thermo-plastic elastomers, rubber com-

posites when low frequency waves are considered to justify the assumption of ma-

terial inhomogeneity, etc”. Third, the theoretical aspect of incompressibility in linear

anisotropic elasticity has not been addressed in this context, and it is important to

derive the secular equation in terms of the compliances rather than in terms of the

sti�nesses.

Here attention is turned to surface waves propagating with speed v in the direction

of the x1-axis in the half-space x2¿ 0. The material is monoclinic with the symmetry

plane at x3 = 0. In the general (compressible) case the secular equation for the sur-

face wave has been obtained explicitly by Destrade (2001a) using the method of �rst

integrals introduced by Mozhaev (1995), and by Ting (2002) using a modi�ed Stroh

(1962) formalism. Letting X = �v2 where � is the mass density, the secular

equation is

[�− (1 + r2)X ]((�− X )[(�− X )(n66X − 1) + r2
6X ] + X 2[(�− X )n22 + r2

2])

+ 2r6X
2(�− X )[(�− X )n26 + r2r6] = 0: (4.1)

It is a quartic in X . In (4.1), (Ting, 2002)

�=
1

s′11

; r2 =
−s′12

s′11

; r6 =
−s′16

s′11

;

n66 =
s′(1; 6)

s′11

; n26 =
s′(1; 2|1; 6)

s′11

; n22 =
s′(1; 2)

s′11

: (4.2)

The incompressible case was �rst studied by Nair and Sotiropoulos (1999),

but they did not establish the secular equation explicitly. The secular equation

for incompressible materials can be deduced directly from (4.1) by imposing

the incompressibility conditions s′2� = − s′1�. The quantities r2; n26; n22 in (4.2)

simplify to

r2 = 1; n26 = 0; n22 = 0; (4.3)

and the secular equation (4.1) reduces to

(�− 2X )((�− X )2(n66X − 1) + X 2) + r2
6�X (�− X ) = 0: (4.4)
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It can be written in a non-dimensional form as

(1 − 2�)((1 − �)2(��− 1) + �2) + r2
6�(1 − �) = 0; (4.5)

�=X=�= �v2s′11; �= n66=s
′

11: (4.6)

For incompressible orthotropic materials for which s′16 = 0, the secular equation fur-

ther simpli�es to

(1 − �)2(1 − ��) = �2; �= s′66=s
′

11; (4.7)

since (1 − 2�) �= 0. This cubic in � has a more compact and satisfying form than

that obtained by Destrade (2001b) in terms of the sti�nesses which, as stressed in

Section 1, are not easily de�ned for incompressible anisotropic materials.

The secular equation is only a part of the surface wave solution. A complete solution

requires the computation of the displacements and stresses. This is discussed next.

5. The Stroh formalism for steady state motion

In a �xed rectangular coordinate system xi (i= 1; 2; 3) the stress–strain law and the

equation of motion are

�ij =Cijksuk; s; (5.1)

Cijksuk; sj = � �u i ; (5.2)

in which the dot stands for di�erentiation with time t. Consider a steady state motion

with the steady wave speed v propagating in the direction of the x1-axis. A solution

for the displacement vector u of (5.2) can be written as (Stroh, 1962)

u= af(z); z= x1 − vt + px2; (5.3)

in which f is an arbitrary function of z, and p and a satisfy the eigenrelation

$a= 0; (5.4)

$=Q− X I + p(R + RT) + p2T; (5.5)

X = �v2: (5.6)

In the above the superscript T stands for the transpose, I is the unit matrix, and Q, R,

T are 3 × 3 matrices whose elements are

Qik =Ci1k1; Rik =Ci1k2; Tik =Ci2k2: (5.7)

The matrices Q and T are symmetric and so is the matrix $. Introducing the new

vector b de�ned by

b= (RT + pT)a= − [p−1(Q− X I) + R]a; (5.8)
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in which the second equality follows from (5.4), the stress determined from (5.1) can

be written as

�i1 = − �i;2 − �vu̇ i ; �i2 =�i;1: (5.9)

The �i (i= 1; 2; 3) are the components of the stress function vector

�= bf(z): (5.10)

There are six eigenvalues p� and six Stroh eigenvectors a� and b� (�= 1; 2; : : : ; 6).

