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1 Intr oduction
We are interested in the propagation of mechanical waves along

overhead power lines. These are often composite structures known
as aluminum conductor steel reinforced ~ACSR! electrical con-
ductors. These are composite wire ropes consisting of a central
steel wire rope surrounded by several aluminum wires. Our inter-
est stems from the potential use of mechanical waves to detect
defects in ACSR power lines.

It is known that fatigue failure of strands in ACSR power lines
is the most common form of damage, resulting from various
forms of vibrations—aeolian, galloping, and wake-induced ~@1#!.
Two regions of an ACSR power line can be distinguished: the
region near the points of support and the region further away, ‘‘out
in the span.’’ Most fatigue damage seems to occur in the first
region ~@1# p. 51!. In this region, the mechanical problem is very
complicated and three-dimensional: one must take into account
such features as interstrand slippage, suspension clamps and ar-
mor rods. Damage may also occur in the second region, some-
times induced by corrosion, and it is here that there is scope for
some simpler models.

In a previous paper ~@2#!, we considered the propagation of
torsional waves along a bimaterial elastic cylinder, composed of a
steel circular cylindrical core surrounded by a co-axial aluminum
cladding. The interface between the core and the cladding was
assumed to be imperfect, so that some slipping was allowed. This
model accounts well for the composite nature of an ACSR power
line, and the imperfect-interface conditions include a parameter
that may be varied. Moreover, it is possible that this model could
be developed further, so as to treat the region near the points of
support.

However, some features of the problem are not included, the
most important of these being the anisotropy of wire rope. Thus:
‘‘The static response of axially loaded wire rope clearly points out
the coupling between the axial and rotational displacements’’ ~@3#,
p. 244!. It follows that any plausible model of a wire rope should
take this coupling into account. This paper is concerned with the
development of such models for the dynamic response of wire
rope.

The simplest models are based on a strength-of-materials ap-
proach, in which one writes

F5A1«1A2x and M5A3«1A4x , (1)

where F is the axial force acting at an arbitrary cross section of
the wire rope, M is the axial twisting moment, « is the axial strain,
x is the rotation per unit length, and A1 , A2 , A3 , and A4 are
constants ~@4#!. This model has been used for the static response
of ACSR cables by McConnell and Zemke @5#, and it has been
extended to include bending moments ~@6,7#!.

Equation ~1! is a constitutive relation for the wire rope. Clearly,
the coefficients A i will depend on the details of the rope’s con-
struction. Much effort has been directed at obtaining analytical
expressions for A i ; see, for example, @4,8#, and references therein.
For ACSR applications, see @4#, Section 3.9 and @5#. One can also
attempt to determine A i experimentally ~@9,5#!. The diagonal co-
efficients A1 ~relating two axial quantities! and A4 ~relating two
rotational quantities! may be obtained using standard test equip-
ment, but the off-diagonal coefficients A2 and A3 require more
specialized techniques. A third option is to adopt a hybrid scheme,
whereby A1 and A4 are determined by analytical approximations
or static experiments, but A2 and A3 are found using information
obtained from dynamic experiments. This option will be men-
tioned in Section 2.

One question that arises is: does A25A3? Costello @4#, Section
3.9, has calculated A i for a particular ACSR cable, and found that
A151.213106 lb, A251.693104 in lb, A351.613104 in lb,
and A455.553102 in2 lb, with A2 /A3.1.05. For a steel wire
rope used in marine applications, Samras et al. @9# found experi-
mentally that A154.443106 lb, A252.233105 in lb, A352.36
3105 in lb, and A451.433104 in2 lb, with A2 /A3.0.94. Thus,
it is reasonable to assume that A25A3 . Moreover, this equality
follows from the assumption that the wire rope is genuinely elas-
tic; it seems to be a good approximation for real wire ropes, where
constituent wires may slip, for example.

Following on from Eq. ~1!, one can write down equations of
motion, in the form of two coupled wave equations for the axial
displacement ~w! and the angular rotation ~f!,

A1

]2w

]z2 1A2

]2f

]z2 5m
]2w

]t2 , (2)

A3

]2w

]z2 1A4

]2f

]z2 5I
]2f

]t2 , (3)

where m is the mass per unit length and I is the mass moment of
inertia per unit length about the central axis. ~Further details and
references are given in Section 2.! These equations permit wave
motion, and this is investigated in Section 2. There are two wave
speeds. In general, each torsional wave is accompanied by a lon-
gitudinal wave of the same shape but with a different amplitude.
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In Section 3, we develop an alternative theory, based on the
exact stress equations of motion for a composite anisotropic elas-
tic cylinder. The cylinder consists of co-axial layers, each of
which is made of a cylindrically anisotropic elastic material.
Simple kinematical assumptions are made, leading to a system of
three coupled one-dimensional wave equations:

A1

]2w

]z2 1A2

]2f

]z2 1A5

]2u

]z2 1B1

]u

]z
5m

]2w

]t2 , (4)

A2

]2w

]z2 1A4

]2f

]z2 1A6

]2u

]z2 1B2

]u

]z
5I

]2f

]t2 , (5)

A5

]2w

]z2 1A6

]2f

]z2 1A7

]2u

]z2 2B1

]w

]z
2B2

]f

]z
2B3u5I

]2u

]t2 .

(6)

Here, u gives the radial displacement. In general, this 333 system
does not reduce to the 232 system, Eqs. ~2! and ~3!, when u
50, which is an underlying assumption in the derivation of the
232 system. On the other hand, the 333 system does reduce to
well known equations for the approximate description of waves in
isotropic elastic rods ~@10# Section 8.3!.

