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1 Intr oduction

We are interested in the propagation of mechanical waves along
overhead power lines. These are often composite structures known
as aluminum conductor steel reinforced (ACSR) electrical con-
ductors. These are composite wire ropes consisting of a central
steel wire rope surrounded by several aluminum wires. Our inter-
est stems from the potential use of mechanical waves to detect
defects in ACSR power lines.

It is known that fatigue failure of strands in ACSR power lines
is the most common form of damage, resulting from various
forms of vibrations—aeolian, galloping, and wake-induced ([1]).
Two regions of an ACSR power line can be distinguished: the
region near the points of support and the region further away, *“ out
in the span.” Most fatigue damage seems to occur in the first
region ([1] p. 51). In this region, the mechanical problem is very
complicated and three-dimensional: one must take into account
such features as interstrand slippage, suspension clamps and ar-
mor rods. Damage may also occur in the second region, some-
times induced by corrosion, and it is here that there is scope for
some simpler models.

In a previous paper ([2]), we considered the propagation of
torsional waves along a bimateria elastic cylinder, composed of a
steel circular cylindrical core surrounded by a co-axial aluminum
cladding. The interface between the core and the cladding was
assumed to be imperfect, so that some slipping was allowed. This
model accounts well for the composite nature of an ACSR power
line, and the imperfect-interface conditions include a parameter
that may be varied. Moreover, it is possible that this model could
be developed further, so as to treat the region near the points of
support.

However, some features of the problem are not included, the
most important of these being the anisotropy of wire rope. Thus:
“The static response of axially loaded wire rope clearly points out
the coupling between the axial and rotational displacements” ([3],
p. 244). 1t follows that any plausible model of a wire rope should
take this coupling into account. This paper is concerned with the
development of such models for the dynamic response of wire
rope.

The simplest models are based on a strength-of-materials ap-
proach, in which one writes
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F:A18+A2X and M :A38+A4X, (1)

where F is the axial force acting at an arbitrary cross section of
the wire rope, M isthe axial twisting moment, ¢ isthe axial strain,
x is the rotation per unit length, and A;, A,, Az, and A, are
constants ([4]). This model has been used for the static response
of ACSR cables by McConnell and Zemke [5], and it has been
extended to include bending moments ([6,7]).

Equation (1) is a constitutive relation for the wire rope. Clearly,
the coefficients A; will depend on the details of the rope’s con-
struction. Much effort has been directed at obtaining analytical
expressions for A; ; see, for example, [4,8], and references therein.
For ACSR applications, see[4], Section 3.9 and [5]. One can also
attempt to determine A; experimentally ([9,5]). The diagonal co-
efficients A, (relating two axia quantities) and A, (relating two
rotational quantities) may be obtained using standard test equip-
ment, but the off-diagona coefficients A, and A; require more
specialized techniques. A third option is to adopt a hybrid scheme,
whereby A, and A, are determined by analytical approximations
or static experiments, but A, and A; are found using information
obtained from dynamic experiments. This option will be men-
tioned in Section 2.

One question that arisesis: does A,=A;? Costello [4], Section
3.9, has calculated A; for a particular ACSR cable, and found that
A;=1.21x10°Ib, A,=1.69%x10%inlb, A;=1.61x10"inlb,
and A,=5.55x10% in?Ib, with A,/A;=1.05. For a steel wire
rope used in marine applications, Samras et al. [9] found experi-
mentally that A;=4.44x10° Ib, A,=2.23x10° inlb, A;=2.36
X 10° inlb, and A,=1.43x10% in?Ib, with A,/A;=0.94. Thus,
it is reasonable to assume that A,=A;. Moreover, this equality
follows from the assumption that the wire rope is genuinely elas-
tic; it seemsto be a good approximation for real wire ropes, where
constituent wires may dlip, for example.

Following on from Eg. (1), one can write down equations of
motion, in the form of two coupled wave equations for the axial
displacement (w) and the angular rotation (¢),

A w A ) Pw ,
+A,— =M—

152 Th 2 prek 2
Pw Pp PP
E— + —_— | —

Asr tAr 7=l =7, 3

where mis the mass per unit length and | is the mass moment of
inertia per unit length about the central axis. (Further details and
references are given in Section 2.) These equations permit wave
motion, and this is investigated in Section 2. There are two wave
speeds. In general, each torsional wave is accompanied by a lon-
gitudinal wave of the same shape but with a different amplitude.
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In Section 3, we develop an aternative theory, based on the
exact stress equations of motion for a composite anisotropic elas-
tic cylinder. The cylinder consists of co-axial layers, each of
which is made of a cylindrically anisotropic elastic material.
Simple kinematical assumptions are made, leading to a system of
three coupled one-dimensional wave equations:

A J*w A 72 A J%u 5 au J*w A
— +Ar—> +As— +B;—=m—
YozZ "% 972 T %922 T Pl gz oz @)
A W A ) A J2u 5 au Ia2¢ 5
—— +A—> +Ae—> +B— =1 —&
2 (922 4(922 6(922 2(92 (9t2 1 ( )
A 82W+A 32¢+A u 5 ow 5 e 5 Iazu
—— +tAg——7 +A;—>—B;——B,——Bzu= .
5oz 69z "oz Yoz %9z 0 o?
(6)

Here, u gives the radial displacement. In general, this 3X 3 system
does not reduce to the 2X2 system, Egs. (2) and (3), when u
=0, which is an underlying assumption in the derivation of the
2X 2 system. On the other hand, the 3X 3 system does reduce to
well known equations for the approximate description of wavesin
isotropic elastic rods ([10] Section 8.3).

