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The problemof scatteringof sphericalwavesby a boundedobstacleis considered.
Generalscatteringtheoremsare proved. Theserelate the far-field patternsdue to

scatteringof wavesfrom a point sourceput in any two differentlocations.The

scatterercan have any of the usual properties,penetrableor impenetrable.The

optical theoremis recoveredas a corollary. Mixed scatteringrelations are also
establishedrelating the scatteredields due to a point sourceand a plane wave.
© 2002 American Institute of Physics. [DOI: 10.1063/1.1509089

[. INTRODUCTION

In classicalscatteringtheory thereare somegeneralresultsthat connectthe solutionsof two
relatedproblems.The mostfamiliar of theseis reciprocity: the scatteredield at A dueto a source
at B is simply relatedto the scatteredield at B dueto a sourceat A.

Therearealsointernalrelationswithin a singleproblem.A well-known exampleis the optical
theorem for scatteringof planewaves:it relatesthe far-field patternin the forward directionto a
certainintegral of the far-field patternover all directions.

In this article, we derive somegeneralrelationsfor scatteringof wavesemanatingrom point
sourcesThus,we relateone problemwith a point sourceat A to a similar problemwith a point
sourceat B. By settingA=B andthenletting A recedeto infinity, we recoverthe optical theorem.
If we keepA fixed and let B recedeto infinity, we obtain so-calledmixed scattering theorems,
relating plane-waveincidenceto point-sourceincidence. An exampleof theseis the mixed reci-
procity theorem, which hasfound much userecentlyin methodsfor solving inversescattering
problemst

As Logarf pointsout, Clebschconsidereahe scatteringof elasticwavesfrom a point source
by a rigid spherel40 yearsago, a decadebefore Lord Rayleigh publishedhis solution for the
scatteringof a planesoundwaveby a sphere Collectedresultsfor scatteringof point-sourcdields
by simple shapesare given in Ref. 3. More recently Dassiosand his co-workershave studied
incidentwavesgeneratedy a point sourcein the vicinity of a scatterersee,for example,Refs.
4-6. Thereis alsosomerecentwork on nearfield inverseproblems:in additionto the previous
paperswe notethe work by Coyle’ and Potthast, aswell asrecentwork by threeof the present
authors®® The revival of interestin problemsrelatedto point-generateavave fields hasseveral
reasonsOneis dueto the variety of applicationscomingfrom the theory of compositematerials
andof acousticemissionfrom the theoreticalanalysisof biological studiesat the cell level, from
nondestructiveesting and evaluation,from geophysicsfrom modelingin medicineand health
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sciencesandfrom scatteringproblemsconnectedo environmentabataanalysis Anotherreason
is dueto the fact that a point-sourcefield is more easilyrealizablein a laboratory

We give resultsfor both acousticand electromagnetiavaves,and we permit all the usual
kinds of scatteringobstaclespenetrableand impenetrable Extensionsto elastic-waveproblems
are expected.

II. FORMULATION: ACOUSTICS

Let 1~ be a boundedthree-dimensionabbstaclewith a smooth closed boundaryS (the
scatterex. The exterior RA\Q ~ =) of the scatterelis an infinite homogeneoussotropic lossless
acousticmedium, that is the compressionaViscosity & is zero,and with massdensity p, phase
velocity ¢, meancompressibilityy and real wave numberk=w\/yp, » being the angularfre-
quency The interior of the scatterer() ~ is filled with a lossy medium,in general,with corre-
spondingphysicalparametersS™, p~, ¢~ and vy~ . We consideran incident sphericalacoustic
wave due to a sourcelocatedat a point with position vectora. Suppressinghe harmonictime
dependencexp{—iwt}, andfollowing the normalizationintroducedby Dassiosand Kamvyssa$,
we assumehe following form for the incidentfield:

ik|r—al

ui,,l(r)zae*”"s‘“_aI . r#a, (1)

wherea=|al. We notethatwhena— o, the sphericalwave reduceso a planewavewith direc-
tion of propagation— &, wherea=aa.* The total field u}, in the exteriorof the scattereiis given
by

ul(n)=ul(r)+ui(r), reQ\{a, 2
whereus is the scatteredacousticfield, and solvesthe Helmholtz equation
V2ul(r)+Kk2ul(r)=0, req. )

The scatterecaswell asthe incidentfields are solutionsof Helmholtz's equationthat satisfy
the Sommerfeldradiationcondition

f-Vu(r)—iku(r)=o(r %), r—oo, (4)

uniformly in all directionsf e S?, whereS? is the unit sphere We note that u, also satisfiesthe
Sommerfeldradiationcondition.

