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Abstract

The development of the method of fundamental solutions (MFS) and related methods for the numerical solution of scattering and radiation

problems in fluids and solids is described and reviewed. A brief review of the developments and applications in all areas of the MFS over the

last five years is also given. Future possible areas of applications in fields related to scattering and radiation problems are identified.
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1. Introduction

The method of fundamental solutions (MFS) is a

meshless technique for the numerical solution of certain

elliptic boundary value problems which falls in the class of

methods generally called boundary methods. Like the

boundary element method (BEM), it is applicable when a

fundamental solution of the differential equation in question

is known. It shares the same advantages of the BEM over

domain discretization methods, and also has certain

advantages over the BEM.

In order to introduce the MFS and to put it into context,

let us consider a specific problem from acoustics. Thus,

consider the radiation of time-harmonic sound waves in a

compressible fluid, caused by the vibrations of an immersed,

three-dimensional, bounded obstacle. This problem can be

reduced to an exterior boundary-value problem for the

Helmholtz equation,

ð72
þ k

2
Þu ¼ 0 in V;

where 72 is the Laplacian and V is the fluid domain. On the

boundary of the obstacle, ›V; there is a boundary condition,

which we take as

›u=›n ¼ f on ›V; ð1Þ

so that the normal derivative of u is required to equal f

on ›V (exterior Neumann problem). (Other boundary

conditions and problems are considered below.). Finally,

the behaviour of u at infinity must be specified: we impose

the Sommerfeld radiation condition (Eq. (10) below).

How can we solve this problem for u? If ›V is a sphere,

with centre at O; we can use the method of separation of

variables, giving

uðPÞ ¼
X

n;m

c
m
n c

m
n ðrPÞ; P [ V;

where the coefficients cmn are determined by the boundary

condition on ›V; and rP is the position vector of P with

respect to O: Each cm
n ðrÞ is a separated solution of the

Helmholtz equation in spherical polar coordinates; it

satisfies the Sommerfeld radiation condition and is singular

at the origin. Specifically, we have

cm
n ðrÞ ¼ hnðkrÞY

m
n ðr̂Þ;

where hn is a spherical Hankel function, Ym
n is a spherical

harmonic, r ¼ lrl and r ¼ rr̂:

The simplest cm
n is c0

0; it represents a spherically

symmetric source at the origin. More generally, we write

GðP;QÞ ¼ c0
0ðrP 2 rQÞ ¼ R

21 eikR;

for the field at P due to a source atQ;where R ¼ lrP 2 rQl is

the distance between P and Q: G is the simplest example of
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a fundamental solution for the three-dimensional Helmholtz

equation.

Suppose now that ›V does not have a simple shape.

Then, we can attempt to use G as follows. Consider

an auxiliary closed surface S in Vc
; the interior of the

obstacle. We may think of S as being a closed surface

similar to but smaller than ›V; or we may choose S as a

simple surface such as a sphere. Then, we seek the solution

in the form of a source distribution over S;

uðPÞ ¼
ð

S
mðQÞGðP;QÞdsðQÞ; P [ V; ð2Þ

where m is a function to be found. Evidently, this expression

for u satisfies the Helmholtz equation in V and the

Sommerfeld radiation condition, for any reasonable choice

of m; so that it only remains to satisfy the boundary

condition on ›V: (Classically, one takes S ¼ ›V; leading to

a boundary integral equation for m:) If S is strictly insideVc
;

the boundary condition gives

ð

S
mðQÞ

›

›np
GðP;QÞdsðQÞ ¼ f ðPÞ; P [ ›V; ð3Þ

which is an equation to solve for m:

A difficulty with methods of this type is that uðPÞmay not

be representable as Eq. (2). For we know that when the

solution of the exterior Neumann problem is continued

analytically from V through ›V into the portion of Vc

between ›V and S; singularities may be encountered.

Indeed, there must be singularities within Vc
; but we do not

know a priori if they are all inside S: On the other hand, the

representation (2) is not singular outside S: For more

information on this difficulty, including computational

aspects, see Ref. [1, Chapter IV, Section 2.1].

As S and m will have to be discretized in some way, it is

natural to replace the integral in Eq. (2) by a sum: this leads

to the MFS. Thus, the solution u is approximated by a

function of the form

uNðc;Q;PÞ ¼
XN

j¼1

cjGðP;QjÞ; P [ V; ð4Þ

where c ¼ ðc1; c2;…; cNÞ [ C
N and Q is a 3N-vector

containing the coordinates of the singularities Qj; which

all lie inside Vc
:

More generally, we could use an approximation of the

form

uNðc;PÞ ¼
XN

j¼1

cjxjðPÞ; P [ V; ð5Þ

where {xjðPÞ} is a set of radiating solutions of the

Helmholtz equation. These solutions must have singularities

inVc
; they could be sources, dipoles ormultipoles located at

points Qj [ Vc: Numerical methods based on Eq. (5) are

sometimes called Generalised Multipole Techniques

(GMT), although many other names are also

used [1: Chapter IV; 2: Chapter 8]. Electromagnetic

applications of Eq. (5) have been reviewed recently in

Ref. [3].