Our model for the wire rope is called semi-continuous by Car-
dou and Jolicoeur [11] in their thorough review article: all the
strands in each co-axia layer of the rope are ‘“homogenized” into
an elastic continuum. Thisideawas first used by Hobbs and Raoof
[12]; they regarded each layer as a thin orthotropic sheet. It has
been developed further by Cardou and his students ([13-15]).
They do not regard the layers as thin, and they permit the orthot-
ropy axes of the material of each layer to be aligned in directions
that differ from the global cylindrical polar coordinate axes. We
have extended this model to dynamic situations.

The coefficients occurring in Egs. (4)—(6) are given in terms of
certain integrals of the elastic stiffnesses of each layer over a
typical cross section. Once these are known, wave propagation
along the wire rope can be studied. For an example, we present
some numerical results for a smple seven-wire ACSR conductor.
Three distinct modes are found. The slowest mode is mainly tor-
sional and mainly nondispersive in character. Such a mode could
be excited by a device (transducer) designed to launch torsional
waves. The two other modes are dispersive and have small tor-
sional components.

2 The Samras-Skop-Milburn (SSM) Equations of Mo-
tion

Let z be distance along the wire rope and let t be the time. Let
w be the axial displacement and let ¢ be the angular rotation. We

use the consgtitutive relations (1), in which e=dw/dz and x
=dd¢ldz, whence

¢ d¢

F—A&WAa d M—AﬂWA 7
Thrgg thrgy  ad MPAag A ()
Then, a balance of forces and moments acting on an elementary
dlice of the wire rope gives Egs. (2) and (3), which are approxi-
mate, one-dimensional equations of motion for the wire rope.
They were derived by Samras, Skop, and Milburn [9]; we call
Egs. (2) and (3) the SSM system. This 2X 2 system has been used
in several subsequent papers, including [3,16—18].

It is of interest to obtain solutions to the SSM system. If we
eliminate ¢, say, we obtain a single fourth-order linear partial
differential equation for w,

d*'w *w d*w
This has traveling-wave solutions of the form w(z,t) =f(z—ct),
where f is an arbitrary function (with four continuous derivatives)
and there are four possible wavespeeds c, given by the roots of
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mic?—c?(1A;+mA,) + AA,— AA;=0; 9)
these roots are given by
c2={IA;+mA,* J(IA;—mA,)?+4mIA,A}/ (2ml). (10)
We observe that these are the eigenvalues of the matrix
Ai/m A,/m
2:( Asll Ayl )

Thus, we obtain two positive values of ¢ and two negative values.
The positive values correspond to different wavespeeds for waves
propagating in the positive z direction; we will denote these by ¢,
and c,.

We can rewrite Eq. (9) as A,Az=(mc?—A;)(Ic?—A,). If we
assume that A,=A; and we have good estimates for A; and A,
(perhaps obtained from fairly standard static measurements on the
wire rope), mand I, we could then calculate A, using a measure-
ment of wavespeed ¢ along the rope.

Returning to Egs. (2) and (3), we could eliminate w instead of
¢. This shows that ¢ satisfies exactly the same equation as w,
namely Eq. (8), and so admits the same wavespeeds.

Next, let us look for solutions of Egs. (2) and (3) in the form

w(z,t)=1(£) and ¢(z,t)=g(§), (11)
where £=z—ct and c solves Eq. (9). We obtain

(A;—mc?)f"+A,g"=0,
Agf"+(A—1c?)g"=0,

so that (f”,g")7 is an eigenvector of A, corresponding to the
eigenvalue c?. Integrating twice, we see that

f(z—ct)=G(c)g(z—ct), (12)

where the factor G is given by G(c)=A,/(mc?>—A;)=(Ic?
—A,)/Az. (When we integrated, we discarded terms of the form
C,&é+C,, where C; and C, are constants of integration. Such
terms do satisfy Egs. (2) and (3), as do any functions that are
linear in both z and t, but they are not usualy of interest.)

Equation (12) shows that if there is a torsional wave, ¢, propa
gating at speed c, then it will be accompanied by an axial wave, w,
propagating at the same speed and with the same shape, but with
a different amplitude. For this conclusion to be valid, we require
that there is actual coupling between axial and torsional motions;
for a solid isotropic rod, we would have A,=A;=0, and then the
axia and torsional waves can exist independently (as Egs. (2) and
(3) decouple).

This completes our study of the SSM system. In the next sec-
tion, we attempt to give a more rationa derivation of one-
dimensional wave equations modeling the wire rope. We shall see
that the SSM system should be replaced by a 3X3 system, in
general.

3 An Approximate Theory for Wavesin a Wire Rope

3.1 StressEquations of Motion. In cylindrical polar coor-
dinates (r, 6,z), the exact stress equations of motion are ([10], p.
600)

d 19 d 1 Ju,
Eﬂr"'F%Tnﬁ_ETrz+F(Trr_700):PWa (13)
d 19 d 2 U,
oot T g Teet oo Tt T Te= P (14)
d . 14 . d . 1 5u, 15
ar Trz r oo Toz (;ZTZZ rTrz*P g2 (15)

where (u, ,u,,u,) isthe displacement, p is the mass density, and
7;; are the stress components. We seek approximate solutions of
these equations for a wire rope.
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We model the wire rope as a circular cylinder of radius a. The
cylinder consists of a cylindrical core, O<r<ag, and N co-axia

layers, a;_1<r<a;, i=12,...,N, with ay=a. Thus, there are
N interfaces, r=a; 4, i=1,2,...,N. The outer surface is free of
tractions,

T =Tg=T,—0 On r=a.