In our analysis,we can permitimpenetrableor penetrablescatterersin the former case,we
could have Dirichlet (u}=0), Neumann(dul/dn=0) or Robin conditionson S the Robin (or
impedancg conditionis

Ja
— +ik\

t —
- ul(r)=0, res, ©)

where\ is adimensionlesseal parameterln the penetrablease the incidentwaveis transmitted
into the scatterer;let u, be the total acousticfield in 1~. Then the following transmission
conditions musthold on the scatterels surface

t —
ul(r)=u; (r) and (9u(;ir) :Bﬁu;rfr), res, (6)

where the constantB=(p/p~)(1—ikcé™ y~) is complexfor a lossy scattererand real for a
losslessscattererMore detailson the physicalparameter®f the aboveproblemscanbe foundin
Ref. 6. Thefield u, solvesthe Helmholtzequationin (),
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Vaug (n+»°k?uy(r), reQ-, 7)

where p=(c/c™)(1—ikcy~ 8°) 2 is the (complex index of refractionbetweenthe two media
in Q and Q™. The choice of the branchof the squareroot is suchthat Im(7)=0 and hence
Im(7k)=0.

In addition,in orderto covervariouscasedhatarisein applicationswe caneasilyextend our
analysisto include animpenetrablecorein theinterior of the scatterer

As it is well known, all the aboveproblemsare well posed.

The behaviorof the scatteredvavein the far field is given by

Us(r)=ga(Fho(kr)+0(r~?), r—ee, ()
wherehy(x) =€*/(ix) is the sphericalHankelfunction of the first kind andorderzero.Moreover
ik

ga(r):_ﬂ S

aug(r’)
an

+ik(P-AYuS(r') e * T ds(r") (9)

is the far-field pattern®

Ill. GENERAL SCATTERING THEOREM

In what follows, we considertwo locationsfor the point source,a and b, from which the
time-harmonidncidentsphericalwavesemanateEachsourcegenerates correspondingcattered
field, uj andug, respectivelyWe areinterestedn relationsbetweenthesefields.

Let S; denotea large sphereof radiusr, surroundingthe pointsa andb, andlet

Sa.={reR®Ja—r|=¢}, (10)

a small sphereof radiuse, surroundingthe point a. Then,we introducethe following notation,

_J‘ _dv Jdu q
[U,v]s— s U% U% S,

wherethe overbardenotescomplexconjugation;in particulay we write [u,v |=[u,v]s.
Lemma 1: Let u} be a point source at a. Let uy, be a point source at b, with corresponding
scattered field uy and far-field pattern g, . Then

lim[ug,u3]s, = 2a€ f ng(r)ékf'ads(r) (11)
r—o S
and
lim[uy,upls, =4mae*ui(a), (12)
£—0 *

where S; is a large sphere of radius r surrounding a and b, and S, .. is the small sphere defined
by Eqg. (10).
Proof: For Eq. (11), we usethe asymptoticrelations
[r—a=r—f-a+O(r ) and |r—a l=r"1+0(r ?), (13

asr—oo, andobtain

ub(r)=ho(kr)gh(F)+0(r=2), r—, (14)
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where g, (f) =ika exp{—ika(1+a-)} is the far-field patternof the point-sourceincident wave.
Using Egs. (8) and (14) givesEq. (11). o
For Eg. (12), we evaluate uy and its normal derivative on S, ,. There, we have uy
= (ale)é*@~#) and(a/an)ul= — (ik+&~Y)ul(r), whered/dn denotesnormaldifferentiationin
the outwarddirection. Using the meanvalue theoremandletting e — 0, Eq. (12) is proved. [
Now, for two point sourceswith position vectorsa and b, we definea spherical far-field
pattern generator for sphericalacousticwavesby

oy 1 o
Gy(a)=ikad*® uf,(a)—Ejsng(r)e'ka"ds(r) . (15)

This terminologyanddefinition areappropriatefor the following reasor{ seeEq. (50) laterin this
work]. Whenboth the point sourceandthe observatiorpoint recedeto infinity, G,(a) reducedo

the far-field patternfor an incident plane wave propagatingin the direction -b. Using this
notation,the generalscatteringtheoremfor sphericalwavesis formulatedasfollows.
Theorem 2: For any two point-source locations in (2, a and b, we have

1 o
G(@+ BB+ 5= | _0u()8aDIds(P) =64, 16)

where

ik
Eap=" 7 LU Ub]. a7

The value of &, , depends on the scatterer:

&, p=0 for Dirichlet or Neumann conditions on S (18
2)\ .
53@2_%[ up(ryul(r)ds for the Robin condition (5) on S (19
s
or
k - _
Sa,bz—Elm(ﬁ)fQ_Vua(r)Vub(r)dv(r) for a penetrable scatterer, (20

where 8 is the constant in the transmission conditions (6).