Having selected a representation for u; Eq. (4) or Eq. (5),

the next step is to find the coefficients c:A set of observation

points {Pi}
M
i¼1 is selected on ›V: One then applies the

boundary condition at each of these points.

For the MFS when the locations of the singularities are

fixed and preassigned, this process yields the equations

BuNðc;Q;PiÞ ¼ 0; i ¼ 1; 2;…;M; ð6Þ

where we have written the boundary condition as Bu ¼ 0 on

›V: When M ¼ N; Eq. (6) is a linear system of N equations

in N unknowns, whereas, when M . N; we have a linear

least-squares problem.

Christiansen [4] refers to the use of Eq. (3) as Method I.

He gives a thorough review of the literature (up to about

1980), and shows that the condition numbers of the

corresponding linear systems worsen as the distance

between S and ›V increases. More recently, Ochmann

[5] has reviewed the use of Eq. (3) in the context of

acoustic radiation problems.

With the MFS, there is another option: the locations of

the singularities can be determined along with the

coefficients c: In this case, there are 4N unknowns,

comprising c and the Cartesian coordinates of the N

singularities Q; they are to be determined by minimizing

the functional

Fðc;QÞ ¼
XM

i¼1

lBuNðc;Q;PiÞl
2
; ð7Þ

which is nonlinear in the coordinates of the Qj: The

minimization of this functional is commonly done using

readily available nonlinear least-squares software such as

the MINPACK routines LMDIF and LMDER [6], the

Harwell subroutine VA07AD [7], and the NAG routine

E04UPF [8]. The relative merits of these codes are

examined in Refs. [9,10]. The constrained optimization

features of E04UPF are particularly useful for ensuring that

the singularities remain outside the domain of the problem.

More details about available least-squares routines as well

as various algorithmic features of the MFS may be found in

Ref. [11].

The initial placement of the singularities can influence

the convergence of a least-squares routine significantly.

Usually the singularities are distributed uniformly around

the domain of the problem at a fixed distance from its

boundary. For problems with boundary singularities,

Cisilino and Sensale [12,13] studied the placement of the

singularities via a simulated annealing algorithm. Saavedra

and Power [14] introduced an MFS algorithm with adaptive

refinement in the case in which the singularities are fixed

and their number is less than the number of boundary points.

In the solution of the resulting least-squares problem, the

distribution of singularities is selectively improved by

taking into account the intensities of the fundamental
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solutions in the MFS expansion, i.e. the coefficients of the

fundamental solutions, and using them as parameters in a

multiple linear regression model. The positioning of the

singularities has also been investigated via a genetic

algorithm [15,16]. Adaptive GMT are discussed in Ref.

[2, p. 275].

When the MFS with an equal number of fixed

singularities and boundary points, both of which are

uniformly distributed, is applied to certain problems in

circular domains, it leads to linear systems with coefficient

matrices which are circulant or block matrices with

circulant blocks. Ways of exploiting the properties of such

systems for the efficient implementation of the MFS applied

to harmonic and biharmonic problems are investigated in

Refs. [17,18].

1.1. A brief review

Early uses of the MFS were for the solution of various

linear potential problems in two and three space variables.

The method has since been applied to a variety of situations

such as plane potential problems involving nonlinear

radiation-type boundary conditions, free boundary pro-

blems, biharmonic problems, problems in elastostatics and

in the analysis of wave scattering in fluids and solids. A

survey of the MFS and related methods for the numerical

solution of elliptic boundary value problems is presented in

Ref. [11]. Material on the MFS may also be found in the

recent books by Golberg and Chen [19] and Kolodziej [20].

In this paper, we describe the development of the MFS and

related methods for the numerical solution of scattering and

radiation problems in fluids and solids. We also give a brief

review of the developments and applications in all areas of

the MFS over the last five years and identify future possible

areas of applications in fields related to scattering and

radiation problems.

It is unclear who first used the MFS with fixed

singularities; see the references in Refs. [4,11]. Certainly,

the idea of representing potential flow past axisymmetric

bodies using singularities on the axis of symmetry is very

old; see, for example, the discussion of Rankine’s work in

Refs. [21: Section 97; 22: Section 6.8].

The MFS with moving singularities was first proposed by

Mathon and Johnston [23]. Since the approximate solution

in the MFS automatically satisfies the partial differential

equation in question, the method may be viewed as a Trefftz

method [24]. A survey of Trefftz methods is given in Ref.