(16)

In general, the N interfaces may be imperfect: Slippage may oc-
cur. They could be modeled using one of several available models
of imperfect interfaces; see [2] or [19].

In order to develop a‘*‘rod theory™ for wire rope, we begin with
some kinematical assumptions. Thus, we assume that

ro(z,t) and u,=w(zt), a7

where u, ¢ and w are to be found. Here, the approximations for u,
and u, are usually made for longitudinal motions ([10], p. 511),
whereas the approximation for u, means that cross sections can
rotate about the central axis at r = 0. One consequence of Eq. (17)
is that the 6-derivative terms in Egs. (13)—(15) are zero.

We are going to integrate Egs. (13)—(15) across an arbitrary
cross section C of the wire rope. We have

N

f 7'rzdr EJ Trzdr 2 [[rTrz]::l

a a
—f 7,dr :lz—f 7.,dr,
aj_q 0

where a_;=0, we have used Eq. (16),
N—-1
= Z ai[ 7,(a;,z,1)]
<

u,=ru(zzt), u,=

and

[f(a;,z,t)]= lim f(r,z,t)— lim f(r,zt)

r_,ai r—aj+
gives the jump in a quantity f across an interface at r =a; . Thus,
integrating Eq. (15) across C, we obtain
d A
= fCTZZdA+2W|Z=mW (18)

where dA=rdrdé and m= [ pdA is the mass per unit length of
the wire rope.

We use a similar procedure with Egs. (13) and (14), the differ-
ence being that we multiply both by r before integrating over C.
We obtain

J Ju
o7 rTerA (7-”+ Tpp)dA+ 27, =1 2 (29
and
d PP
E CI’ T, dA+ 27 y=1 W, (20
where
N—1 N—-1

=23 @@, 201, 1= 2 alm(a 2,0)]
and | = [.pr?dA is the mass moment of inertia per unit length
about the central axis.

Note that if the wire rope was a solid circular cylinder of radius
a, with constant density and welded interfaces, then we would
have |, =1,=1,=0, | =(1/2)ma? and m= wpaZ.

The quarntities |, |4, and |, give the total contributions from
the possible discontinuities in the traction across each of the N
interfaces. We assume that
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(21)

This simplifies the analysis, of course, but it aso turns out to be
redlistic ([1], p. 54):

Real conductors do not have frictionless strands, and, for the
small amounts of flexure experienced due to vibration waves out
in the span, the friction present between strands is normally great
enough to prevent gross sliding between them. The relative axial
movements of the strands are absorbed in largely elastic shear
strains around the small areas of interstrand contact. The
amounts of movement are not great enough to build up tractions
that exceed the threshold of dliding.

On the other hand, the assumption (21) cannot be justified near the
points of support.

3.2 Cylindrically Anisotropic Materials. Next, we need
constitutive relations for the materials of the wire rope. We as-
sume that each layer is composed of a cylindrically anisotropic
elastic solid. Letting (r,6,z) =(1,2,3), Hooke's law becomes

(22)

where ¢;; are the strain components, and we emphasize that the
dtiffnesses C;;, are referred to cylindrical polar coordinates; see
[20] and [21] for more details. We assume further that each layer
of the wire is homogeneous, so that the stiffnesses are constant
within each layer. Thus, Cjj=Cjj(r) are piecewise-constant
functions of r.

The strains are given as follows ([20], p. 2399):

Tij:CijklgkIv

au, 1duy, u,
B TW BeT T e T T
du, Iw 1 1¢9ur dug ug

=T 5 EroT +___ y
Jdz 9z 2\t 960 r
1(/du, du, 1 Ju

SI’Z:_ _+

2\ or 0z 2 9z

1/du, 1 auz 1 aqs
€o=5| 5, T ¢

20z " r 90 2 9z

The corresponding stresses are given by Eq. (22) as

7ij= Ciju8rr T Cij2g g1 Cijaae 2+ 2Cij1081 g+ 2Cij 238 42

W do
+2C|1138rz (C|111+C|]22)U+C|133 +C|123r oz
c Ju
+ [ —
ij13! 9z"
Thus
ow do ou
7= T13= (C15+ Cp)U+ cssg +Cusr — 0z +Cossl — 97
W o Ju
Toz= Toa= (C1qt+ Coy)u+ CME +Cul — 9z +Cusl — o7
JW d au
=71,=(CyTCoe)U+ Co—— 97 +C46r +C56r 97"
ow dd au
= T33= (C13+ C23)U + C33 + C34r + C35r 02
ow do ou
T = (C11+C12)U+C13a +Cur — 0z +Cysf 97"
ow o au
Too= T2~ (C1ot Cp)U+ Cog— 0z +Col — 97 +Cosl — 97
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where we have used the usua contracted notation Cz for Cjjy
([22], Section 2.3). Note that these expressions make use of 20 of
the 21 stiffnesses, the exception being Cgg .