When p� are complex, they consist of three pairs of complex conjugates. If p1; p2; p3

are the eigenvalues with a positive imaginary part, the remaining three eigenvalues are

the complex conjugates of p1; p2; p3. Assuming that p1; p2; p3 are distinct, the general

solution obtained from superposing three solutions of (5.3) and (5.10) associated with

p1; p2; p3 can be written in matrix notation as

u=A〈f(z∗)〉q; �=B〈f(z∗)〉q; (5.11)

where q is an arbitrary constant vector and

A= [a1; a2; a3]; B= [b1; b2; b3]; (5.12a)

〈f(z∗)〉= diag[f(z1); f(z2); f(z3)]; (5.12b)

z� = x1 − vt + p�x2: (5.12c)

For surface waves in the half-space x2¿ 0, the function f(z) is chosen as

f(z) = eikz ; (5.13)

where k is the real wave number. Since the imaginary parts of p1; p2; p3 are positive,

(5:11)1 assures us that u → 0 as x2 → ∞. The surface traction at x2 = 0 vanishes if

�= 0 at x2 = 0, i.e.,

Bq= 0: (5.14)

This has a non-trivial solution for q when the determinant of B vanishes, i.e.,

|B|= 0: (5.15)

This is the secular equation for v. For a monoclinic material with the symmetry plane

at x3 = 0, (5.15) leads to (4.1).

The displacement u and the stress function vector � given in (5.11) require the

computation of the eigenvalues p� and the eigenvectors a� and b� (�= 1; 2; 3). They

are provided by (5.4) and (5.8) which are in terms of the elastic sti�nesses. They are

not suitable for taking the incompressible limit. A di�erent expression in terms of the

reduced elastic compliances is needed. This is presented next.

6. Steady state motion for incompressible materials

The two equations in (5.8) can be written in a standard eigenrelation as

(Ingebrigtsen and Tonning, 1969; Barnett and Lothe, 1973; Chadwick and
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Smith, 1977)

N�=p�; (6.1)

N=

[

N1 N2

N3 + X I NT
1

]

; �=

[

a

b

]

; (6.2)

N1 = − T−1RT; N2 =T−1; N3 =RT−1RT −Q: (6.3)

It was shown by Ting (1988) that N1;N2;N3 have the structure

−N1 =









r6 1 s6

r2 0 s2

r4 0 s4









; N2 =









n66 n26 n46

n26 n22 n24

n46 n24 n44









; −N3 =









m55 0 −m15

0 0 0

−m15 0 m11









:

(6.4)

An explicit expression of the elements of N1;N2;N3 was given in Ting (1988) in terms

of the reduced elastic compliances s′�� and in Barnett and Chadwick (1990) in terms of

the elastic sti�nesses C��. The expressions in term of the reduced elastic compliances

are (Ting, 1996, p. 167)

r� =
1

�
s′(1; 5|5; �); s� =

1

�
s′(1; 5|�; 1);

n�� =
1

�
s′(�; 1; 5|�; 1; 5); m�� =

1

�
a�; �= s′(1; 5): (6.5)

Since s′2� = − s′1� for incompressible materials, it can be shown that

r2 = 1; s2 = 0; n26 = n22 = n24 = 0: (6.6)

Thus, for incompressible materials, the matrices N1 and N2 have the simpler expres-

sions (see also Chadwick, 1997)

−N1 =









r6 1 s6

1 0 0

r4 0 s4









; N2 =









n66 0 n46

0 0 0

n46 0 n44









: (6.7)

Eq. (6.1) consists of six scalar equations. The second and the �fth equations provide

the identities

a1 + pa2 = 0; b1 + pb2 =Xa2: (6.8)

The �rst identity could have been deduced by inserting the solution (5.3) into the

condition of incompressibility

�1 + �2 = u1;1 + u2;2 = 0: (6.9)
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With N1;N2;N3 expressed in terms of s′��, (6.1) can be employed to compute the

eigenvalues p and the eigenvectors a and b. Eq. (6.1) consists of two equations,

(N1 − pI)a + N2b= 0; (N3 + X I)a + (NT
1 − pI)b= 0: (6.10)

Assuming that (N3 + X I) is not singular, (6:10)2 can be solved for a and (6:10)1 can

be written as

$̂b= 0; (6.11)

$̂= Q̂ + p(R̂ + R̂
T
) + p2T̂: (6.12)

In the above,

T̂= (−N3 − X I)−1; R̂= −N1T̂; Q̂=N1T̂N
T
1 + N2: (6.13)

An explicit expression of the elements of T̂; R̂; Q̂ is given in Ting (2002).