[25] and more recent studies of these methods include Refs.

[26–30]. However, for exterior acoustic problems, it is

imperative to use functions that satisfy both the governing

differential equation and the radiation condition at infinity.

Lately, much attention has been devoted to the extension

of the MFS to inhomogeneous problems, especially

diffusion problems [31–36], often in conjunction with the

dual reciprocity and radial basis function methods for

treating the inhomogeneous terms [37,38]. The MFS

combined with an operator splitting–radial basis function

technique was used for the solution of transient nonlinear

Poisson problems in Ref. [39]. The MFS combined with

radial basis functions has also been used recently for

the solution of linear [40] and nonlinear [41,42] Poisson

problems, and for Stokes flow [43]. The MFS in conjunction

with compactly supported radial basis functions has been

considered in Ref. [44] for the solution of Poisson problems

and in Ref. [45] for the solution of three-dimensional

Helmholtz-type problems; see also [46]. In Ref. [47], the

integrations involved in the evaluation of the particular

solutions in Poisson problems are treated by a quasi-Monte

Carlo method. The MFS is used in Ref. [48] for the solution

of Poisson problems in combination with fundamental

solutions of the modified Helmholtz equation instead of

radial basis functions. A comparison of the MFS combined

with radial basis functions and another meshless method,

called Kansa’s method, is presented in Ref. [49].

Christiansen [4] and Lazarashvili and Zakradze [50]

investigated the dependence of the accuracy of the MFS

solution of the Dirichlet problem for Laplace’s equation on

the location of the auxiliary boundary and the number of

boundary points (which in their case is the same as the

number of singularities). The same problem was also

studied in Ref. [51]. Balakrishnan and Ramachandran [52]

applied the MFS to singular problems governed by the

modified Helmholtz equation and discussed the positioning

of the boundary points and singularities to yield improved

accuracy. In Refs. [17,18], certain aspects of the MFS

related to the positioning of the singularities when the

method is applied to harmonic and biharmonic Dirichlet

problems in a disk are investigated.

Cisilino and Pardo [53] used an MFS-type approximation

with a functional integral method for the solution of the

Dirichlet problem for Laplace’s equation in a disk. This

approach introduces a regularization parameter which can

be adjusted to reduce the error.

In Ref. [54], the MFS is used for the solution of

anisotropic problems in elasticity and in Ref. [55] for the

solution of anisotropic thin-plate bending problems. Fenner

[56] applied the MFS to linear isotropic elasticity problems

and also discussed a domain decomposition technique. The

MFS is used for the calculation of the eigenvalues of the

Helmholtz equation in Ref. [57]. Recently, the MFS was

also applied to three-dimensional shape recognition pro-

blems by Kanali et al. [58,59].

In recent years, the MFS has also been widely used for

problems in electrostatics. In particular, Ismail and Abu-

Gammaz [60] applied the MFS to determine the electric

field resulting from high voltage transmission systems and

Vlad et al. [61] used the MFS to calculate the electric field in

plate-type electrostatic separators; see also [62,63].

In all of these studies, the MFS with fixed singularities

was employed. The MFS with moving singularities was

implemented recently for the solution of three-dimensional

Signorini problems [64], three-dimensional elasticity
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problems [65] and anisotropic single material and bimaterial

problems in combination with a domain decomposition

technique [66–68].

1.2. Irregular frequencies

It is known that Eq. (3) suffers from irregular

frequencies (fictitious eigen-frequencies): uniqueness is

lost whenever k2 is an eigenvalue of the interior Dirichlet

problem for S: This fact is stated clearly in Refs. [69,70]

and in the review by Benthien and Schenck [71]. However,

numerical experiments reported in Refs. [72–74] for the

MFS solution of various scattering problems do not

indicate the presence of irregular frequencies. A possible

resolution of this situation may involve the difference

between continuous and discrete representations: clearly, a

discrete set of points in Vc does not define an internal

surface S uniquely. Thus, this topic may warrant further

careful computations.

2. Scattering and radiation problems

Because of their advantages over domain discretiza-

tion methods for the solution of scattering and radiation

problems in acoustics and elastodynamics, boundary

integral methods have been used for such problems for

some time [75,76]. Also, various MFS-type formulations

have been proposed for time-harmonic acoustic and

electromagnetic scattering problems [77–81]. In Refs.

[82,83], the MFS with fixed singularities is applied to

two- and three-dimensional acoustic wave scattering

problems in fluids involving fluid scatterers. This method

is extended in Ref. [84] to two-dimensional acoustic

scattering from periodic fluid scatterers, and in Ref. [85]

to the treatment of three-dimensional acoustic scattering

from doubly periodic fluid scatterers. The MFS approach

of Ref. [82] was also extended by Murphy et al. [86] to

the solution of short-range ocean acoustics problems.