3.3 One-Dimensional Equations of Motion. We use the
expressions above for 7;; in Egs. (18), (19), and (20), together
with Eq. (21), and obtain Egs. (4)—(6), wherein

Alsz33dA, A2=frC34dA, A4:Jr2C44dA,
C C C
A5= f I’C35dA, A6: f I’2C45dA, A7= J’ I’2C55dA,
C c C
Blzf(cl3+cz3)dAv Bzzfr(C14+C24)dA,
C C

Bs= J (C1+Cxnt2Cyy)dA.
c

Note that these expressions make use of 13 different elastic
stiffnesses.

Equations (4)—(6) are three coupled one-dimensional wave
equations for u, ¢, and w, defined by Eq. (17). This 3X 3 system
should be compared with the 22 SSM system (which was de-
rived by strength-of-materials arguments). We do this next.

3.4 Comparison With the Samras-Skop-Milburn (SSM)
System. We seeimmediately that Egs. (4) and (5) reduce to Egs.
(2) and (3), respectively, if u=0 (no radial displacement). Then,
the third equation, Eg. (6), becomes

Pw PP AW L)

A5? +A6?_ BlE— BZE =0. (23)
Now, we know that the SSM system has traveling-wave solutions,
given by Egs. (11) and (12). When these are substituted in Eq.
(23), we obtain an ordinary differential equation for g(£), with
solution g(&)=e* where y=(B;G+B,)/(AsG+Ag), provided
As and Ag are not both zero. This particular exponential solution
is not of interest to us, as we want to consider the propagation of
bounded pulses along the wire rope; therefore, we discard this
solution. If As=Ag=0 (this case will arise in Section 4.1), Eq.
(23) reduces to B;G+B,=0. This may be satisfied for one value
of ¢? given by Eq. (10), but not both.

Another way to satisfy Eq. (23) identically is to require that the
stiffnesses are such that

ASZAGZB]_:BZZO. (24)

These conditions involve the stiffnesses and radius of each con-
centric layer of the composite cylinder. They will be satisfied if
the materia in each layer satisfies C35=Cy5=0, C13= — Cy3 and
C1=—Cy.

We conclude that, in very specia circumstances, our 3X 3 sys-
tem reduces to the SSM system, together with u=0.

Let us also calculate the forces and moments acting on a cross
section C of the wire rope. The axial force is given by

F= dA=A &W+A ﬁ¢+A (9U+B 25
—CTzz A1 T A A B (29)

and the axial twisting moment is given by

M= dA=A &W+A a¢+A au+B
= | [rA=Aagy gy HAsgy Bal.

Both of these reduce to Eq. (7), provided u=0 or Eq. (24) holds.

3.5 Waves. Before looking for solutions of Egs. (4)—(6), it
is convenient to introduce dimensionless variables. Let ¢, be a
typical wave speed for elastic waves in the rope. For a length
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scale, we shall use a, the outer radius of the rope’s cross section.
(Phillips and Costello [17] use the length of the rope.) Define
z Gt

|
t'=—, u=u\/—>,
a a ma

’ ’

z'=—,

| w
b '=¢ Wandw=g, (26)

where the primes signify dimensionless quantities. Then, Egs.
(4)—(6) become

’aZW/ ’52¢/ ’Or,Zu/ ,0”U, (92W/
Aq 9772 +A; 972 +A582’2 +Blﬁ:Wv (27)
Al W +A, kil +A¢ ru +B; ' _ s 28
2[92!2 4(92/2 6(92/2 2(92/ - ﬁtIZ ’ ( )
Al P>*w’ A P’ A a*u’ w99 J*u’
5(92/2 6(92!2 7&2'2 1(92/ Z&ZI SU - ﬂtlz’
(29)
where
Al = AL P A':ﬁ A’:i
L N o R = I v N e
A Asg N A; B! aB; , aB;
et Tt TR gymit gl
. a’B;
and B;=——.
col

Henceforth, we drop all the primes.

The scaling introduced above may seem complicated but it has
three beneficial consegquences. Firgt, al equations and coefficients
are dimensionless. Second, it will lead to a Hermitian coefficient
matrix when we seek solutions proportional to exp{ik(z—at)} (see
Eq. (32) below) and, third, the wave speed « will be determined
by solving an eigenvaue problem (rather than a generalized ei-
genvalue problem).

Thus, we seek solutions in the form

u=upe't, ¢=¢poe'kt and w=wye'ké, (30)

where é=z—at, ug, ¢q, and w, are constants, k is a nonzero
dimensionless real wave number, and « is a dimensionless wave
speed; the actual wave speed is ac, and the actual wavelength is
27alk. Substituting Eq. (30) in Egs. (27)—(29) gives

(A—a?)x=0, (31)
where
A, A, As—iB,/k
A= A, A, Ag—iB,/k (32)

As+iBi/k Ag+iBy/k A;+B3/k?
and x"=(Wjg, ¢g,Uo). Equation (31) will have a nontrivia solu-
tion provided that
det(A— a?1)=0, (33)

which isacubic in a?. Thethree solutionsfor a? areal rea. This
follows by noting that A is a complex Hermitian matrix so that
XTAXx is real (where the overbar denotes complex conjugation).

We would like to know that the real solutions for a? are all
positive, so that we have six rea solutions for a. With A = a?, we
can write Eq. (33) as

f(N)=A3+dA2+d A +dg=0, (34)

where the coefficients d; are known in terms of the entries of A.
We know that f(\)=0 has real roots only, so elementary consid-
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erations (such as sketching the graph of f(\)) will lead to condi-
tions on d; that are sufficient to guarantee that all the roots are
positive. For example, we must have f(0)<<0, which yields
det(A)>0. We must also have two positive turning points, and
this yields d,<0.