Eq. (6.11) provides the eigenvalue p and the eigenvector b. The eigenvector a

obtained from (6:10)2 is, using (6.11) and (6.13),

a= − (R̂
T

+ pT̂)b= (p−1Q̂ + R̂)b: (6.14)

We have thus presented equations for computing the eigenvalues p and the eigenvectors

a and b needed for the surface wave solution in terms of s′��. The surface wave solution

for an incompressible material is then complete.

7. Elastostatics for incompressible materials

The solutions (5.11) and (5:12) remain valid for elastostatics if we set v= 0. The

derivation in (6.1)–(6.9) also holds for elastostatics if we let X = 0. However, the

derivation from (6.11) to (6.14) is not valid for elastostatics because (N3 + X I) is

singular when X = 0. A di�erent approach is needed to �nd a and b in terms of s′��.

A modi�ed Lekhnitskii formalism in the style of Stroh was proposed by Ting (1999)

in which the vector b satis�es the eigenrelation (see also Barnett and Kirchner, 1997;

Yin, 1997)








1 −p 0

0 ‘4 −‘3

0 −‘3 ‘2

















b1

b2

b3









= 0: (7.1)

In the above

‘2 = s′55p
2 − 2s′45p+ s′44;

‘3 = s′15p
3 − (s′14 + s′56)p2 + (s′25 + s′46)p− s′24;

‘4 = s′11p
4 − 2s′16p

3 + (s′66 + 2s′12)p2 − 2s′26p+ s′22: (7.2)



M. Destrade et al. / J. Mech. Phys. Solids 50 (2002) 1453–1468 1465

The �rst of the three scalar equations in (7.1) recovers the identity (6:8)2 when X = 0.

From (7.1) the eigenvalues p are computed from the sextic equation

‘2‘4 − ‘3‘3 = 0; (7.3)

originally given by Lekhnitskii (1963). The vector a is (Ting, 1999)

a=









g1 −h1

p−1g2 −p−1h2

g5 h5









[

b2

b3

]

; (7.4)

in which

g� = s′�1p
2 − s′�6p+ s′�2; h� = s′�5p− s′�4: (7.5)

We have thus the eigenvalues p and the eigenvectors a and b all in terms of s′��.

When the material is incompressible, s′2� =− s′1� and the ‘3; ‘4 in (7.2) simplify to

‘3 = (s′15p− s′14)(p2 − 1) − s′56p
2 + s′46p;

‘4 = s′11(p2 − 1)2 − 2s′16p(p2 − 1) + s′66p
2: (7.6)

Also, (7.5) gives

g2 = − g1; h2 = − h1; (7.7)

and (7.4) can be written as

a=









g1 −h1

−p−1g1 p−1h1

g5 h5









[

b2

b3

]

: (7.8)

The a1; a2 components of the vector a computed from (7.8) indeed satisfy the identity

(6:8)1.

In the next section we study the special case of incompressible monoclinic materials

with the symmetry plane at x3 = 0.