Erez and Leviatan [87] used a modified version of the

MFS to analyse acoustic scattering from two adjacent

spheres of different sizes. The problem of scattering of a

time-harmonic wave in a thin elastic plate by a small

patch made of a different material using the MFS was

addressed by Leviatan et al. [88]. Essentially the same

method was applied by Song et al. [89–91] to two- and

three-dimensional acoustic radiation problems and also

by Jeans and Mathews [92] to spherical and spheroidal

acoustic radiation and scattering problems. In Ref. [93],

the MFS is combined with a singular value decompo-

sition technique for treating radiation from a circular

cylinder. It is also used in Ref. [73] to study the

scattering/transmission of time-harmonic waves by an

elastic obstacle embedded in a three-dimensional infinite

elastic medium. In Ref. [74], acoustic wave scattering in

fluids and wave scattering from rigid/vacuous obstacles

in elastic regions are analysed using the MFS with

moving singularities and fixed singularities, respectively;

see also Refs. [94,95]. In Refs. [96,97], an MFS-type

method with fixed singularities for the Helmholtz

equation in two and three dimensions is discussed.

An MFS-type method with fixed singularities was

also used by Stepanishen and Ramakrishna [98,99] for

two-dimensional acoustic scattering from a cylinder with a

plane of symmetry. The same authors [100] applied an

MFS-type method to acoustic radiation problems in

combination with singular value decomposition techniques.

The MFS was applied by Johnson et al. [101] to acoustic

problems in which the scattering obstacle includes internal

scattering objects.

Ochmann [102] has used the MFS with moving

singularities for three-dimensional acoustic radiation pro-

blems. Numerical results for a cube and a finite circular

cylinder were presented. He found that the increase in

computer time (compared to the MFS with fixed singular-

ities) was compensated by ‘an enormous gain of accuracy’

[102, p. 1188].

The MFS with fixed singularities has also been used

extensively for the solution of electromagnetic scattering

problems, principally by Doicu, Eremin and Wriedt

[103–109], Leviatan [110], and Maystre [111], together

with their co-workers. Further references on MFS-type

methods for acoustic and electromagnetic scattering can be

found in the book by Doicu et al. [1].

2.1. Scattering in fluids

2.1.1. Single fluid case

Consider a time-harmonic acoustic wave in an

unbounded, homogeneous, compressible fluid. The fluid

domain is V: The wave is incident upon a rigid, fixed

obstacle occupying the bounded region Vc
[ R

3
; the

complement of V: The fluid particle velocity at a point P [

V is given by vðP; tÞ ¼ 27fðP; tÞ; where f is the velocity

potential. For time-harmonic waves,

fðP; tÞ ¼ Re{FðPÞexpð2ivtÞ};

where FðPÞ is the complex amplitude and v is the circular

frequency. The scattered wave is defined by FS ¼ F2FI
;

where FI represents the incident wave. The function F

satisfies the Helmholtz equation

72FðPÞ þ k
2FðPÞ ¼ 0; P [ V; ð8Þ

where k ¼ v=c is the wave number and c the wave speed.

On ›V; the boundary of the rigid scatterer, v·n ¼ 0;

where n is the unit normal to ›V; that is, ›F=›n ¼ 0:

Rewriting the problem in terms of FS gives

72FS
ðPÞ þ k

2FS
ðPÞ ¼ 0; P [ V;

›FS

›n
ðPÞ þ

›FI

›n
ðPÞ ¼ 0; P [ ›V:

ð9Þ
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In addition, FS must satisfy the (three-dimensional)

Sommerfeld radiation condition at infinity,

lim
r!1

r
›FS

›r
2 ikFS

 !

¼ 0; ð10Þ

uniformly in all directions, where r is the distance from P to

some fixed origin in the vicinity of Vc
:

If P and Q are two points, a fundamental solution of the

three-dimensional Helmholtz equation is

GðP;QÞ ¼
eikR

R
;

where R is the distance between P and Q: This fundamental

solution satisfies the radiation condition as r !1; for any

fixed Q: In the MFS [74], the scattered fieldFS at each point

P is approximated by

FS
Nðc;Q;PÞ ¼

XN

j¼1

cjGðP;QjÞ; ð11Þ

where c ¼ ðc1; c2;…; cNÞ
T
[ C

N is a vector of unknown

coefficients and Q is a 3N-vector containing the coordinates

of the singularities Qj; which lie in Vc
: A set of points

{Pi}
M
i¼1 is selected on ›V; and the coefficients c and the

locations of the singularities Q are determined by minimiz-

ing the functional

Fðc;QÞ ¼
XM

i¼1

›FS
N

›ni
ðc;Q;PiÞ þ

›FI

›ni
ðPiÞ

�
�
�
�
�

�
�
�
�
�

2

: ð12Þ

Applications of this formulation to this type of problem are

given in Refs. [74,94,95].