Let us make three further remarks. First, despite the appearance
of first derivatives with respect to z, the system (27)—(29) is sym-
metric in z. In other words, if there is a solution proportional to
e'?, then there is another proportiona to e ™%, with the same
vaue of a. For det(A— a?l)=det(A—a?l), as A is Hermitian.
Second, as A depends on k, so too does «: the waves are disper-
sive, unlike the solutions of the SSM system. Third, having found
the eigenvalues «?, the relative displacement amplitudes are
given by the corresponding eigenvector x= (W, ¢bg,Ug) " Of A.

4 Cylindrically Orthotr opic Materials

The theory developed in Section 3isfairly general. As a special
case, we can suppose that the material of each layer is cylindri-
caly orthotropic. For such materials, there are nine nontrivial
Stiffn&es, narndy C]_]_, Clz, Cl3! C22, C23, C33, C44, C55,
and Cg. It followsthat A,=As;=Ag=B,=0, so that the torsional
component ¢ decouples from u and w. Equation (28) reduces to
A%l 97°= 9>l 9t?, the one-dimensional wave equation with
wavespeed /A,. Equations (27) and (29) reduce to

A Pw 5 au PPw a5

— 4+ - =

Yoz2  Tloz o at? (35)

A d2u 5 oW 5 d%u -
7972 157 3u= a2 (36)

These can be solved, using Eq. (30). However, we do not pursue
this here, as we are interested mainly in situations where the tor-
sional motions do not decouple.

We remark that for isotropic materials, we can show that Egs.
(35) and (36) reduce to Eqg. (8.3.148) in [10].

4.1 Rotated Coordinate Systems. Above, we considered a
material with cylindrical orthotropy, where the principal axes are
aligned with the cylindrical-polar coordinate axes. We saw that
torsional motions decoupled from axial and radial motions.

Suppose, now, that the material of each layer is cylindricaly
orthotropic with respect to a different coordinate system,
(r',0',z"), with nine nontrivial elastic stiffnesses C;B ([14,15]).
We want to express C,; in terms of C;B. (This is a standard
calculation in tensor analysis.) Specificaly, at a typical point P,
the cylinder has three coordinate directions, namely, 1=r, 2=
and 3=z. At the same point, the material has three principal di-
rections, namely, 1'=r’, 2'=¢6', and 3'=z'. We suppose that
ther and r’ directions coincide (at P), and that the (6,z) direc-
tions are obtained by rotating the (6',z") directions by an angle B
about the r-direction. The stiffnesses transform according to

Cii(B)=QipQq 2 Q1Chqrs»

where
1 0 0
Q(B)=| 0 cosp snpg
0 —snpB cospB

Explicit calculations show that the (symmetric) stiffness matrix
referred to coordinates (r’, 6',z’), which has the structure
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Chy Cjp Cig O 0 O

Ch Ch 0O 0 O

Ch 0 0 0
c'= , ,
Ch, 0 0

Cl O

Cés

is transformed into a (symmetric) stiffness matrix referred to co-
ordinates (r, 6,z) with the structure

Cll C12 C13 C14 0 0

Cxnr Cx Cyu O 0

Cys Cy 0 O
C= 3
Cu 0O O S

C55 C56

C66

Explicit expressions for C,,, interms of C,,., are given in Appen-
dix A. A conseguence of this structure of C is that A5=Az=0,
leading to a slight simplification of the analysis in Section 3.

4.2 Transverse Isotropy. Transverse isotropy is a specia
case of cylindrical orthotropy. For such materials, there are five
nontrivial stiffnesses; the (unrotated) stiffness matrix can be writ-
ten as

Ch Cp Cig 0 O 0

Cl, Cls 0 0 0

Ch 0 0 0

c'= Cl, O 0
Cl 0

1 ’ ’
E (Cll_ ClZ)

In order to use the results in [14,15], it is convenient to introduce
engineering constants. These are the longitudina Young's modu-
lus E, , the transverse Young's modulus E;, the longitudina
Poisson’s ratio v, the transverse Poisson’s ratio v, and the
longitudinal shear modulus G, . Then, using [15] (Eq. (2)) and
[23] (Egs. (2.25) and (2.36)), we obtain

, 1= yvf ,ovrt 'yvf
Cu= A —Ey, 127 A T

. n(l+vp) .14
ClszT Lo C%:TEL

and Cj,=G,; here, y=E_/Er and A=1—v2—2yv2(1+vq).
Note that Cge=(1/2)E+/(1+ vy). After rotation, one obtains a
matrix C with the same structure as Eq. (37).

For an isotropic material, E, =E+=E, v, =vy=v and G = pu
=(1Y2)E/(1+v).

Following Jolicoeur and Cardou [14,15], we shall use this con-
stitutive model (rotated transverse isotropy) for a composite wire
rope. A specific example of asimple ACSR electrical conductor is
considered in the next section.