Our model for the wire rope is called semi-continuous by Car-
dou and Jolicoeur @11# in their thorough review article: all the
strands in each co-axial layer of the rope are ‘‘homogenized’’ into
an elastic continuum. This idea was first used by Hobbs and Raoof
@12#; they regarded each layer as a thin orthotropic sheet. It has
been developed further by Cardou and his students ~@13–15#!.
They do not regard the layers as thin, and they permit the orthot-
ropy axes of the material of each layer to be aligned in directions
that differ from the global cylindrical polar coordinate axes. We
have extended this model to dynamic situations.

The coefficients occurring in Eqs. ~4!–~6! are given in terms of
certain integrals of the elastic stiffnesses of each layer over a
typical cross section. Once these are known, wave propagation
along the wire rope can be studied. For an example, we present
some numerical results for a simple seven-wire ACSR conductor.
Three distinct modes are found. The slowest mode is mainly tor-
sional and mainly nondispersive in character. Such a mode could
be excited by a device ~transducer! designed to launch torsional
waves. The two other modes are dispersive and have small tor-
sional components.

2 The Samras-Skop-Milburn „SSM… Equations of Mo-
tion

Let z be distance along the wire rope and let t be the time. Let
w be the axial displacement and let f be the angular rotation. We
use the constitutive relations ~1!, in which «5]w/]z and x
5]f/]z , whence

F5A1

]w

]z
1A2

]f

]z
and M5A3

]w

]z
1A4

]f

]z
. (7)

Then, a balance of forces and moments acting on an elementary
slice of the wire rope gives Eqs. ~2! and ~3!, which are approxi-
mate, one-dimensional equations of motion for the wire rope.
They were derived by Samras, Skop, and Milburn @9#; we call
Eqs. ~2! and ~3! the SSM system. This 232 system has been used
in several subsequent papers, including @3,16–18#.

It is of interest to obtain solutions to the SSM system. If we
eliminate f, say, we obtain a single fourth-order linear partial
differential equation for w,

mI
]4w

]t4 2~IA11mA4!
]4w

]t2]z2 1~A1A42A2A3!
]4w

]z4 50. (8)

This has traveling-wave solutions of the form w(z ,t)5 f (z2ct),
where f is an arbitrary function ~with four continuous derivatives!
and there are four possible wavespeeds c, given by the roots of

mIc4
2c2~IA11mA4!1A1A42A2A350; (9)

these roots are given by

c2
5$IA11mA46A~IA12mA4!2

14mIA2A3%/~2mI !. (10)

We observe that these are the eigenvalues of the matrix

A25S A1 /m A2 /m

A3 /I A4 /I D .

Thus, we obtain two positive values of c and two negative values.
The positive values correspond to different wavespeeds for waves
propagating in the positive z direction; we will denote these by c1
and c2 .

We can rewrite Eq. ~9! as A2A35(mc2
2A1)(Ic2

2A4). If we
assume that A25A3 and we have good estimates for A1 and A4
~perhaps obtained from fairly standard static measurements on the
wire rope!, m and I, we could then calculate A2 using a measure-
ment of wavespeed c along the rope.

Returning to Eqs. ~2! and ~3!, we could eliminate w instead of
f. This shows that f satisfies exactly the same equation as w,
namely Eq. ~8!, and so admits the same wavespeeds.

Next, let us look for solutions of Eqs. ~2! and ~3! in the form

w~z ,t !5 f ~j ! and f~z ,t !5g~j !, (11)

where j5z2ct and c solves Eq. ~9!. We obtain

~A12mc2! f 91A2g950,
A3 f 91~A42Ic2!g950, J

so that ( f 9,g9)T is an eigenvector of A2 corresponding to the
eigenvalue c2. Integrating twice, we see that

f ~z2ct !5G~c !g~z2ct !, (12)

where the factor G is given by G(c)5A2 /(mc2
2A1)5(Ic2

2A4)/A3 . ~When we integrated, we discarded terms of the form
C1j1C2 , where C1 and C2 are constants of integration. Such
terms do satisfy Eqs. ~2! and ~3!, as do any functions that are
linear in both z and t, but they are not usually of interest.!

Equation ~12! shows that if there is a torsional wave, f, propa-
gating at speed c, then it will be accompanied by an axial wave, w,
propagating at the same speed and with the same shape, but with
a different amplitude. For this conclusion to be valid, we require
that there is actual coupling between axial and torsional motions;
for a solid isotropic rod, we would have A25A350, and then the
axial and torsional waves can exist independently ~as Eqs. ~2! and
~3! decouple!.

This completes our study of the SSM system. In the next sec-
tion, we attempt to give a more rational derivation of one-
dimensional wave equations modeling the wire rope. We shall see
that the SSM system should be replaced by a 333 system, in
general.

3 An Appr oximate Theory for Wavesin a Wir e Rope

3.1 StressEquations of Motion. In cylindrical polar coor-
dinates (r ,u ,z), the exact stress equations of motion are ~@10#, p.
600!