Radiation problems can be treated in a similar way by

taking the incident wave to be zero, by replacing the

scattered wave with the radiated wave and by prescribing

appropriate boundary conditions on ›V (Eq. (1)).

2.1.2. Fluid–fluid case

In the case where the rigid obstacle Vc is replaced by a

homogeneous fluid body with properties different to those

of the infinite fluid body V; the situation is slightly

different. In addition to the incident and scattered waves FI

and FS; there is a transmitted wave FT inside the obstacle

Vc
: The total wave in V; F; satisfies, as before, the

Helmholtz equation (8) and F ¼ FS þFI: The transmitted

wave FT satisfies

72FT
ðPÞ þ k

2
cF

T
ðPÞ ¼ 0; P [ Vc

;

where kc is the wave number in Vc
: Under the assumption

that the two fluid surfaces remain in contact, we must have

continuity of pressure across the interface; this yields rF ¼

rcF
T on ›V; where r and rc are the densities of the fluids

in V and Vc
; respectively. We also require continuity of

normal velocity across the interface; this gives

›F

›n
¼

›FT

›n
on ›V:

Thus the scattered wave FS satisfies Eq. (9), the radiation

condition (10), and the interface conditions

rðFS
þFI

Þ ¼ rcF
T and

›FS

›n
þ

›FI

›n
¼

›FT

›n

on ›V:

In the MFS, the scattered field FS is approximated as in

Eq. (11), whereas the transmitted field FT is approximated

by

FT
Nc ðd;Q

c
;PÞ ¼

XN
c

j¼1

djGcðP;Q
c
j Þ; ð13Þ

where d ¼ ðd1; d2;…; dNc ÞT [ C
Nc

is another vector of

unknown coefficients, Qc is a 3Nc-vector containing the

coordinates of the singularities Qc
j which lie in V; and

Gc ¼ R21 expðikcRÞ: As before, we choose points {Pi}
M
i¼1

on ›V and determine c; d and the locations of the

singularities Q and Qc by minimizing the functional

Fðc;d;Q;Q
c
Þ¼
XM

i¼1

FS
Nðc;Q;PiÞþFI

ðPiÞ2ð
rc
r
ÞFT

Nc ðd;Q
c
;PiÞ

�
�
�
�

�
�
�
�

2

þa
XM

i¼1

›FS
N

›ni
ðc;Q;PiÞþ

›FI

›ni
ðPiÞ

�
�
�
�
�

2
›FT

Nc

›ni
ðd;Q

c
;PiÞ

�
�
�
�
�

2

; ð14Þ

where a is a typical length-scale for the problem (such as

k21 or the diameter of Vc). See Ref. [94] for applications

of this approach to fluid–fluid problems.

2.2. Scattering in elastic solids

2.2.1. Single solid case

Suppose now that V is an unbounded homogeneous

isotropic elastic solid. The obstacle is either rigid and fixed,

or is a cavity, and is impinged upon by a time-harmonic

wave. The field variable of interest is the displacement

vector u: Stresses and tractions can be obtained from u by

Hooke’s law; in particular, we denote the surface traction

vector by t: The governing system of differential equations

in terms of the displacement vector is

ðc
2
1 2 c

2
2Þ7ð7·uÞ þ c

2
27

2
uþ v2

u ¼ 0 in V; ð15Þ

where c1 and c2 are the dilatational and shear wave speeds,

respectively, in V: The boundary conditions for the two

types of obstacles are

u ¼ u
I
þ u

S
¼ 0; ðrigid obstacleÞ;
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and

t ¼ t
I
þ t

S
¼ 0; ðcavityÞ;

where uI;uS; tI and tS are the incident and scattered

displacements and tractions, respectively. For this problem,

the fundamental solution is Stokes’ displacement funda-

mental tensor [112]. If we denote the components of this

tensor by Uij; i; j ¼ 1; 2; 3; and the components of the

Stokes’ traction fundamental tensor by Tij; i; j ¼ 1; 2; 3; then

UijðP;QÞ ¼
1

4prv2R3
{½dijðk2RÞ

2
e2 þ D� þ CR;iR;j};

i; j ¼ 1; 2; 3;

ð16Þ

where kj ¼ v=cj; ej ¼ eikjR; j ¼ 1; 2;

D ¼ G2e2 2 G1e1; C ¼ D2e2 2 D1e1;

Gj ¼ 21þ ikjR; Dj ¼ 32 3ikjR2 k
2
j R

2
; j ¼ 1; 2;

and

TijðP;QÞ ¼
1

4prv2R4

�

le1ðk1RÞ
2G1R;jn1 þ me2ðk2RÞ

2G2

£

�

dij
›R

›n
þ R;inj

�

þ 2m

	