5 A Simple Example of an Aluminum Conductor Steel
Reinforced (ACSR) Conductor

In order to use the foregoing theory, we have to specify the
physical characteristics of the wire rope and we have to estimate

the elastic constants. Methods for doing this have been described
by Jolicoeur and Cardou [14,15] in their analysis of the static
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loading of wire rope. We follow their method closely, making use
of some calculations of Costello ([4], Section 3.9). Thus, we con-
sider a very simple ACSR conductor, consisting of six aluminum
wires helically wound around a single straight steel-wire core. The
steel wire has radius rg=1.70 mm (0.067 in.). All the aluminum
wires have radius r ;= 1.68 mm (0.066 in.). In terms of the model
described in Section 3, we have N=1, ay=r¢ and a;=a=rg
+2r,. The auminum wires have a helical radius of h=rg+r,
and a helical angle of 8=10deg. (These parameters are approxi-
mately those of the so-called Raven 6/1 ACSR conductor; see
[24], Table 1-6).

Mass per Unit Length. Taking a cross section of the wire
rope, we see that each aluminum wire has an approximately ellip-
tical cross section, with a semi-minor axis of length r, and a
semi-major axis of length r, sec B; see [4], Fig. 3.1. Thus, each
wire has amass per unit length of p,r2 sec B=m,, say, where p,
is the density of aluminum. Hence, if pg is the density of steel,

m__&
Wpaaz Pa

where we have used ps= 7800 kg/m® and p,= 2700 kg/m®. Note
that the mass of the wire rope is almost the same as that of a solid
aluminum cylinder of the same diameter. Note also that our cal-
culated value for mis consistent with the tabulated value of 216
kg/km for the Raven ACSR conductor; see [24], Table 1-6.

Moment of Inertia. The moment of inertia of an ellipse
about an axis through its center (and perpendicular to its plane) is
(1/4)M (a%+b?), where M isits mass and a and b are the lengths
of the semi-major and semi-minor axes. Then, using the parallel-
axes theorem, we obtain

(38)

2
rs ra
— +6(—) sec 3=0.998,
a a

1 1
=3 mpo e+ 6{ myh?+ 7 mari(1+sec? B);.
Hence, | =0.357ma?; about 95% of this comes from the alumi-
num wires. (For comparison, a solid composite cylinder composed
of a steel core of radius ay surrounded by an aluminum cladding
of outer radius a has | =0.422ma?.)

Stiffnesses. The steel core is isotropic with Young's modulus
Eg and Poisson’s ratio vs=0.25. Thus E, =E1=Eg, v =v1=v4
and G, =04E;. The corresponding stiffnesses are C;;=Cg3
= 12ES and C12: Cl3: C44: C55: O4ES .

Let aluminum have Young's modulus E, and Poisson’s ratio
v,=0.33. Then, from Egs. (3), (9), and (12)—(14) in [15], the
aluminum wires may be modeled using

EL_3la =0.756
E, 2 h X¢A=06
4N _ ET_ 1 VT_ ET
Va EL 7; Va Ea’
G, ra(EL/E,)
—= =0.0285
Ea 2(1+wy)(ri+h?)(1+cos’B)
and
1 Ce m(rgtry 1
Er =« X.Ce 3|’

where X is the contact force per unit length and, from [25], Table
33,

c _1—v§+1—y,§_1.204
£ ES Ea a Ea '

using E;=3E, . The calculation of X, isdescribed in Appendix B,
using the method of Costello [4]. From Eg. (B6), we obtain
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(1 s+ 1)/ (X.Cg)=790.4n°E, /F,

where F isthe (static) axial force on the wire rope. As an example,
let us take F=5000N (1124 |b). We take E,=7x10% N/m?
whence E;=0.229E,. (Evidently, E; will increase if F is in-
creased, but the increase is not linear; in fact, E1 depends loga-
rithmically on F, so that large changes in F will induce moderate
changes in E;.) Hence v+=0.08, v, =0.10, y=3.3, and A
=0.92. Then, from Section 4.2, we obtain C;;,=0.241E,, Cj,
=0.028E,, C13=0.089E,, C;;=0.816E,, C,,=0.029E, and
Cgs=0.106E, . Finally, the rotated stiffnesses are given by

024 003 009 00l O 0
023 011 001 O 0
078 011 0 0

C=Ea 005 0 o |’
003 —001
0.10

using the relations given in Appendix A.

AveragedStiffnesses. The coefficients A;, A,, A4, As, Ag,
A;, By, B,, and B are defined in Section 3.3 by certain integrals
of the stiffnesses over a cross section of the wire rope. Dimen-
sionless versions of these coefficients are defined in Section 3.5,
making use of m, | and a typical wave speed cq, which we shall
take to be the speed of shear waves in aluminum: c52=2pa(1
+v,)/E,. Thus, mc3=0.3757E,a?, using »,=0.33 and Eq.
(38). Then

a
33
=)

- 1 CodAz wE a2
Yme2 J.OFTT me?
where the superscripts on C43 denote steel or aluminum, as appro-
priate. We have r/a=0337, E¢/E,=3, C3j/Es=12 and
C3%/E,=0.78 whence A;=2.94. The other coefficients are ob-
tained similarly. Thus, we find that
A1=294, A,=032, A,=024, As=Ag=0,

A7:0.17, 81:2.00, 82:0096

rs 2

a

Eq Es

I's
a

and B,y=1161.

Waves. Having specified the mechanical properties of the
ACSR conductor, we can now caculate the alowable wave
modes, according to the theory described in Section 3.5. For a
given dimensionless wave number k, the dimensionless
wavespeeds a are given by solving Eq. (33), which can be written
as a cubic in A= a?, namely Eq. (34), in which

d,=—(3.35+11.61k %), d;=1.14+32.91k 2
dp=—(0.103+6.14k "?).