]

]r
trr1

1

r

]

]u
tru1

]

]z
trz1

1

r
~trr2tuu!5r

]2ur

]t2 , (13)

]

]r
tru1

1

r

]

]u
tuu1

]

]z
tuz1

2

r
tru5r

]2uu

]t2 , (14)

]

]r
trz1

1

r

]

]u
tuz1

]

]z
tzz1

1

r
trz5r

]2uz

]t2 , (15)

where (ur ,uu ,uz) is the displacement, r is the mass density, and
t i j are the stress components. We seek approximate solutions of
these equations for a wire rope.
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We model the wire rope as a circular cylinder of radius a. The
cylinder consists of a cylindrical core, 0<r,a0 , and N co-axial
layers, a i21,r,a i , i51,2, . . . ,N , with aN5a . Thus, there are
N interfaces, r5a i21 , i51,2, . . . ,N . The outer surface is free of
tractions,

trr5tru5trz50 on r5a . (16)

In general, the N interfaces may be imperfect: Slippage may oc-
cur. They could be modeled using one of several available models
of imperfect interfaces; see @2# or @19#.

In order to develop a ‘‘rod theory’’ for wire rope, we begin with
some kinematical assumptions. Thus, we assume that

ur5ru~z ,t !, uu5rf~z ,t ! and uz5w~z ,t !, (17)

where u, f and w are to be found. Here, the approximations for ur
and uz are usually made for longitudinal motions ~@10#, p. 511!,
whereas the approximation for uu means that cross sections can
rotate about the central axis at r50. One consequence of Eq. ~17!
is that the u-derivative terms in Eqs. ~13!–~15! are zero.

We are going to integrate Eqs. ~13!–~15! across an arbitrary
cross section C of the wire rope. We have

E
0

a

r
]

]r
trzdr5(

i50

N

E
a i21

a i

r
]

]r
trzdr5(

i50

N

H @rtrz#a i21

a i

2E
a i21

a i

trzdrJ 5Iz2E
0

a

trzdr ,

where a2150, we have used Eq. ~16!,

Iz5(
i50

N21

a i@trz~a i ,z ,t !#

and

@ f ~a i ,z ,t !#5 lim
r→a i

2

f ~r ,z ,t !2 lim
r→a i1

f ~r ,z ,t !

gives the jump in a quantity f across an interface at r5a i . Thus,
integrating Eq. ~15! across C, we obtain

]

]z E
C

tzzdA12pIz5m
]2w

]t2 (18)

where dA5rdrdu and m5*CrdA is the mass per unit length of
the wire rope.

We use a similar procedure with Eqs. ~13! and ~14!, the differ-
ence being that we multiply both by r before integrating over C.
We obtain

]

]z E
C

rtrzdA2E
C

~trr1tuu!dA12pIr5I
]2u

]t2 (19)

and

]

]z E
C

rtuzdA12pIu5I
]2f

]t2 , (20)

where

Ir5(
i50

N21

a i
2@trr~a i ,z ,t !# , Iu5(

i50

N21

a i
2@tru~a i ,z ,t !#

and I5*Crr2dA is the mass moment of inertia per unit length
about the central axis.

Note that if the wire rope was a solid circular cylinder of radius
a, with constant density and welded interfaces, then we would
have Ir5Iu5Iz50, I5(1/2)ma2 and m5pra2.

The quantities Ir , Iu , and Iz give the total contributions from
the possible discontinuities in the traction across each of the N
interfaces. We assume that

Ir5Iu5Iz50. (21)

This simplifies the analysis, of course, but it also turns out to be
realistic ~@1#, p. 54!:

Real conductors do not have frictionless strands, and, for the
small amounts of flexure experienced due to vibration waves out
in the span, the friction present between strands is normally great
enough to prevent gross sliding between them. The relative axial
movements of the strands are absorbed in largely elastic shear
strains around the small areas of interstrand contact. The
amounts of movement are not great enough to build up tractions
that exceed the threshold of sliding.

On the other hand, the assumption ~21! cannot be justified near the
points of support.

3.2 Cylindrically Anisotropic Materials. Next, we need
constitutive relations for the materials of the wire rope. We as-
sume that each layer is composed of a cylindrically anisotropic
elastic solid. Letting (r ,u ,z)5(1,2,3), Hooke’s law becomes

t i j5C i jkl«kl , (22)

where « i j are the strain components, and we emphasize that the
stiffnesses C i jkl are referred to cylindrical polar coordinates; see
@20# and @21# for more details. We assume further that each layer
of the wire is homogeneous, so that the stiffnesses are constant
within each layer. Thus, C i jkl5C i jkl(r) are piecewise-constant
functions of r.

The strains are given as follows ~@20#, p. 2399!:

«rr5
]ur

]r
5u , «uu5

1

r

]uu

]u
1

ur

r
5u ,

«zz5
]uz

]z
5

]w

]z
, «ru5

1

2 S 1

r

]ur

]u
1

]uu

]r
2

uu

r D50,

«rz5
1

2 S ]uz

]r
1

]ur

]z D5

1

2
r

]u

]z
,

«uz5
1

2 S ]uu

]z
1

1

r

]uz

]u D5

1

2
r

]f

]z
.

The corresponding stresses are given by Eq. ~22! as

t i j5C i j11«rr1C i j22«uu1C i j33«zz12C i j12«ru12C i j23«uz

12C i j13«rz5~C i j111C i j22!u1C i j33

]w

]z
1C i j23r

]f

]z

1C i j13r
]u

]z
.