C

�

dij
›R

›n
þ R;jni

þ R;inj

�

þ FR;iR;j

›R

›n


�

; i; j ¼ 1; 2; 3;

ð17Þ

where l and m are the Lamé moduli,

F ¼ H1e1 2 H2e2;

Hj ¼ 152 15ikjR2 6k2j R
2
þ ik3j R

3
; j ¼ 1; 2:

In Eqs. (16) and (17), commas indicate partial differen-

tiation with respect to the Cartesian coordinates of P:

In the MFS [74], the scattered field uSi ðPÞ is approximated

by

u
S
i;NðC;Q;PÞ ¼

XN

j¼1

X3

n¼1

CnjUinðP;QjÞ; i ¼ 1; 2; 3; ð18Þ

the corresponding tractions, tSi ðPÞ; are approximated by

t
S
i;NðC;Q;PÞ ¼

XN

j¼1

X3

n¼1

CnjTinðP;QjÞ; i ¼ 1; 2; 3: ð19Þ

The unknowns are now the 3N complex coefficients Cnj;

n ¼ 1; 2; 3; j ¼ 1;…;N; and the 3N coordinates of the Qj:

Again, a set of points {Pj}
M
j¼1 is selected on ›V;

and the coefficients C and the locations of the

singularities Q are determined by minimizing the

functional

F1ðC;QÞ ¼
X3

i¼1

XM

j¼1

lu
S
i;NðC;Q;PjÞ þ u

I
iðPjÞl

2
; ð20Þ

for a rigid obstacle, and

F2ðC;QÞ ¼
X3

i¼1

XM

j¼1

lt
S
i;NðC;Q;PjÞ þ t

I
i ðPjÞl

2
; ð21Þ

for a cavity. Applications of this formulation with

both fixed and moving singularities are given in

Refs [74,94,95].

In the case of radiation problems, the same formulation is

used with the corresponding radiation boundary conditions

and by taking the incident wave to be zero and by replacing

the scattered wave with the radiated wave.

2.2.2. Solid–solid case

We next consider the case of wave-scattering in an

infinite elastic region V [ R
3 with an elastic obstacle

with different material properties occupying Vc
; its

complement. In addition to the incident and scattered

waves in V; there is a transmitted wave in Vc whose

displacement and traction are denoted by uT and tT;

respectively. Each of the displacement fields satisfies Eq.

(15). On the interface ›V; the continuity of the

displacements yields

u
T
¼ u

I
þ u

S
;

and the continuity of the tractions gives

t
T
¼ t

I
þ t

S
:

As before, the scattered fields uS and tS are approxi-

mated by Eqs. (18) and (19), respectively, and the

transmitted fields uT and tT by

u
T
i;NðD;Q

c
;PÞ ¼

XN
c

j¼1

X3

n¼1

DnjU
c
inðP;Q

c
j Þ; i ¼ 1; 2; 3;

and

t
T
i;NðD;Q

c
;PÞ ¼

XN
c

j¼1

X3

n¼1

DnjT
c
inðP;Q

c
j Þ; i ¼ 1; 2; 3;

where Cnj and Dnj (n ¼ 1; 2; 3; j ¼ 1;…;Nc) are unknown

complex coefficients, Uc
in is the Stokes’ displacement

fundamental tensor for the solid in Vc
; Tc

in are the

corresponding tractions, and Qc is a 3Nc-vector contain-

ing the coordinates of the singularities Qc
j ; which lie in

V: We choose points {Pj}
M
i¼j on ›V and determine the

coefficients Cnj; Dnj and the locations of the singularities

Q and Qc by minimizing the functional

FðC;D;Q;Q
c
Þ¼

X3

i¼1

XM

j¼1

lu
S
i;NðC;Q;PjÞþu

I
iðQjÞ2u

T
i;NðD;Q

c
;PjÞl

2

þ
a

m

X3

i¼1

XM

j¼1

lt
S
i;NðC;Q;PjÞþt

I
i ðPjÞ

2t
T
i;NðD;Q

c
;PjÞl

2
; ð22Þ
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where a is a typical length-scale. Applications of this

MFS formulation with fixed singularities are given in

Refs. [73,94].

2.2.3. Semi-infinite bodies

We next consider the solution of half-space elastody-

namic time-harmonic problems. Let V [ R
3 be a linear,

isotropic and homogeneous elastic half-space and let the

inclusion Vc be either rigid or a cavity and be at least

partially embedded inV: The common boundary of the half-

space and the inclusion is denoted by ›V and the remaining

part of the boundary of the half-space, which is traction-

free, is denoted by ›VH : The incident wave is now scattered

by both Vc and the free-surface of the half-space, which

renders the problem considerably more difficult. As before,

both the incident and the scattered waves satisfy Eq. (15)

and the boundary conditions

u
I
þ u

S
¼ 0; t

I
þ t

S
¼ 0;

on the boundary ›V in the cases of a rigid obstacle and a

cavity, respectively. In each case, on the free surface ›VH of

the half-space, we have the condition

t
I
þ t

S
¼ 0: ð23Þ

In the MFS, the scattered fields uS and tS are again

approximated by Eqs. (18) and (19), respectively, and the

boundary conditions on ›V and ›VH are satisfied in a least-

squares sense by minimizing an appropriate functional.