As dy and d, are both negative, for al k?, the cubic has only
positive rea roots, so that al the wave speeds are real.

and

Numerical Results. We have solved Eq. (34) for 2. In Fig.
1, we have plotted the three positive values of «, as a function of
k. Evidently, we can denote these three values by «;(k), i=1, 2,
3, with 0< a1 <ay,<ajz. We see that «;(k) is a decreasing func-
tion of k. In fact, the lowest wave speed, «;, is amost indepen-
dent of k: for example, a1(1)=0.448 and «4(10)=0.447. Thus,
the wave corresponding to «; is almost nondispersive: it travels
with a speed of approximately 0.45¢c,, where c, is the speed of
shear waves in aluminum.

Figure 1 also suggests that a»(k) — a1(k) —0 ask—«. Thisis
false. To see this, let k—o0 in A, and put As=Ag=0. Then, using
the notation of Abramowitz and Stegun [26], Section 3.8.2, we
calculate g°+r?, where q=(1/3)d;— (1/9)d3 and r = (1/6)(d.d,
—3dg) — (1/27)d3. We find that
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Dimensionless Wavespeed, o

Dimensionless Wavenumber, k

Fig. 1 The dimensionless wave speeds a; as functions of di-
mensionless wave number k

1
108

which is negative, confirming that al the roots are real (when k
=o). However, for our particular values of A;, we obtain ¢°
+r2=—0.02, which is small, and so «; and a, will differ by a
small but finite amount for large k. In fact, we find «,(10)
=0.523 and «5(10)=1.73.

Next, we have calculated the eigenvectors x; of A, correspond-
ing to «;, where x=(Wy,¢q,Uo)". We can arrange that |x|=1
and, as As=Agz=0, it follows from Eqg. (31) that we can take w,
and ¢, to be real and ug to be pure imaginary, uy=i0, say. Then,
taking the real part of Eg. (30), we obtain

= ¢y coské

where £&=z— at. Thus, the radial component is out of phase with
the axial and torsional components. Then, the normalized eigen-
vectors show the physical character of each mode.

The three components of x;, corresponding to the lowest
wavespeed «, are shown in Fig. 2, as afunction of k. We see that
this mode is a quasi-torsional mode: The axial and radial compo-
nents are small. This weakly dispersive mode is the most impor-
tant in the context of our application to ACSR conductors, be-
cause our transducers are designed to launch torsional waves.

The components of the eigenvector x,, corresponding to the
wave speed «,, are shown in Fig. 3, whereas x; is shown in Fig.
4. We see that both of these modes have small torsional compo-
nents. For x,, the axial component decreases with k and the radial
component dominates, whereas the opposite situation occurs with
X3.

QP+ 2= — T {(Ar— Ay 2+ AABHAZH (Ar— A7) (A=A},

u=—0snké¢, and w=wgcoské,

6 Conclusions

In this paper, we have attempted to give arational model for the
propagation of elastic waves along composite wire ropes. The
goa was to obtain one-dimensiona differential equations of
wave-equation type, with coefficients obtained from certain inte-
grals over the cross section of the wire rope. Such equations are
well known for waves in isotropic rods. We used simple kinemati-
cal assumptions, Eq. (17), but it is clear that various expansionsin
r could be used; see Bostrom [27] for a recent discussion of such
methods.
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=

-0.25 o

-0.75

Displacement Coefficient
f=1
3
1

LLO0 e

-1.25 : T . T . T . y

Wavenumber, k

Fig. 2 The components of the dimensionless eigenvector x;
=(wyp,¢y,id) corresponding to the dimensionless wave speed
aq, as functions of dimensionless wave number k. This is the
quasi-torsional mode.

We derived a set of three coupled partial differential equations,
Egs. (4)—(6). The coefficients in these equations are given as in-
tegrals involving the elastic stiffnesses of each layer of the com-
posite wire rope, when regarded as a solid with cylindrical anisot-
ropy. A basic difficulty is how to determine these stiffnesses. We
have used a method described by Jolicoeur and Cardou [15]. This
leads to a logical inconsistency: one of the Young's moduli, E+,
was calculated from a knowledge of the contact forces between
individual wires within the rope, and these forces were estimated
using Costello’s theory ([4]); the inconsistency is that the latter
theory gives Eq. (1) for F whereas we obtain Eq. (25) (wherein

Displacement Coefficient

Wavenumber, k

Fig. 3 The components of the dimensionless eigenvector x,
corresponding to the dimensionless wave speed a,.
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Fig. 4 The components of the dimensionless eigenvector x3
corresponding to the dimensionless wave speed a;.

As=0). Infact, we applied a static tension, determined the contact
forces, and then superimposed a wave motion. In the absence of a
better algorithm, we feel that the present approach is adequate; we
note that the modulus E+ depends weakly on the actual magnitude
of the contact forces, so that a rough estimate should suffice.

One aspect not considered here is that of damping: experimen-
tally, it is observed that wave amplitude decays with distance
along the wire rope. The precise cause of this phenomenon is
unknown. For a wire rope under static tension F, it is known that
interwire slippage is not responsible ([28]), although the damping
does vary with F and with the number of wires comprising the
rope; see [29] for a review. Further work is needed so as to de-
velop a predictive model for damping.