8. Monoclinic materials with the symmetry plane at x3 = 0

When the material is monoclinic with the symmetry plane at x3 = 0; ‘3 vanishes

identically so that the sextic equation (7.3) leads to ‘2 = 0 or ‘4 = 0. If the material is

incompressible, ‘4 is given by (7.6) and we have

(p− p−1)2 − 2�(p− p−1) + �= 0; (8.1)

where

�= s′16=s
′

11; �= s′66=s
′

11: (8.2)
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Since p1; p2 are the roots of (8.1) with a positive imaginary part, (8.1) gives

p− p−1 = �+ i
; (8.3)

in which


=
√

� − �2 =
√

s′(1; 6)=s′11: (8.4)

Eq. (8.3) tells us that

p1 + p2 = �+ i
; p1p2 = − 1: (8.5)

We also obtain explicit expression for p1; p2 as

p1; p2 =
�+ i


2
±

√

(

�+ i


2

)2

+ 1: (8.6)

The three Barnett–Lothe (1973) tensors S;H;L appear often in the solutions to

anisotropic elasticity problems. They are real. Explicit expressions of S;H;L for mono-

clinic materials with the symmetry plane at x3 = 0 have been presented in (Ting, 1996,

p. 174). Specialized to incompressible materials using (8.5) leads to

S= 0; H=L−1 = diag[
s′11; 
s
′

11; 1=�]; (8.7)

�= [s′(4; 5)]−1=2: (8.8)

The quantity � is the shear modulus when the material is isotropic. The structure of

S;H;L in (8.7) provides the following interesting results in elastostatics for incom-

pressible materials.

The order of the stress singularity at an interfacial crack tip in a bimaterial consisting

of two dissimilar materials bonded together is not a complex number when SL−1 in the

two materials are identical. In this case, the physically unrealistic interpenetration of

the crack surface displacement does not occur (see, for example, Ting, 1996, p. 144).

For a bimaterial for which both materials are incompressible, S= 0 according to (8.7).

Hence SL−1 vanishes in both materials. Therefore, there is no interpenetration of the

crack surfaces when the material is incompressible and monoclinic with the symmetry

plane at x3 = 0.

The inplane displacement and the antiplane displacement for a monoclinic material

with the symmetry plane at x3 = 0 are uncoupled. We can therefore consider the inplane

and antiplane deformations separately. Consider the inplane deformation. The Barnett–

Lothe tensors now require only the 2 × 2 submatrix located at the top left corner of

S;H;L. From (8.7) we have

S= 0; H=L−1 = 
s′11I; (8.9)

where I is the 2×2 identity matrix. Consider now an in�nite monoclinic material subject

to a line of concentrated force f and a line of dislocation with Burgers vector b̂ applied

along the x3-axis. The strain energy in the annular region bounded by the two radii
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r2¿r1 can be shown to be (Eshelby, 1956; Ting, 1996, p. 249)

1

4�
ln

(

r2

r1

)

(fTHf + b̂
T
Lb̂); (8.10)

for a compressible material. When the material is incompressible and when the vectors

f and b̂ lie on the x3 = 0 plane, use of (8.9) in (8.10) yields

1

4�
ln

(

r2

r1

)

(
s′11|f |2 + (
s′11)−1|b̂|2): (8.11)

The strain energy depends on the magnitudes, not on the direction, of the vectors

f and b̂.

Consider next a half-space with a traction-free boundary surface subject to a line

dislocation with Burgers vector b̂ in the half-space. The image force FA that is attracted

to the free-surface is (Barnett and Lothe, 1974; Ting, 1996, pp. 264–265)

FA =
1

4�d
b̂

T
Lb̂; (8.12)

where d is the distance between the line dislocation and the half-space boundary. When

the material is incompressible, by virtue of (8.9), FA depends on the magnitude, not

on the direction, of the Burgers vector b̂. Likewise, if the boundary surface is a rigid

surface, the image force FR that is repelled by the rigid surface is (Ting and Barnett,

1993)

FR =
1

4�d
b̂

T
(2H−1 − L)b̂¿FA: (8.13)

When the material is incompressible, FR depends on the magnitude, not on the direc-

tion, of the Burgers vector b̂. Moreover, FR =FA due to (8.9).

The same result applies to a line dislocation in a bimaterial that consists of two

dissimilar materials bonded together (Barnett and Lothe, 1974; Ting, 1996, p. 286).

When the material is incompressible, the image force that is attracted to, or repelled

by, the interface depends on the magnitude, not on the direction, of the Burgers vector.

Clearly, other interesting physical phenomena can be cited when the material is

incompressible and monoclinic with the symmetry plane at x3 = 0.
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