Proof: Let us first evaluate&, , directly. For Dirichlet (u'=0) or Neumann(du"/dn=0)
conditions,we immediatelyobtainEq. (18). Similarly, the Robin condition(5) givesEq. (19). For
a penetrablescattergrwe usethe transmissiorconditions(6), apply Greens first theoremandtake
into accountthat Im(B87%)=0 (seep. 9 of Ref. 6); this gives Eq. (20). _

Next, we give an alternativeevaluationof &, . Thus, by the relationsu',=u',+u? for a
=a,b we have

[ug ., up]=[u,up]+[u3,up]+[uy, up]+ug, u3]. (21)

Sinceu_ia andu}, areregularsolutionsof the Helmholtzequationin Q~, Greens secondtheorem
gives

[ul,ul]=0. (22)

For the othertermsin Eq. (21), we considertwo small spheresSMl andSb,SZ, centerecata and
b with radii £; ande,, respectivelywith Sa,slﬂ Sb,82=®, as well asa large sphereSy centered
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at the origin surroundingthe whole systemof the scattereandthe two small spheresSinceu_‘a(r)
andug(r) aresolutionsof the Helmholtz equation for r # a,b, Greens secondtheoremgives

[u;,uﬁ]:[u'a,uE]SR—[u'a,uﬁ]saﬁ—[u;,uﬁ]sb’gz.

Thethird termis zero becausa_Jg andug areregularsolutionsof the Helmholtz equationin the
interior of Sb,SZ. Then,letting R—o ande;—0, usingLemmal, we obtain

[u,,up]= —4mae*@up(a) + 2ad f Ob(F) € 2ds(). (23)
S
As [u$,ub]=—[up,us], we easilydeducethat
[uS,ul]=4mbe °uS(b) — 2be kP fszga(f)e—ikf'bds(f). (24)

Finally, in view of the regularity of u_j anduy in the regionexteriorto S, we have
[u3,upl=[u3,ugls,

Then,letting R— 0, we passto the radiationzoneandthuswe canusethe asymptoticform (8),
giving

2i [ ——
[ua,ul= nga(f)gb(f)ds(f)- (29

SubstitutingEgs.(22)—(25) in Eqg. (21), makinguseof Eq. (17) andits evaluationgivesEq. (16),
andthe theoremis proved. O
Let us maketwo remarks.First, if the scattereris a losslesspenetrableobstacle that is, the
physicalparametes is real, thenwe obtain&, ,=0 in Eq. (16), just asfor soft or hardscatterers.
Second,supposethat we have a penetrablescattererwith a core S- on which u™=0 or
du~lan=0. Then,the relation (20) still holds,where,now, ()~ denotesthe part of the scatterer
betweenthe surfacesSandS.

IV. RECIPROCITY RELATIONS

The proof of Theorem2 usestwo evaluationsof [u},,ut]. If, insteadwe startfrom [u},,u; ],
we obtain a reciprocity theorem.This is not surprising,becauseu}, can be regardedas the exact
Greens functionfor the scatteringproblem.Thereciprocitytheoremcanbe found on p. 48 of Ref.
6, for example We quoteit here,usingour normalizations.

Theorem 3: For any two point-source locations in (), a and b, and for any scatterer, we have

ho(ka)u3(b) =ho(kb)ug(a), (26)

where ho(x) =€*/(ix).

FromEq. (1), we seethat the samereciprocity relation holds for the incidentfields, aswell:
ho(ka)u(b) =ho(kb)uy(a). Hence,by Eq. (2) we concludethat the total exterior fields satisfy
ho(ka) Ug(b) =ho(kb)uy(a).