Thus

trz5t135~C151C25!u1C35

]w

]z
1C45r

]f

]z
1C55r

]u

]z
,

tuz5t235~C141C24!u1C34

]w

]z
1C44r

]f

]z
1C45r

]u

]z
,

tru5t125~C161C26!u1C36

]w

]z
1C46r

]f

]z
1C56r

]u

]z
,

tzz5t335~C131C23!u1C33

]w

]z
1C34r

]f

]z
1C35r

]u

]z
,

trr5t115~C111C12!u1C13

]w

]z
1C14r

]f

]z
1C15r

]u

]z
,

tuu5t225~C121C22!u1C23

]w

]z
1C24r

]f

]z
1C25r

]u

]z
,
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where we have used the usual contracted notation Cab for C i jkl
~@22#, Section 2.3!. Note that these expressions make use of 20 of
the 21 stiffnesses, the exception being C66 .

3.3 One-Dimensional Equations of Motion. We use the
expressions above for t i j in Eqs. ~18!, ~19!, and ~20!, together
with Eq. ~21!, and obtain Eqs. ~4!–~6!, wherein

A15E
C

C33dA , A25E
C

rC34dA , A45E
C

r2C44dA ,

A55E
C

rC35dA , A65E
C

r2C45dA , A75E
C

r2C55dA ,

B15E
C

~C131C23!dA , B25E
C

r~C141C24!dA ,

B35E
C

~C111C2212C12!dA .

Note that these expressions make use of 13 different elastic
stiffnesses.

Equations ~4!–~6! are three coupled one-dimensional wave
equations for u, f, and w, defined by Eq. ~17!. This 333 system
should be compared with the 232 SSM system ~which was de-
rived by strength-of-materials arguments!. We do this next.

3.4 Comparison With the Samras-Skop-Milburn „SSM…
System. We see immediately that Eqs. ~4! and ~5! reduce to Eqs.
~2! and ~3!, respectively, if u[0 ~no radial displacement!. Then,
the third equation, Eq. ~6!, becomes

A5

]2w

]z2 1A6

]2f

]z2 2B1

]w

]z
2B2

]f

]z
50. (23)

Now, we know that the SSM system has traveling-wave solutions,
given by Eqs. ~11! and ~12!. When these are substituted in Eq.
~23!, we obtain an ordinary differential equation for g(j), with
solution g(j)5egj where g5(B1G1B2)/(A5G1A6), provided
A5 and A6 are not both zero. This particular exponential solution
is not of interest to us, as we want to consider the propagation of
bounded pulses along the wire rope; therefore, we discard this
solution. If A55A650 ~this case will arise in Section 4.1!, Eq.
~23! reduces to B1G1B250. This may be satisfied for one value
of c2 given by Eq. ~10!, but not both.

Another way to satisfy Eq. ~23! identically is to require that the
stiffnesses are such that

A55A65B15B250. (24)

These conditions involve the stiffnesses and radius of each con-
centric layer of the composite cylinder. They will be satisfied if
the material in each layer satisfies C355C4550, C1352C23 and
C1452C24 .

We conclude that, in very special circumstances, our 333 sys-
tem reduces to the SSM system, together with u[0.

Let us also calculate the forces and moments acting on a cross
section C of the wire rope. The axial force is given by

F5E
C

tzzdA5A1

]w

]z
1A2

]f

]z
1A5

]u

]z
1B1u (25)

and the axial twisting moment is given by

M5E
C

rtuzdA5A2

]w

]z
1A4

]f

]z
1A6

]u

]z
1B2u .

Both of these reduce to Eq. ~7!, provided u[0 or Eq. ~24! holds.

3.5 Waves. Before looking for solutions of Eqs. ~4!–~6!, it
is convenient to introduce dimensionless variables. Let c0 be a
typical wave speed for elastic waves in the rope. For a length

scale, we shall use a, the outer radius of the rope’s cross section.
~Phillips and Costello @17# use the length of the rope.! Define

z85

z

a
, t85

c0t

a
, u85uA I

ma2,

f85fA I

ma2 and w85

w

a
, (26)

where the primes signify dimensionless quantities. Then, Eqs.
~4!–~6! become

A18
]2w8

]z8
2 1A28

]2f8

]z8
2 1A58

]2u8

]z8
2 1B18

]u8

]z8
5

]2w8

]t82 , (27)

A28
]2w8

]z8
2 1A48

]2f8

]z8
2 1A68

]2u8

]z8
2 1B28

]u8

]z8
5

]2f8

]t82 , (28)

A58
]2w8

]z8
2 1A68

]2f8

]z8
2 1A78

]2u8

]z8
2 2B18

]w8

]z8
2B28

]f8

]z8
2B38u85

]2u8

]t82 ,

(29)

where

A185

A1

mc0
2 , A285

A2

c0
2AmI

, A485

A4

c0
2I

, A585

A5

c0
2AmI

,

A685

A6

c0
2I

, A785

A7

c0
2I

, B185

aB1

c0
2AmI

, B285

aB2

c0
2I

,

and B385

a2B3

c0
2I

.

Henceforth, we drop all the primes.
The scaling introduced above may seem complicated but it has

three beneficial consequences. First, all equations and coefficients
are dimensionless. Second, it will lead to a Hermitian coefficient
matrix when we seek solutions proportional to exp$ik(z2at)% ~see
Eq. ~32! below! and, third, the wave speed a will be determined
by solving an eigenvalue problem ~rather than a generalized ei-
genvalue problem!.

