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Abstract

Acoustic scattering by three-dimensional obstacles is considered, using boundary integral equations, null-field equations and the T-matrix.

Connections between these techniques are explored. It is shown that solving a boundary integral equation by a particular Petrov–Galerkin

method leads to the same algebraic system as obtained from the null-field equations. It is also emphasised that the T-matrix can be

constructed by solving boundary integral equations rather than by solving the null-field equations.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Readers of this journal will be familiar with boundary

integral equation (BIE) methods, and their use in the

calculation of acoustic scattering by bounded obstacles.

Perhaps less familiar are null-field and T-matrix methods,

even though these methods have a similar scope. This paper

is concerned with some connections between these methods.

For acoustic (and electromagnetic) scattering, the theory

of BIEs has been given in detail in the well-known book by

Colton and Kress [1]. There are also several books in which

the use of boundary elements is described in the context of

acoustics; examples are Refs. [2–5].

The null-field and T-matrix methods are also used widely

for obtaining numerical solutions to various radiation and

scattering problems. These methods are related, as we will

see. They were first devised by Waterman in 1965 for

electromagnetic scattering problems [6]. Later, they were

developed for treating problems in acoustics [7–11],

elastodynamics [12,13] and hydrodynamics [14,15]. For

surveys up to 1979, see Ref. [16]. Many subsequent

applications are reviewed in Refs. [17,18] and in chapter 6

of Ref. [19]. The real power of T-matrix methods comes

when they are used to solve multiple-scattering problems;

the key paper is Ref. [20]. Thus, one can construct the T-

matrix for a group of scatterers from a knowledge of the T-

matrix for each constituent scatterer in isolation.

We know that BIEs are very effective for solving

scattering problems, numerically. They are less effective

when used for multiple-scattering problems (where there are

several disjoint scatterers), especially when one is interested

in the effects of changes in the geometrical configuration of

the scatterers.

We also know that the numerical performance of the

null-field method (for one scatterer) is strongly dependent

on the shape of the scatterer: it tends to degrade as the shape

deviates from a sphere.

The null-field method is often used as a way of

computing the T-matrix for a single scatterer. This matrix

satisfies c ¼ Td; where d is a vector of coefficients in an

expansion of the incident field in terms of regular spherical

wave-functions, and c is a vector of coefficients in a similar

expansion of the scattered field in terms of outgoing

spherical wave-functions (see Section 4.5). However, it is

important to observe that we are not obliged to use the null-

field method.

We can compute the T-matrix by first solving a BIE and

then calculating the scattered field. This is explained in

detail in Section 5.3. The virtue of this approach is that we

can use the good numerical properties of BIE methods

combined with the useful properties of the T-matrix.

0955-7997/03/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0955-7997(03)00028-6

Engineering Analysis with Boundary Elements 27 (2003) 771–777

www.elsevier.com/locate/enganabound

* Tel.: þ1-303-273-3895; fax: þ1-303-273-3875.

E-mail address: pamartin@mines.edu (P.A. Martin).



In particular, the T-matrix is a very useful ingredient when

one wants to solve multiple-scattering problems.

We limit our discussion to acoustic scattering by a three-

dimensional sound-hard obstacle B with a smooth boundary

S; the unbounded connected exterior is denoted by Be: Thus,

we consider the following problem.

Sound-hard scattering problem: Find a function uscðPÞ
for P [ Be; where

ð72 þ k
2Þusc ¼ 0 in Be; ð1Þ

usc satisfies the radiation condition at infinity; ð2Þ

and the boundary condition

›u

›n
¼ 0 on S; ð3Þ

where the total field u is defined by

u ¼ usc þ uin; ð4Þ

and uin is the given incident field. We assume that uin is a

regular solution of the Helmholtz equation everywhere,

except perhaps at some isolated points in Be:

The paper is partly in the nature of a review. Thus, we

begin with the standard Helmholtz–Sommerfeld formulae

in Section 2. Direct BIEs are discussed briefly in Section 3.

The null-field and T-matrix methods are developed in

Section 4. Three connections between these methods and

BIEs are made in Section 5. Thus, connections with

modified fundamental solutions and exact Green’s functions

are reviewed in Section 5.1. In Section 5.2, we show that

solving a direct BIE using a particular Petrov–Galerkin

method leads to exactly the same system of equations as one

obtains from the null-field method. Finally, in Section 5.3,

we show explicitly how to compute the elements of the T-

matrix from the solution of BIEs. We believe that this

should be the preferred approach, especially for obstacles of

complicated shape.

2. Integral representations

In order to describe boundary-integral and T-matrix

methods for solving the sound-hard scattering problem,

we begin with some familiar integral formulae. These are

obtained using Green’s theorem and a fundamental

solution. In three dimensions, the simplest fundamental

solution is

GðP;QÞ ¼ 2expðikRÞ=ð2pRÞ; ð5Þ

where R ¼ lrP 2 rQl is the distance between the two

points P and Q: For each fixed Q; G satisfies the

Helmholtz equation with respect to P; for P – Q: G also

satisfies the Sommerfeld radiation condition with respect

to P; and is symmetric, GðP;QÞ ¼ GðQ;PÞ; so that the

roles of P and Q can be interchanged. GðP;QÞ is also

singular when P ¼ Q: Other fundamental solutions can be

used instead of G; see Section 5.1.