We notethatthe presencef the multiplicative constanin the abovereciprocityrelationis due
to the form of the modifiedsphericalwave,Eq. (1). If we considerthe point sourcedying on the
samespherethatis, a=Db, thenwe obtainthe following results:

uS(b)=ui(a), ul(b)=uj(a), ul(b)=uf(a). (27)
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Theserelationsexpressthe fact that interchangingthe excitationwith the observationpoint, the
scatteredincidentandtotal fields remainunchangediFrom Eq. (26) we cannothavea reciprocity
relationfor the correspondingsphericalfar-field patterns,becausevhen the point sourcesgo to
infinity the sphericalwavesreduceto planewaves.

V. THE OPTICAL THEOREM

In Ref. 8, an optical theoremfor sphericalwavesincident upon a soft scattererhas been
proved.Now, this theoremaswell asopticaltheoremdor scatterer®f othertypes carbe derived
ascorollariesof the generalscatteringheorem First we definethe scatteringcross-sectiomueto
a point sourceat a (Ref. 6) as

1
2= Lzlga(f)lzds(f), (28)

the absorptioncross-sectioras

t
ol=—Im Lu‘—nads, (29

andthe extinction cross-sectioras
gi=o3+ 0%, (30

If we puta=b in Theorem2, we obtain

2 Re{G,(a)} + % fsz|ga(f)|2ds(f):€a,a-
We canrewrite this equationusing Eq. (28) to give
oy=—4mk 2Re{G,(a)}+ 27k 25, 4. (31
From the definitions(17) and (29), we have
oa=3ik ug,ui]=—27Kk 25, 4. (32
Hence,addingEgs.(31) and(32), Eq. (30) gives
oS=—47k ?Re(G,(a)}. (33

Thevalueof &, , is givenin Theorem?2. In particular for a penetrablescattererwe obtain
a 1 - 2
od= = Im(B) | |Vuz(n)|du(r), (34)
whereador animpedancesurface,we have
A= Nk L| ol ?ds.

We remarkthat the absorptioncross-sectiorr providesa measureof the total enegy taken
from the incident sphericalwave and absorbedby the surfaceof the scattererin the impedance
boundarycase,or by the lossy mediumoccupying( ~ in the penetrablecase.lt is clearthat o3
=0 for the soft and hard scattererand ¢5=0 for the othercases.
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VI. MIXED SCATTERING RELATIONS

Forinverseproblemspneeffective reconstructiomethodis the point-sourcemethod* Oneof
the main stepsof this methodis the derivationof mixedreciprocityrelations.Theserelationswere
introducedin Ref. 10 for sound-softscatterersandin Ref. 1 for sound-hardscatterers.

In this section,we allow one of the two point sourcesconsideredpreviously to recedeto
infinity, so that we haveone sphericalincidentwave and oneplaneincidentwave. We let both
sourcesrecedeto infinity at the end of this section,and recoverknown resultsfor plane-wave
incidence.

An incidentplanewave propagatingn the direction of the unit vectord is given by
u'(r;d)=explikd-r}. (35)

We havealreadynotedthat u;(r)—>ui(r; —a) asa—».
For anincidentplanewave,Eq. (35), we denotethetotal field in (), the scatteredield andthe

far-field patternby u'(r;d), uX(r;d) andg(f;d), respectivelyindicating the dependencen the
incidentdirectiond. We havé

uy(r)—uir;—a), as a—w (363
and
ga(f)—g(f;—8), as a—ce. (36b)

Now, considerour previousresults,involving a and b, andlet b—o. Lemmal givesthe
following results.

Lemma 4: Let uia(r) be an incident spherical wave and let ui(r;—B) be an incident plane

wave. Then
lim[u,us(-,—b)]s =2aékaf Zg(f;—B)ékf‘ads(f) (37)
r—oo r S
and
lim[uy,uX(-,~b)]s, =4mae*us(a;—b). (39
e—0 ©

Next, we definea plane far-field pattern generator by

G(a;—b)=lim G,(a) (39

b— e

. " 1 A e
=ikagka us(a;—b)—Zfszg(?;—b)éka'rds(f) , (40)

wherethe sphericalfar-field patterngeneratoiG,(a) is definedby Eqg. (15). We will alsorequire
lim,_...Gp(a); this limit is containedin the following theorem.
Theorem 5: For two incident spherical waves, u, and uy,, we have

lim Gp(a)=gp(—4) (41

a—®

and
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lim G(a;—f))zg(—é;—f)). (42

a—®©
Proof: We prove Eq. (41); a very similar agumentgives Eq. (42).
We choosecoordinatesothatthe point sourceat a is on the z-axis. Then,take sphericalpolar

coordinateq 6, ¢) on S, so that &-f = cosé. Hencefor =0 we havef=4, while for = we
havef=—a. If we define