Thus, we seek solutions in the form

u5u0e ikj, f5f0e ikj and w5w0e ikj, (30)

where j5z2at , u0 , f0 , and w0 are constants, k is a nonzero
dimensionless real wave number, and a is a dimensionless wave
speed; the actual wave speed is ac0 and the actual wavelength is
2pa/k . Substituting Eq. ~30! in Eqs. ~27!–~29! gives

~A2a2I!x50, (31)

where

A5S A1 A2 A52iB1 /k

A2 A4 A62iB2 /k

A51iB1 /k A61iB2 /k A71B3 /k2
D (32)

and xT
5(w0 ,f0 ,u0). Equation ~31! will have a nontrivial solu-

tion provided that

det~A2a2I!50, (33)

which is a cubic in a2. The three solutions for a2 are all real. This
follows by noting that A is a complex Hermitian matrix so that
x̄TAx is real ~where the overbar denotes complex conjugation!.

We would like to know that the real solutions for a2 are all
positive, so that we have six real solutions for a. With l5a2, we
can write Eq. ~33! as

f ~l ![l3
1d2l2

1d1l1d050, (34)

where the coefficients d i are known in terms of the entries of A.
We know that f (l)50 has real roots only, so elementary consid-
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erations ~such as sketching the graph of f (l)! will lead to condi-
tions on d i that are sufficient to guarantee that all the roots are
positive. For example, we must have f (0),0, which yields
det(A).0. We must also have two positive turning points, and
this yields d2,0.

Let us make three further remarks. First, despite the appearance
of first derivatives with respect to z, the system ~27!–~29! is sym-
metric in z. In other words, if there is a solution proportional to
e ikz, then there is another proportional to e2ikz, with the same
value of a. For det(Ā2a2I)5det(A2a2I), as A is Hermitian.
Second, as A depends on k, so too does a: the waves are disper-
sive, unlike the solutions of the SSM system. Third, having found
the eigenvalues a2, the relative displacement amplitudes are
given by the corresponding eigenvector x5(w0 ,f0 ,u0)T of A.

4 Cylindrically Orthotr opic Materials
The theory developed in Section 3 is fairly general. As a special

case, we can suppose that the material of each layer is cylindri-
cally orthotropic. For such materials, there are nine nontrivial
stiffnesses, namely C11 , C12 , C13 , C22 , C23 , C33 , C44 , C55 ,
and C66 . It follows that A25A55A65B250, so that the torsional
component f decouples from u and w. Equation ~28! reduces to
A4]2f/]z2

5]2f/]t2, the one-dimensional wave equation with
wavespeed AA4. Equations ~27! and ~29! reduce to

A1

]2w

]z2 1B1

]u

]z
5

]2w

]t2 , (35)

A7

]2u

]z2 2B1

]w

]z
2B3u5

]2u

]t2 . (36)

These can be solved, using Eq. ~30!. However, we do not pursue
this here, as we are interested mainly in situations where the tor-
sional motions do not decouple.

We remark that for isotropic materials, we can show that Eqs.
~35! and ~36! reduce to Eq. ~8.3.148! in @10#.

4.1 Rotated Coordinate Systems. Above, we considered a
material with cylindrical orthotropy, where the principal axes are
aligned with the cylindrical-polar coordinate axes. We saw that
torsional motions decoupled from axial and radial motions.

Suppose, now, that the material of each layer is cylindrically
orthotropic with respect to a different coordinate system,
(r8,u8,z8), with nine nontrivial elastic stiffnesses Cab8 ~@14,15#!.
We want to express Cab in terms of Cab8 . ~This is a standard
calculation in tensor analysis.! Specifically, at a typical point P,
the cylinder has three coordinate directions, namely, 1[r , 2[u
and 3[z . At the same point, the material has three principal di-
rections, namely, 18[r8, 28[u8, and 38[z8. We suppose that
the r and r8 directions coincide ~at P!, and that the (u ,z) direc-
tions are obtained by rotating the (u8,z8) directions by an angle b
about the r-direction. The stiffnesses transform according to

C i jkl~b !5V ipV jqVkrV lsCpqrs8 ,

where

V i j~b !5S 1 0 0

0 cos b sin b

0 2sin b cos b
D .

Explicit calculations show that the ~symmetric! stiffness matrix
referred to coordinates (r8,u8,z8), which has the structure

C85S
C118 C128 C138 0 0 0

C228 C238 0 0 0

C338 0 0 0

C448 0 0

C558 0

C668

D ,

is transformed into a ~symmetric! stiffness matrix referred to co-
ordinates (r ,u ,z) with the structure

C5S
C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

C55 C56

C66

D . (37)

Explicit expressions for Cag in terms of Cag8 are given in Appen-
dix A. A consequence of this structure of C is that A55A650,
leading to a slight simplification of the analysis in Section 3.

4.2 Transverse Isotropy. Transverse isotropy is a special
case of cylindrical orthotropy. For such materials, there are five
nontrivial stiffnesses; the ~unrotated! stiffness matrix can be writ-
ten as

C85S
C118 C128 C138 0 0 0

C118 C138 0 0 0

C338 0 0 0

C448 0 0

C448 0

1

2
~C118 2C128 !

D .

In order to use the results in @14,15#, it is convenient to introduce
engineering constants. These are the longitudinal Young’s modu-
lus EL , the transverse Young’s modulus ET , the longitudinal
Poisson’s ratio nL , the transverse Poisson’s ratio nT , and the
longitudinal shear modulus GL . Then, using @15# ~Eq. ~2!! and
@23# ~Eqs. ~2.25! and ~2.36!!, we obtain

C118 5

12gnL
2

D
ET , C128 5

nT1gnL
2

D
ET ,

C138 5

nL~11nT!