Let us apply Green’s theorem in Be to usc and G:Making

use of the radiation condition, we obtain

ð

S
GðP; qÞ

›usc

›nq
2 uscðqÞ

›

›nq
GðP; qÞ

( )

dsq

¼
2uscðPÞ; P [ Be;

0; P [ B:

(

Similarly, applying Green’s theorem in B to uin and G gives

ð

S
GðP; qÞ

›uin

›nq
2 uinðqÞ

›

›nq
GðP; qÞ

( )

dsq

¼
0; P [ Be;

22uinðPÞ; P [ B;

(

assuming that uin satisfies the Helmholtz equation in B:

Adding these equations, making use of Eqs. (3) and (4),

gives the integral representation

2uscðPÞ ¼ 2

ð

S
uðqÞ

›

›nq
GðP; qÞ dsq; P [ Be; ð6Þ

and the interior integral relation

ð

S
uðqÞ

›

›nq
GðP; qÞ dsq ¼ 2uinðPÞ; P [ B: ð7Þ

Eq. (6) shows that the field scattered by sound-hard

obstacles can always be represented as a double-layer

potential, with density uðqÞ:
Eq. (7) can be regarded as an equation for uðqÞ: It is

always uniquely solvable and it holds for all P [ B: It has

various names. For electromagnetic problems, it is called

the ‘Ewald–Oseen extinction theorem’ because it

‘expresses the extinction of the incident wave…at any

point inside…by interference with…the dipole field’ [21, p.

102]. Other terminologies are the ‘extended boundary

condition’ [6] and the ‘extended integral equation’ [9].

3. Boundary integral equations

Letting P! p [ S in Eq. (6) or (7), we obtain

Lu ¼ 2uin; ð8Þ

where

ðLuÞðpÞ ¼ uðpÞ þ
ð

S
uðqÞ

›

›nq
Gðp; qÞ dsq; p [ S: ð9Þ

Eq. (8) is a Fredholm integral equation of the second kind

for the boundary values of the total field u: It is often known

as the Helmholtz integral equation.

Alternatively, we can evaluate the normal derivative of

Eq. (6) on S; giving

Nu ¼ 2vin; ð10Þ
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where vin ; ›uin=›n and

ðNuÞðpÞ ¼
›

›np

ð

S
uðqÞ

›

›nq
Gðp; qÞ dsq; p [ S: ð11Þ

N is often called a hypersingular operator.

It turns out that Eq. (8) is uniquely solvable for u; for any

uin; except when k2 coincides with an eigenvalue of the

corresponding interior Dirichlet problem; these are called

the irregular values of k2; or irregular frequencies.

Similarly, Eq. (10) is uniquely solvable except when k2 is

an eigenvalue of the interior Neumann problem.

Irregular frequencies can always be eliminated. Indeed,

there is an extensive literature on devising integral-equation

methods that do not suffer from irregular frequencies; for

reviews, see Ref. [1, Section 3.6] or Ref. [22]. One

convenient method is the (direct) method of Burton and

Miller [23]. Thus, if we add Eq. (8) to a multiple of Eq. (10),

we obtain

Lhu ¼ 2ðuin þ ihvinÞ; ð12Þ

where h is a real, non-zero coupling parameter and Lh ¼
Lþ ihN: Eq. (12) is a hypersingular BIE for uðqÞ: It is
always uniquely solvable [1, Theorem 3.43].

Note that the integral representation for uscðPÞ has not

been modified: it remains as Eq. (6).

There are many papers in which the method of Burton

and Miller has been implemented, numerically; examples

are Refs. [24–28].

4. Null-field and T-matrix methods

4.1. The null-field equations

Let us seek the function uðqÞ that satisfies the interior

integral relation (7) for all P [ B: Waterman [6] noted that

we only have to satisfy this equation for all P in an open

region B2 , B;we shall assume that B2 is a ball. Explicitly,

choose an origin O [ B: Let S2 be the inscribed sphere to S

which is centred at O; so that B2 is the largest ball in B

ðcentred at OÞ: Similarly, let Sþ be the smallest escribed

sphere to S; centred at O; so that Sþ encloses the obstacle.