2
Fp(6)= . gp(F)de, (43

thenwe haveF(0)=2mg,(8) andF,(7)=27g,(—4&). Hence

f ,Ob(F) € 2ds(f) = Jwa( 0)ea <o’ sin gd
S 0

:i_jWF (a)i(eikacosﬁ)dg
kaJo 7 de

21 _ _ i (7 dF,(6)
_ _aya—ika__ ayakay ka cosé
= g [9b(—@e " —gy(8)e ] —kafoé —q54¢

From this equationand Eq. (15), we find that

_ _ . - dF
Gb(a)=ikae'kauﬁ(a)+e"‘a[gb(—é)e*'ka—gb(é)é"a]JrEf ekacosﬁ—g(fv)da. (44)
0

In view of Eq. (8) andtaking into accountthattheintegralin Eq. (44) tendsto zeroasa—, by
the Riemann-Lebesgukemma,we get Eq. (41).
We cannow let b—« in the generalscatteringtheorem,Theorem?2; this givesthe following

results.
Theorem 6: Let u;(r) be an incident spherical wave and let ui(r;—f)) be an incident plane
wave. Then
. = 1 P .
G(@h)+u(~B)+ 5= | 01~ B)3aF1ds() = My(~B) @5)
where M,(—b)=limp_.. £
M,(—b)=0 for Dirichlet or Neumann conditions on S (46)

N K2\ N —
Ma(—b)=—ﬁf u'(r;—b)ul(r)ds(f) for the Robin condition (5) on S (47)
s

or

A k A
Ma(—b)=—Elm(ﬁ)LrVu;(r)-Vu‘(r;—b)dv(r) for a penetrable scatterer. (48)

The mixed reciprocity principle is containedin the nexttheorem.

Theorem 7: Let u;(r) be an incident spherical wave and let u'(r; —b) be an incident plane
wave. Then, we have the following reciprocity relation:
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ga(b) =ikae *us(a; —b). (49)

Proof: Let b—oo in Theorem3, using Egs. (8) and (363). O

This resultmeansthatthe sphericalfar-field patternof the point sourceat a in the directionb
is proportionalto the scatteredield at a dueto the incidentplanewave with direction of propa-
gation —b.

Finally, if we combineEgs.(36b), (39), (41) and(42), we obtain

lim lim Gp(a) = lim lim Gy(a)=g(—&;—b). (50

a—wh—ow b—wa—w©

We canthencheckthat letting both point sourcesrecedeto infinity, a—«~ andb—«, yields the
known scatteringand optical theoremsfor plane-wavescattering;seeRefs.11-13, 6, and 8.

VII. FORMULATION: ELECTROMAGNETICS

In the remainderof the article, we considerelectromagnetiproblems.The exterior Q) is an
infinite homogeneoumediumwith electricpermittivity e, magneticpermeabilityu, phaseveloc-
ity ¢c andconductivity c=0. The scatteref) "~ is filled with a homogeneousediumwith corre-
spondingphysicalparameterg~, =, ¢~ ando™ #0.

We consideranincidentsphericaklectromagnetisvavedueto a sourcelocatedat a point with
positionvectora, with respecto the origin O. This incidentwave (Ej} ,H}) hasthe form®

i A ae—ika eik\r—a\}\ A
EL(r;p)= K VX TEr axpl, (51
HL(r;p) = (ik) Y&/ ) Y2V X EL(r;P), (52

wherep is a constantunit vectorwith p-a=0, k= w\/e u>0 is the free-spacavave number and
a=|al. Physically (E},H}) representghe field generatedby a magneticdipole with dipole
momentax p; seep. 163 of Ref. 14 or p. 23 of Ref. 6. The coefficientae %/ (ik) in Eq. (51)
assureghatwhenthe point sourcetendsto infinity the sphericalwavereduceso a planeelectric
wavewith directionof propagation— a and polarizationp. The total electric exteriorfield E, is
given by

EL(r;p)=EL(r;p) +E(r;p), re\al, (53)
whereE;(r;p) is the scatterecelectricfield, which satisfiesthe Silver-Mliller radiationcondition
a

lim(rxVXES+ikrE])=0 (54)

r—oo
uniformly in all directionsf e S?, whereS? is the unit sphere E; solvesthe equation
VXVXEL=K%E, in Q. (55)