Applications of this MFS formulation with fixed singular-

ities can be found in Ref. [94].

An alternative approach is to use Lamb’s tensors

instead of Stokes’ tensors. Lamb’s tensors [113,114]

automatically satisfy the boundary conditions on the free

surface of the half-space, thus avoiding the imposition of

condition (23).

3. Axisymmetric acoustic scattering

and radiation problems

Consider an axisymmetric region V0
[ R

3; which

means that V0 is formed as the exterior of a figure of

revolution by rotating a plane region V; with boundary

›V; about the z-axis. If we want to solve the Helmholtz

equation in V0
; certain simplifications can be achieved by

integrating in the azimuthal direction. If the forcing is

also axisymmetric, we only need simple ring-sources.

Thus, let ðrP; uP; zPÞ and ðrQ; uQ; zQÞ be the cylindrical

coordinates of two points P and Q in V0; so that

R
2
ðP;QÞ ¼ r

2
Q þ r

2
P 2 2rQrP cos uþ ðzQ 2 zPÞ

2
;

where u ¼ uQ 2 uP: Then, a fundamental solution of the

axisymmetric version of the Helmholtz equation is given

by [115]

GðP;QÞ ¼
ð2p

0

eikRðP;QÞ

RðP;QÞ
du: ð24Þ

This G also satisfies the radiation condition (10).

Applications of this G in the MFS to axisymmetric

acoustic scattering and radiation problems are described

in Ref. [116].

Now, we can write

GðP;QÞ ¼ G1ðP;QÞ þ G2ðP;QÞ;

where

G1ðP;QÞ ¼
ð2p

0

eikRðP;QÞ 2 1

RðP;QÞ
du

and

G2ðP;QÞ ¼
ð2p

0

1

RðP;QÞ
du:

The integral G1ðP;QÞ can be evaluated numerically using a

standard quadrature rule since its integrand is nonsingular.

It can be shown [117,118] that

G2ðP;QÞ ¼ 4R21
KðkÞ; ð25Þ

where KðkÞ is the complete elliptic integral of the first

kind,

KðkÞ ¼
ðp=2

0
½12 k2 sin2 u�21=2du;

with k2 ¼ 4rPrQ=R
2 and R2 ¼ ðrQ þ rPÞ

2 þ ðzQ 2 zPÞ
2:

The normal derivative of the fundamental solution is

›GðP;QÞ

›nP
¼
ð2p

0

›

›nP

eikRðP;QÞ

RðP;QÞ

 !

du; L1ðP;QÞþL2ðP;QÞ;

where

L1ðP;QÞ ¼
ð2p

0

›

›nP

eikRðP;QÞ21

RðP;QÞ

 !

du;

which can be evaluated using standard quadrature, and

L2ðP;QÞ ¼
ð2p

0

›

›nP

1

RðP;QÞ

� �

du¼
›

›nP

4KðkÞ

R

� �

:

In Ref. [115], it is shown that

L2ðP;QÞ ¼
2{R2½EðkÞ2KðkÞð12k2Þ�22rPðrPþ rQÞEðkÞ}

rPR
3ð12k2Þ

�nr2
4ðzP2 zQÞEðkÞ

R
3ð12k2Þ

nz;

where EðkÞ is the complete elliptic integral of the second

kind defined by

EðkÞ ¼
ðp=2

0
½12k2 sin2 u�1=2du;
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and nr and nz are the components of the outward normal

vector n to the boundary ›V in the r and z directions,

respectively.

Having obtained expressions for the fundamental

solution of the axisymmetric version of the Helmholtz

equation and the normal derivative of the fundamental

solution, we now approximate radiating solutions by

FNðc;Q;PÞ ¼
XN

j¼1

cjGðP;QjÞ; P [ �V;

where c ¼ ðc1; c2;…; cNÞ [ C
n and Q is a 2N-vector

containing the coordinates of the singularities Qj;

which lie outside �V: A set of points {Pi}
M
i¼1 is selected

on ›V; and the coefficients c and the locations of

the singularities Q are determined by minimizing the

functional

Fðc;QÞ ¼
XM

i¼1

lBFNðc;Q;PiÞl
2
;

where BF ¼ 0 is the boundary condition to be imposed.