D
EL , C338 5

12nT
2

D
EL

and C448 5GL ; here, g5EL /ET and D512nT
2
22gnL

2(11nT).
Note that C668 5(1/2)ET /(11nT). After rotation, one obtains a
matrix C with the same structure as Eq. ~37!.

For an isotropic material, EL5ET5E , nL5nT5n and GL5m
5(1/2)E/(11n).

Following Jolicoeur and Cardou @14,15#, we shall use this con-
stitutive model ~rotated transverse isotropy! for a composite wire
rope. A specific example of a simple ACSR electrical conductor is
considered in the next section.

5 A Simple Example of an Aluminum Conductor Steel
Reinforced „ACSR… Conductor

In order to use the foregoing theory, we have to specify the
physical characteristics of the wire rope and we have to estimate
the elastic constants. Methods for doing this have been described
by Jolicoeur and Cardou @14,15# in their analysis of the static
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loading of wire rope. We follow their method closely, making use
of some calculations of Costello ~@4#, Section 3.9!. Thus, we con-
sider a very simple ACSR conductor, consisting of six aluminum
wires helically wound around a single straight steel-wire core. The
steel wire has radius rs51.70 mm ~0.067 in.!. All the aluminum
wires have radius ra51.68 mm ~0.066 in.!. In terms of the model
described in Section 3, we have N51, a05rs and a15a5rs
12ra . The aluminum wires have a helical radius of h5rs1ra
and a helical angle of b510 deg. ~These parameters are approxi-
mately those of the so-called Raven 6/1 ACSR conductor; see
@24#, Table 1–6!.

Mass per Unit Length. Taking a cross section of the wire
rope, we see that each aluminum wire has an approximately ellip-
tical cross section, with a semi-minor axis of length ra and a
semi-major axis of length ra sec b; see @4#, Fig. 3.1. Thus, each
wire has a mass per unit length of prara

2 sec b5ma , say, where ra
is the density of aluminum. Hence, if rs is the density of steel,

m

praa2 5

rs

ra
S rs

a D16S ra

a D 2

sec b50.998, (38)

where we have used rs57800 kg/m3 and ra52700 kg/m3. Note
that the mass of the wire rope is almost the same as that of a solid
aluminum cylinder of the same diameter. Note also that our cal-
culated value for m is consistent with the tabulated value of 216
kg/km for the Raven ACSR conductor; see @24#, Table 1–6.

Moment of Inertia. The moment of inertia of an ellipse
about an axis through its center ~and perpendicular to its plane! is
(1/4)M (a2

1b2), where M is its mass and a and b are the lengths
of the semi-major and semi-minor axes. Then, using the parallel-
axes theorem, we obtain

I5

1

2
prsrs

4
16H mah2

1

1

4
mara

2~11sec2 b !J .

Hence, I50.357ma2; about 95% of this comes from the alumi-
num wires. ~For comparison, a solid composite cylinder composed
of a steel core of radius a0 surrounded by an aluminum cladding
of outer radius a has I50.422ma2.!

Stiffnesses. The steel core is isotropic with Young’s modulus
Es and Poisson’s ratio ns50.25. Thus EL5ET5Es , nL5nT5ns
and GL50.4Es . The corresponding stiffnesses are C115C33
51.2Es and C125C135C445C6650.4Es .

Let aluminum have Young’s modulus Ea and Poisson’s ratio
na50.33. Then, from Eqs. ~3!, ~9!, and ~12!–~14! in @15#, the
aluminum wires may be modeled using

EL

Ea
5

3

2

ra

h
sec b50.756,

nL

na
5

ET

EL
5

1

g
,

nT

na
5

ET

Ea
,

GL

Ea
5

ra
2~EL /Ea!

2~11na!~ra
2
1h2!~11cos2 b !

50.0285

and

1

ET
5

CE

p H log
p~rs1ra!

XcCE
2

1

3J ,

where Xc is the contact force per unit length and, from @25#, Table
33,

CE5

12ns
2

Es
1

12na
2

Ea
5

1.204

Ea
,

using Es53Ea . The calculation of Xc is described in Appendix B,
using the method of Costello @4#. From Eq. ~B6!, we obtain

p~rs1ra!/~XcCE!5790.4h2Ea /F ,

where F is the ~static! axial force on the wire rope. As an example,
let us take F55000 N ~1124 lb!. We take Ea5731010 N/m2

whence ET50.229Ea . ~Evidently, ET will increase if F is in-
creased, but the increase is not linear; in fact, ET depends loga-
rithmically on F, so that large changes in F will induce moderate
changes in ET .! Hence nT50.08, nL50.10, g53.3, and D

50.92. Then, from Section 4.2, we obtain C118 50.241Ea , C128

50.028Ea , C138 50.089Ea , C338 50.816Ea , C448 50.029Ea and
C668 50.106Ea . Finally, the rotated stiffnesses are given by

C5EaS
0.24 0.03 0.09 0.01 0 0

0.23 0.11 0.01 0 0

0.78 0.11 0 0

0.05 0 0

0.03 20.01

0.10

D ,

using the relations given in Appendix A.

AveragedStiffnesses. The coefficients A1 , A2 , A4 , A5 , A6 ,
A7 , B1 , B2 , and B3 are defined in Section 3.3 by certain integrals
of the stiffnesses over a cross section of the wire rope. Dimen-
sionless versions of these coefficients are defined in Section 3.5,
making use of m, I and a typical wave speed c0 , which we shall
take to be the speed of shear waves in aluminum: c0

22
52ra(1

1na)/Ea . Thus, mc0
2
50.375pEaa2, using na50.33 and Eq.