We notethattheincidentelectricfield satisfieghe radiationcondition(54), andhencethetotal
electricfield alsosatisfiesEq. (54).
The surfaceof the scatteremay be perfectly conducting,in which case

AXEL=0 on S, (56)
or it may be animpedancesurface,in which case

AXVXEL=—(ik/IZg)AX (AXEL) on S, (57)
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wherethe dimensionlesparamete? denoteghe surfaceimpedanceelativeto the characteristic
impedanceof the mediumandmay vary on S,
If the scattereris a dielectric, the incident electromagnetiavavesare transmittedinto the
scattererLet E, bethe total electricfield in the interior. ThenE, satisfies
VXVXE; =7?k’E; in Q, (58)

wherethe complexconstanty is the relativeindex of refraction;on the surfaceof the scatterewe
havethe following transmissiorconditions:

AXEL=AXE, and AXVXE,=(u/u )AXVXE, on S.
The behaviorof the scatterecklectricfield in the radiationzoneis given by
E3(r)=ho(kr)ga(F)+O(r=?), r—e, (59

whereg,(f) is the far-field pattern.
More detailson the physicalparameter®f the aboveproblemscanbe foundin Ref. 6. Each
problemhasa uniqueand stableclassicalsolution**°

VIIl. GENERAL SCATTERING THEOREM: ELECTROMAGNETICS

In the sequel,for an incidenttime-harmonicsphericalwave Eia(r;fJ) dueto a point source
locatedat a, we will denotethe total field in ), the scatteredfiield and the far-field patternby
writing EL(r;p), EX(r;p) andg,(F;p), respectivelyindicatingthe dependencen the positiona of
the point sourceand the polarizationp. Also, the total electricfield in O~ will be denotedby
E, (r;p). We considera point sourceat a with polarizationp, andanotherpoint sourceat b with
polarizationp, .

For a shorthandhotation,we use

{E.E'}s=f[(ﬁxE-(vxE')—(ﬁxE)-(vxE)]ds;
S

in particulay we write {E,E'}={E,E'}s. '
Lemma 8: Let E}(r;p,) be a point source at a. Let Ey(r;p,) be a point source at b, with
corresponding scattered field E;(r;p,) and far-field pattern g,(f;p,). Then

im (EL(-P0) B3 Pa)}s =226 |_gy(71po)- (X (axp)ebéas(r)  (60)
and
fim (B4 39, E5(- P bs, = 4mi(a/k) & (VX E(aip,) - (3XBy), (61)
e—0 '

where S; is a large sphere of radius r enclosing a and b, and S, is a small sphere surrounding
a, defined by Eq. (10).

Proof: For Eq. (60), we usethe asymptoticforms (13). Theseshowthatthe incidentelectric
wave takesthe form

EL(r;Py) =ho(kr)gy(F;py) +O(r2), r—e, (62
whereg,(f;p,) =ika exp{—ika(1+F-8)} (f X (axp,)) is the far-field patternof the point source

incidentwave.Using Egs. (59) and (62) we establishEq. (60). Note that f-g;(;p;) =0.
For Eqg. (61), somecalculationsshowthat
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{EL(-,P1),EX(-,P2)}s, —aékaH A-VX[((8xPy) - Vho(k|r —al)) E5]ds

a,e

+f (ik+|r—a"Y)ho(k|r—a)) (VX Ep) - (aX py)ds

,E

_kZJ'
S

a, e

A-[ESX (aX f)l)]ho(k|r—a|)ds+.

The first integral on the right-handside vanishesby Stokess theorem. Applying the meanvalue
theoremon the remainingintegralsand letting e — 0, we obtainEq. (61). O

For two incident sphericalelectric waves, Ea(r p1) and Ey(r;p,), we define a spherical
far-field pattern generator, as follows:

. ik -
Gy(a;pp) =€**ax VXEﬁ(a;ﬁz)—zJZfX On(F;P2) € 2ds(F) |. (63)
S

As we shall seelater, whenthe point sourcesecedeo infinity, Gy(a;p,) isreducedo thefar-field
patternfor anincidentplaneelectricwavepropagatingn the direction — & andof polarizationp, .
Using this notation,the generalscatteringtheoremfor sphericalelectric wavesis formulatedas
follows.