This method can be used for axisymmetric radiation

problems or for axisymmetric scattering problems; an

example of the latter occurs when the incident field is a

plane wave propagating in the z-direction.

In the case of semi-infinite axisymmetric problems,

namely when we have acoustic radiation and scattering from

axisymmetric bodies in the half-space z . 0; say, a similar

approach can be adopted. Thus, if z ¼ 0 is a rigid plane, we

can use the (modified) fundamental solution

G
H
ðP;QÞ ¼

ð2p

0

eikRðP;QÞ

RðP;QÞ
duþ

ð2p

0

eikRðP;Q
0Þ

RðP;Q0Þ
du;

where the point Q0 is the image point of Q in the plane. This

fundamental solution satisfies the (Neumann) boundary

condition on the free surface automatically. The application

of the MFS based on this fundamental solution to several

axisymmetric acoustic scattering and radiation problems

can be found in Ref. [116].

The MFS has also been applied recently to axisymmetric

potential problems [119] and axisymmetric elasticity

problems [120].

4. Concluding remarks and future work

An attractive feature of the MFS is that one avoids

potentially troublesome integrations (such as are present

in BEMs). Also, in comparison with other boundary

methods, the MFS is very easy to implement and

requires very little data preparation. One of the most

important features of the MFS with moving singularities

is its adaptivity. By permitting the singularities to move,

the method is able to adapt the approximation automati-

cally to reflect any bad behaviour in the solution, and

produces a uniform distribution of the error on the

boundary regardless of its shape. In particular, the

method can handle irregular obstacles which frequently

arise in scattering and radiation problems. The non-

linearity of the problem resulting from this adaptivity can

be viewed as a disadvantage of the method. However,

with the availability of good software, this is no longer a

serious drawback in most cases.

As in other boundary methods, when applying the MFS,

there is no need to truncate infinite or semi-infinite domains

present in scattering and radiation problems. Thus compli-

cations arising from wave reflections from these artificial

boundaries are avoided.

From the work performed on the application of the MFS

to radiation and scattering problems, there appears to be

some practical difficulties in the use of the MFS with

moving singularities for certain problems, such as acoustic

scattering in a fluid with a fluid obstacle with different

properties or the scattering of elastic waves. Clearly, further

investigation of this matter is required.

When applying the MFS with fixed singularities to

certain scattering problems, it has been observed that, as the

singularities are positioned far from the surface of the

scatterer, the resulting coefficient matrix becomes ill-

conditioned. This occurs because as the singularities move

away from the surface they tend to cluster very close to each

other (since we are approximating the solution outside the

scatterer). On the other hand, experimental evidence reveals

that the accuracy of the solution improves as the

singularities move away from the boundary. These obser-

vations should be studied further.

So far, the MFS has only been applied to half-space

elastodynamic time-harmonic problems using the full-space

fundamental solution, the Stokes’ tensor, instead of Lamb’s

tensor, the half-space fundamental solution. A comparison of

the performance of the two MFS formulations would be of

interest. A similar comparison for the BEM is described in

Ref. [114].

The MFS has not yet been applied to fluid–solid wave

interaction problems nor to transient problems in elastody-

namics. Also, the application of the MFS to axisymmetric

scattering and radiation problems in solids has yet to be

addressed.

It would also be of interest to investigate the application

of the MFS to problems governed by axisymmetric and

helically symmetric Helmholtz-type equations whose fun-

damental solutions are analysed in Refs. [121–123]. Also,

the MFS has not yet been applied to problems governed by

general second order linear elliptic partial differential

equations with variable coefficients for which fundamental

solutions are studied in Refs. [124,125]. Finally, potential

applications of the MFS can be found in the recent work of

Rencis and Huang [126] on the fundamental solutions of

two-dimensional microelastic bodies, and of Westphal et al.

[127] on the fundamental solutions of the Kirchhoff,

Reissner and Mindlin plate bending models.

G. Fairweather et al. / Engineering Analysis with Boundary Elements 27 (2003) 759–769766



References

[1] Doicu A, Eremin Yu, Wriedt T. Acoustic and electromagnetic

scattering analysis using discrete sources. New York: Academic

Press; 2000.

[2] Hafner C. Post-modern electromagnetics. Chichester: Wiley; 1999.

[3] Kaklamani DI, Anastassiu HT. Aspects of the method of auxiliary

sources (MAS) in computational electromagnetics. IEEE Antennas

Propag Mag 2002;44(3):48–64.

[4] Christiansen S. Condition number of matrices derived from two

classes of integral equations. Math Meth Appl Sci 1981;3:

364–92.

[5] Ochmann M. The source simulation technique for acoustic radiation

problems. Acustica 1995;81:512–27.

[6] Garbow BS, Hillstrom KE, Moré JJ. MINPACK project. Argonne
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