Acknowledgments

This work was partially supported by the Center for Advanced
Control of Energy and Power Systems, a National Science Foun-
dation Industry/University Cooperative Research Center, at the
Colorado School of Mines. We are grateful for many discussions
with the Center’s Director, Rahmat Shoureshi, and with other col-
leagues and students. We have a so benefited from comments and
reprints from A. Cardou and M. Raoof.

Appendix A

Rotated Stiffnesses. A material with cylindrical orthotropy
has elastic stiffnesses C ;y when referred to principal axes. Rota-
tion about the radial axis by an angle B leads to stiffnesses C
defined as follows:

Cy= Cilv

ayr

C,=Cj, 008 B+Cjzsin? g,
Cq3=Cj}zc08* B+ Cj,sin? B,

l 2 2 H ! 1 ! i n2
Ci4=5 (Ci3~Cip)sin2B, C,=Chc0s* B+ 5 Coesin® 2,
’ in4 1 ’ 1 ’ ’ P2
C3=Chy(cos* B+sin* B) + 7 Cot 7 Cia—Cua|SIN* 28,
1 ’ ’ : 1 I il ! i
Ca=5 (CagtCie)Sin4p+ 5 (Cygsin B—Ch,cos” B)sin28,
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sin?2p,

, 1
Cq3=Cjsc08* B+ Ch,sin® g+ ( Clt §C§3

sin4p,

1 ! ’ ;2 : 1 ’ 1 !
034=E(C3300525—C223m B)sin2f— 5| Ciut 5Cs

1
Cyy=Cj 08 28+ 7(Caat Coom 2Ch)sin? 2,
Cos=Ce5008" B+ Cgg SN’ 3,
1 ’ ’ : ! ! «in2
Cs6=7 (Cs— Cge)sSin28 and Ces=Cs 00> B+ CLssin? B.

Appendix B

Contact Stresses. In order to calculate E;, we have to cal-
culate the contact stresses between the aluminum wires and the
steel core. Specifically, we require X., the contact force per unit
length acting along the line of contact. Thus, we apply a static
load to the wire rope; the axial force F, axia twisting moment M,
axia strain ¢, and rotation per unit length y are related by Eq. (1).
The theory in [4] yields expressions for A;—A,, and aso for X,
the contact force per unit length along the centerline of the rope.
Then, X, is given by [4], Egs. (3.10) and (3.114), as

X=—X{cos? B+ (r¢/h)?sin? B} ~Y2=—1.011X,

using 8=10deg and r;/h=0.503 for our ACSR conductor.
The total axial force acting on the wire rope is F=Fy+F,
where F, and F, are the axia forces in the steel core and alumi-

num wires, respectively. We have Fy= wEsrﬁe. For F, and X, we
have the following equations from [4], Section 3.9:

F,=6(T cosB+Nsnpg),

(B1)

hX=(NcosB—TsnB)sing,
hN=(H sin3—G cosB)sin 3,

1 4 in2 ;
hG= ZwEara(A sn“ B—aysin2p),

1
hH=Za(1+ va) 'E.ra(A sinBcosB—a; cos2p),

with T=7E,r2¢, and hA = vgf & + vor .6, . We also have

&t atanB=e¢, (B2)

& tanB—aq+Atan B=hy. (B3)

Comparing our notation with that used in [4], we have F;
=F,, G=G;, H=H;, N=N;, T=T;, X=X;, ay=Aay, 1,
:Rz, I’S=R1, B:(llz)’TT_az, h:rz, X=Ts and 51252. A|$),
m2:6.

We can solve Egs. (B2) and (B3) for ¢; and a4 :

£=0 Ye(hcos B—vgrgsin? B)+ xh?sin B cos B},
a;=Q"Ye(h+ vgr g+ v,ry)sin 8 cos B— xh? cos? g8},

where Q=h+ v,r,sin® 8. We can then substitute back, so as to
obtain an expression for F in terms of € and y.

Let us suppose that the wire rope is subject to a prescribed
static load F and that the moment M is adjusted so that the rope
does not rotate (y=0). Then, we find that

T=mE 260 Y(h cos’ B—vgr s B),

1 4_n-1 . 2
hG= 7 mEaraeQ Hugro—(2h+2vg o+ v, 5) 08 Blsin? B,
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1 B 4 .
hH=Z7T(1+va) IEraeQ H(2h+2vgr g+ vr)sin? B

—h}sin B cos .

If we take vs=0.25 and v,=0.33, we find that
G=—0.0259E,r3s, H=—0.0462E,r3¢,
T=3.019E,r2¢ and N=0.00151E,r2s.

We can take Eq=3E,, whence
Fo=107E,a% and F;=1.96E,a%, (B4)

and so F=3.03 E,a’. Thus, given the static load F, this equa-
tion determines the axial strain &, whence

N=(55x10"°)F, T=0.11F and hX=—0.0033F.
(BS)

Finally, we deduce from Eq. (B1) that
hX .= 0.0033F. (B6)

The fact that N is much smaller than T suggests that asymptotic
approximations valid for small 8 should be useful. With errors of

0O(B?) as B—0, we easily obtain Q=h, & =g, T=mE.r2e, G

=0(B%), H=0(B), N=0(8%,
F,/(E,a%)=6m(r,/a)?>=2.07

(which should be compared with the *“ exact’ result Eq. (B4)) and
hX~ — 7 8%r 2E e ~ — 0.0032F

using B=0.17. This result for X isin error by about 3%.
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