Theorem 9: For any two point-source locations in €}, a and b, and for any polarizations, p,
and p,, we have

P1-Gal@Pa)+ Po-Galbip1) + 5 J' 0u(F:02) - 0T PO US() = Ean(Pr:B) (60
where
o ik . ~ ) ~
ga,b(pl;pZ)z_E{Ea('vpl)!Eb('!pZ)}' (65)

The value of &, , depends on the scatterer:

E,p=0 for a perfectly conducting surface; (66)

k2 S
Eap(P1:P2) = f |§|2S)(n><Et(r P1)) - (AXEL(F;Po))ds(r) (67)

for the impedance boundary condition (57); or

A a k3,U~ 2 T A ——pa
Eap(P1:P2)=— T Im( % )mea(r;pl)-Eb (F;p2)dv (68)

for a dielectric scatterer.

Proof: We proceedexactlyasin the proof of Theorem2. First, we evaluate, ,, directly, using
the boundaryor transmissiorconditionson S; for the dielectric scattererwe haveto apply the
divergencetheoremin (). This givesthe statedexpressiongor &, . .

Next, we give analternativeevaluationof &, ,, usingtherelationsE!,=E| +E3, for a=a, b.
Formally, the calculationsproceedas before,with {-,-} in placeof [-,-]. We also usethe vector
versionof Greens secondtheorem,which gives

{EL.Ep}=0, (69
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{EL Ep} = —4mi(a/k)€X(V X E}(a;py)) - (&% I51)+ZaeikaJsng(f:l52) -(PX (ax py)) € 2ds(F)

(70)
and
s s 2i LA PO s
{Ea Bob =1 | 9a(FiP1)- Gn(FiP2)ds(F). (71)
The remainingdetailsare omitted. O

Thereis alsoa reciprocitytheoremasE}, is an exactGreens function. It canbe found on p.
63 of Ref. 6, for example With our normalizationsjt takesthe following form.

Theorem 10: For any two point-source locationsin ), a and b, for any polarizations, p; and
P, and for any scatterer, we have

ho(ka)(bX Pp) - (VX E3(B;p1)) =ho(kb)(aX py) - (V X E3(& o). (72

IX. OPTICAL THEOREM: ELECTROMAGNETICS

In Ref. 9, anoptical theoremfor sphericalwavesincidentupona perfectconductor haveen
proved.Here,we generalizethis resultto otherscatterersusingthe generalscatteringtheorem.
First we definethe scatteringcross-sectiomueto a point sourceat a (Ref. 6) as

1
=i fszlgamﬁ)lzds(f), (73
the absorptioncross-sectioras
1 J—
oi= 1 Im Lﬁ-(E;xVxE;)ds (74)

andthe extinction cross-sectiong? , by Eq. (30).
If we puta=b andp,=p,=p in Theorem9, we obtain

2 Re p-Ga(a;p) ]+ %jsz|ga(f;ﬁ)|2ds(f):ga,a(ﬁ;ﬁ),
which we canrewrite as
oa=—47k *REP-Ga(ap)]+2mk ™ 2E, a(P; ). (75
From the definitions(65) and (74), we have
oa=3ik HEL(-,),Eq(-,P)}=—27k™2E, a(P; D). (76)
Hence,addingEqgs.(75) and (76), the definition (30) gives
oa=—4mk *Rep-Gy(a;p)]. (77)
Thevalueof &, ,(p;P) is givenin Theorem9; it dependn the scattereis properties.

X. MIXED SCATTERING RELATIONS
Let

E'(r;d,p)=p explikd-r}. (79)
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be anincidenttime-harmonicplaneelectricwave, wherethe unit vectord describeghe direction
of propagatiorandthe unit vectorp givesthe polarization.We will indicatethe dependencef the
total field in (), the total field in 2, the scatteredield andthe electric far-field patternon the
incident direction d and the polarizationp by writing E(r;d,p), E~(r;d,p), EXr;d,p) and
g(f;d,p), respectively

Here, we considermixed situations,and relate fields due to one sphericalelectric wave
Eia(r;f)l) and oneplaneelectricwave E'(r; —b,p,); we do this by letting b— in our previous
results.

Using the asymptoticforms (13), we caneasilyshowthatfor the sphericalelectricwave (51)
we have

lim EL(r;p)=E/(r;—b,p), (79
b—o
that is the sphericalelectric wave, when the point sourcegoesto infinity, reducesto a plane
electricwave with direction of propagation—f) and polarizationp. Similarly, we haveE((r;p)
—EY(r;—b,p), E3(r;p)—EXr;—b,p) andgy(7;p)—g(f; —b,p) asb—co.
Next, let b— in Lemma8 to give the following result.