~38!. Then

A15

1

mc0
2 E

C

C33dA5

pEaa2

mc0
2 H S rs

a D 2 Es

Ea

C33
s

Es
1F12S rs

a D 2G C33
a

Ea
J ,

where the superscripts on C33 denote steel or aluminum, as appro-
priate. We have rs /a50.337, Es /Ea53, C33

s /Es51.2 and
C33

a /Ea50.78 whence A152.94. The other coefficients are ob-
tained similarly. Thus, we find that

A152.94, A250.32, A450.24, A55A650,

A750.17, B152.00, B250.096 and B3511.61.

Waves. Having specified the mechanical properties of the
ACSR conductor, we can now calculate the allowable wave
modes, according to the theory described in Section 3.5. For a
given dimensionless wave number k, the dimensionless
wavespeeds a are given by solving Eq. ~33!, which can be written
as a cubic in l5a2, namely Eq. ~34!, in which

d252~3.35111.61k22!, d151.14132.91k22 and

d052~0.10316.14k22!.

As d0 and d2 are both negative, for all k2, the cubic has only
positive real roots, so that all the wave speeds are real.

Numerical Results. We have solved Eq. ~34! for a2. In Fig.
1, we have plotted the three positive values of a, as a function of
k. Evidently, we can denote these three values by a i(k), i51, 2,
3, with 0,a1,a2,a3 . We see that a i(k) is a decreasing func-
tion of k. In fact, the lowest wave speed, a1 , is almost indepen-
dent of k: for example, a1(1).0.448 and a1(10).0.447. Thus,
the wave corresponding to a1 is almost nondispersive: it travels
with a speed of approximately 0.45c0 , where c0 is the speed of
shear waves in aluminum.

Figure 1 also suggests that a2(k)2a1(k)→0 as k→` . This is
false. To see this, let k→` in A, and put A55A650. Then, using
the notation of Abramowitz and Stegun @26#, Section 3.8.2, we
calculate q3

1r2, where q5(1/3)d12(1/9)d2
2 and r5(1/6)(d1d2

23d0)2(1/27)d2
3. We find that
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q3
1r2

52

1

108
$~A12A4!2

14A2
2%$A2

2
1~A12A7!~A72A4!%2,

which is negative, confirming that all the roots are real ~when k
5`!. However, for our particular values of A i , we obtain q3

1r2.20.02, which is small, and so a1 and a2 will differ by a
small but finite amount for large k. In fact, we find a2(10)
.0.523 and a3(10).1.73.

Next, we have calculated the eigenvectors xi of A, correspond-
ing to a i , where x5(w0 ,f0 ,u0)T. We can arrange that uxu51
and, as A55A650, it follows from Eq. ~31! that we can take w0
and f0 to be real and u0 to be pure imaginary, u05i û , say. Then,
taking the real part of Eq. ~30!, we obtain

u52 û sin kj , f5f0 cos kj and w5w0 cos kj ,

where j5z2at . Thus, the radial component is out of phase with
the axial and torsional components. Then, the normalized eigen-
vectors show the physical character of each mode.

The three components of x1 , corresponding to the lowest
wavespeed a1 , are shown in Fig. 2, as a function of k. We see that
this mode is a quasi-torsional mode: The axial and radial compo-
nents are small. This weakly dispersive mode is the most impor-
tant in the context of our application to ACSR conductors, be-
cause our transducers are designed to launch torsional waves.

The components of the eigenvector x2 , corresponding to the
wave speed a2 , are shown in Fig. 3, whereas x3 is shown in Fig.
4. We see that both of these modes have small torsional compo-
nents. For x2 , the axial component decreases with k and the radial
component dominates, whereas the opposite situation occurs with
x3 .

6 Conclusions
In this paper, we have attempted to give a rational model for the

propagation of elastic waves along composite wire ropes. The
goal was to obtain one-dimensional differential equations of
wave-equation type, with coefficients obtained from certain inte-
grals over the cross section of the wire rope. Such equations are
well known for waves in isotropic rods. We used simple kinemati-
cal assumptions, Eq. ~17!, but it is clear that various expansions in
r could be used; see Boström @27# for a recent discussion of such
methods.

We derived a set of three coupled partial differential equations,
Eqs. ~4!–~6!. The coefficients in these equations are given as in-
tegrals involving the elastic stiffnesses of each layer of the com-
posite wire rope, when regarded as a solid with cylindrical anisot-
ropy. A basic difficulty is how to determine these stiffnesses. We
have used a method described by Jolicoeur and Cardou @15#. This
leads to a logical inconsistency: one of the Young’s moduli, ET ,
was calculated from a knowledge of the contact forces between
individual wires within the rope, and these forces were estimated
using Costello’s theory ~@4#!; the inconsistency is that the latter
theory gives Eq. ~1! for F whereas we obtain Eq. ~25! ~wherein

Fig. 1 The dimensionless wave speeds a i as functions of di-
mensionless wave number k

Fig. 2 The components of the dimensionless eigenvector x1
Ä„w0 ,f0 ,iû… corresponding to the dimensionless wave speed
a1 , as functions of dimensionless wave number k. This is the
quasi-torsional mode.

Fig. 3 The components of the dimensionless eigenvector x2
corresponding to the dimensionless wave speed a2 .
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A550!. In fact, we applied a static tension, determined the contact
forces, and then superimposed a wave motion. In the absence of a
better algorithm, we feel that the present approach is adequate; we
note that the modulus ET depends weakly on the actual magnitude
of the contact forces, so that a rough estimate should suffice.

One aspect not considered here is that of damping: experimen-
tally, it is observed that wave amplitude decays with distance
along the wire rope. The precise cause of this phenomenon is
unknown. For a wire rope under static tension F, it is known that
interwire slippage is not responsible ~@28#!, although the damping
does vary with F and with the number of wires comprising the
rope; see @29# for a review. Further work is needed so as to de-
velop a predictive model for damping.
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Appendix A

Rotated Stiffnesses. A material with cylindrical orthotropy
has elastic stiffnesses Cag8 when referred to principal axes. Rota-
tion about the radial axis by an angle b leads to stiffnesses Cag ,
defined as follows:

C115C118 , C125C128 cos2 b1C138 sin2 b ,

C135C138 cos2 b1C128 sin2 b ,

C145
1

2
~C138 2C128 !sin 2b , C225C228 cos4 b1

1

2
C238 sin2 2b ,

C235C238 ~cos4 b1sin4 b !1S 1

4
C228 1

1

4
C338 2C448 D sin2 2b ,

C245
1

2
~C448 1C238 !sin 4b1

1

2
~C338 sin2 b2C228 cos2 b !sin 2b ,

C335C338 cos4 b1C228 sin4 b1S C448 1

1

2
C238 D sin2 2b ,

C345
1

2
~C338 cos2 b2C228 sin2 b !sin 2b2

1

2 S C448 1

1

2
C238 D sin 4b ,

C445C448 cos2 2b1

1

4
~C338 1C228 22C238 !sin2 2b ,

C555C558 cos2 b1C668 sin2 b ,

C565
1

2
~C558 2C668 !sin 2b and C665C668 cos2 b1C558 sin2 b .

Appendix B

Contact Stresses. In order to calculate ET , we have to cal-
culate the contact stresses between the aluminum wires and the
steel core. Specifically, we require Xc , the contact force per unit
length acting along the line of contact. Thus, we apply a static
load to the wire rope; the axial force F, axial twisting moment M,
axial strain «, and rotation per unit length x are related by Eq. ~1!.
The theory in @4# yields expressions for A12A4 , and also for X,
the contact force per unit length along the centerline of the rope.
Then, Xc is given by @4#, Eqs. ~3.10! and ~3.114!, as

Xc52X$cos2 b1~rs /h !2 sin2 b%21/2
521.011X , (B1)

using b510 deg and rs /h50.503 for our ACSR conductor.
The total axial force acting on the wire rope is F5F01F1 ,

where F0 and F1 are the axial forces in the steel core and alumi-
num wires, respectively. We have F05pEsrs

2« . For F1 and X, we
have the following equations from @4#, Section 3.9:

F156~T cos b1N sin b !,

hX5~N cos b2T sin b !sin b ,

hN5~H sin b2G cos b !sin b ,

hG5

1

4
pEara

4~L sin2 b2a1 sin 2b !,

hH5

1

4
p~11na!21Eara

4~L sin b cos b2a1 cos 2b !,

with T5pEara
2j1 and hL5nsrs«1naraj1 . We also have

j11a1 tan b5« , (B2)

j1 tan b2a11L tan b5hx . (B3)

Comparing our notation with that used in @4#, we have F1

5F2 , G5G28 , H5H28 , N5N28 , T5T28 , X5X2 , a15Da2 , ra
5R2 , rs5R1 , b5(1/2)p2a2 , h5r2 , x5ts and j15j2 . Also,
m256.

We can solve Eqs. (B2) and (B3) for j1 and a1 :

j15V21$«~h cos2 b2nsrs sin2 b !1xh2 sin b cos b%,

a15V21$«~h1nsrs1nara!sin b cos b2xh2 cos2 b%,

where V5h1nara sin2 b. We can then substitute back, so as to
obtain an expression for F in terms of « and x.

Let us suppose that the wire rope is subject to a prescribed
static load F and that the moment M is adjusted so that the rope
does not rotate (x50). Then, we find that

T5pEara
2«V21~h cos2 b2nsrs sin2 b !,

hG5

1

4
pEara

4«V21$nsrs2~2h12nsrs1nara!cos2 b%sin2 b ,

Fig. 4 The components of the dimensionless eigenvector x3
corresponding to the dimensionless wave speed a3 .
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hH5

1

4
p~11na!21Eara

4«V21$~2h12nsrs1nara!sin2 b

2h%sin b cos b .

If we take ns50.25 and na50.33, we find that

G520.0259Eara
3« , H520.0462Eara

3« ,

T53.019Eara
2« and N50.00151Eara

2« .

We can take Es53Ea , whence

F051.07Eaa2« and F151.96Eaa2« , (B4)

and so F53.03 Eaa2« . Thus, given the static load F, this equa-
tion determines the axial strain «, whence

N5~5.531025!F , T50.11F and hX520.0033F .
(B5)

Finally, we deduce from Eq. (B1) that

hXc50.0033F . (B6)

The fact that N is much smaller than T suggests that asymptotic
approximations valid for small b should be useful. With errors of
O(b2) as b→0, we easily obtain V5h , j15« , T5pEara

2« , G
5O(b2), H5O(b), N5O(b3),

F1 /~Eaa2« !56p~ra /a !2
52.07

~which should be compared with the ‘‘exact’’ result Eq. (B4)! and

hX;2pb2ra
2Ea«;20.0032F ,

using b50.17. This result for X is in error by about 3%.
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