Lemma 11: Let Eia(r;f)l) be an incident spherical electric wave and let E'(r; —b,p,) be an
incident plane electric wave. Then

lim{E}(+:p1) . E-:—b.py)}s = 2aékafszg(f; —B,py)- (Fx (ax p,))ekiads(F)

r—o

and

lim {EL(1B1), EX -~ b,p2)}s, = 4mi(alk)e (VX EXa; — b,pz) - (2 pa).

e—0

We definea plane far-field pattern generator by the formula

ik

G(a;—b,pp) = lim Gy(ap,) = €%ax| VX EYa —b,p,) ~ 5~ f JFX(F;—b,pz)e ds(F) |,
S

b—

whereGy(a;p,) is definedby Eq. (63). Otherlimiting valuesaregivenin the nexttheorem.
Theorem 12: For two incident point source electric waves, E,(r;p,) and Ey(r;p,), we have

lim Gp(a;0) = gp(—&;p2) (80)

a—®

and

lim G(a;—b,p,)=g(— & —b,p,). (82)

a—®

Proof: For Eq. (80), we usesphericalpolar coordinateg 6, ¢) asin the proof of Theorem5,
anddefine

2
Fo(0)= jo F X gp(F;p2)de.

In particular we haveF,(0)=27aXxg,(&;p,) andF,(7)=—27axg,(—&;p,). Hence
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JZA X Op(7:P,) € 3ds(F) = fF(e)e'kaCOS(’smadG
S

—L —ika_ jka _i_Jw ‘kacosede( 0)
= qalFo(me Ry (0) @)~ | e do

2 ika ka
~ 1@ Xe(—&pa)e +0p(8 o) €44

for large a. From this equationand Eq. (63), we arrive at Eq. (80). The proof of Eq. (81) is
similar. O
We cannow let b—< in the generalscatteringtheorem,Theorem9.
Theorem 13: Let EL(r;p,) be an incident spherical electric wave and let E/(r; —b,p,) be an
incident plane electric wave. Then

bl'G(a;_61ﬁ2)+ﬁ2'ga(6;f’1) f g(f; — ) Ga(F;pp)ds(f) = My(— b; P1.p2),

where M (—0;py,Po) =limy .. Eap(P1;P2):
Ma(—b;py,p2)=0 (82

for a perfectly conducting surface;

z -
Mo~ B:pr,po)= f ISIZS)( XE\F;—B,p)- (WXELFiPu)ds(F)  (89)

for the impedance boundary condition; or

k3

M~ By po) =~ 5t m(o) [ EL(EPE (75,0 @)

for a dielectric scatterer.

Proof: The proofis similar to thatof Theorem®. Theonly substantiatlifferenceappearsn the
formulafor {ES ,E'}; cf. Eq. (70). Now, usingthe planeelectricwave (78), we find that (seep. 59
of Ref. 6)

{E3(-;P1),E'(-;=b,pp)} =Py J[HXVXEZU pa)+ikbx (AX EX(ripy))Je ™ ds(r)

=4mik Py ga( —b,py).

O
The mixed reciprocity relationfor perfectconductorss Theorem2.3.4in Ref. 1. It is valid
more generally as follows.

Theorem 14: Let EL(r;p,) be an incident spherical electric wave and let E'(r; —b,p,) be an
incident plane electric wave. Then

P20a(b,p1) =€ "1 [(V X EXa —b,py)) ¥ 4l. (85)
Proof: Working asin the proof of Theorem10 andtaking into accountthat
{Ea(+:P).EX+;—b,pp)} =4mi(a/k)e (VX EX(a; —b,py)) - (8% py)

and
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{ES(+:P1).E'(-;—b,po)} = —4mik P, ga(D,Py),

Theoreml4 is proved. O
To conclude,we notethat we alsohave

lim lim Gy(a;p,)=lim IimGy(a;p,)=9(—&; —6,;“)2).

a—w h—oo b—ow a—w

This can be usedto verify that the known scatteringrelationsfor plane-waveincidencé*® are
recoveredwhena—« andb—c. FurthermoreEq. (81) andthe reciprocity principle for plane
wave$ givesthe following limiting property:

lim Py G(& —b,p) = lim Pp- G(—b;a,py).

I
a—® b—oo
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