The region exterior to Sþ is Bþ , Be: These definitions are

convenient because they enable us to use the bilinear

expansion of G; namely

GðP;QÞ ¼ 22ik
X

n;m

ð21Þmĉm
n ðrPÞc2m

n ðrQÞ; ð13Þ

where rP is the position vector of P with respect to O;

rP ¼ lrPl , lrQl ¼ rQ; and we have used the shorthand

notation

X

n;m

¼
X1

n¼0

Xn

m¼2n

: ð14Þ

If P and Q are interchanged, we obtain

GðP;QÞ ¼ 22ik
X

n;m

ð21Þmĉm
n ðrQÞc2m

n ðrPÞ; rQ , rP:

ð15Þ

The functions ĉm
n and cm

n in Eqs. (13) and (15) are separated

solutions of the Helmholtz equation in spherical polar

coordinates. Thus, with r ¼ rr̂;

cm
n ðrÞ ¼ hnðkrÞYm

n ðr̂Þ and ĉm
n ðrÞ ¼ jnðkrÞYm

n ðr̂Þ;

are outgoing and regular spherical wave-functions, respect-

ively. jn is a spherical Bessel function, hn ; hð1Þn is a

spherical Hankel function, and Ym
n is a normalised spherical

harmonic. Note that cm
n ðrÞ satisfies the radiation condition

and is singular at the origin, where r ¼ 0:

The formulas (13) and (15) are well known; see, for

example, p. 352 of Ref. [29].

Suppose that P is restricted to being in B2 (where

rP , rqÞ: Then, using Eq. (13) in the interior integral

relation (7), we obtain

uinðPÞ ¼ 2ik
X

n;m

ð21Þmĉm
n ðrPÞ

ð

S
uðqÞ

›

›nq
c2m
n ðrqÞ dsq; ð16Þ

P [ B2: But, as uinðPÞ is assumed to be a regular wave-

function in B2; there exist coefficients d
m
n such that

uinðPÞ ¼
X

n;m

d
m
n ĉ

m
n ðrPÞ; P [ B2; ð17Þ

this is separation of variables inside a ball, using spherical

polar coordinates. The coefficients dmn can be considered as

known. Equating coefficients in Eqs. (16) and (17) gives

2ikð21Þm
ð

S
uðqÞ

›

›nq
c2m
n ðrqÞ dsq ¼ d

m
n ;

n ¼ 0; 1; 2;…; m ¼ 2n;…; n:

ð18Þ

These are the null-field equations for scattering by a sound-

hard obstacle. They were first obtained by Waterman [8].

They are uniquely solvable for all real values of k2:

4.2. The scattered field

Having found uðqÞ on S; somehow, the scattered field

uscðPÞ for P [ Be is given by Eq. (6). If P is outside Sþ; we

can use Eq. (15) to give

uscðPÞ ¼
X

n;m

c
m
n c

m
n ðrPÞ; P [ Bþ; ð19Þ

where the coefficients cmn are given by

c
m
n ¼ ikð21Þm

ð

S
uðqÞ

›

›nq
ĉ2m
n ðrqÞ dsq: ð20Þ

The formula (19) merely states that an outgoing wave-

function can be expanded as an infinite series of outgoing

spherical wave-functions, outside Sþ: The assumption that

Eq. (19) can be used everywhere in Be; including in
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the region between Sþ and S; is known as the Rayleigh

hypothesis [30].

4.3. Solving the null-field equations

The most common method for solving Eq. (18) begins by

choosing a set of expansion functions, {fm
n ðqÞ}; which is

suitable for representing functions defined on S; thus,

suppose that we can write

uðqÞ ¼
X

n;m

u
m
nf

m
n ðqÞ; q [ S; ð21Þ

where u
m
n are coefficients to be found and we have used Eq.

(14). Note that we could re-order the summation so that

there is a single summation index; this is often done in the

literature.

Substituting Eq. (21) in Eq. (18) gives

X

n;m

Q
mm
nn u

m
n ¼ d

m
n ;

n ¼ 0; 1; 2;…

n ¼ 2n;…; n;
ð22Þ

where

Q
mm
nn ¼ 2ikð21Þm

ð

S
fm
n

›

›nq
c2m
n ðrqÞ dsq: ð23Þ

Eq. (22) gives an infinite system of linear algebraic

equations for u
m
n ; truncating this system leads to a numerical

method for solving the null-field equations.

Similarly, the scattered field is given in the region outside

Sþ by Eq. (19) in terms of the coefficients cmn ; defined by Eq.

(20). Substituting Eq. (21) gives

c
m
n ¼ 2

X

n;m

Q̂
mm
nn u

m
n ; ð24Þ

where

Q̂
mm
nn ¼ 2ikð21Þm

ð

S
fm
n

›

›nq
ĉ2m
n ðrqÞ dsq: ð25Þ

This formula should be compared with Eq. (23).

4.4. Numerical experience

To proceed further, we must choose a set {fm
n }: In theory,

we can choose any convenient basis. However, in practice,

the choice may be crucial: we want the truncated system of

equations to be well conditioned and to yield a good

approximation to uðqÞ: Most authors have chosen wave-

functions forfm
n ðqÞ; there are eight obvious choices, namely,

cm
n ; ›cm

n =›nq; ĉm
n ; ›ĉm

n =›nq; ð26Þ

and their complex conjugates. Those involvingcm
n are known

to give complete sets, whereas those involving ĉm
n do not. For

example, {ĉm
n } is not complete whenever k2 is an eigenvalue

of the interior Dirichlet problem for B: Thus, the use of

regular wave-functions reintroduces the difficulties at

irregular frequencies.

In his 1965 paper on electromagnetic scattering,

Waterman [6] used outgoing spherical vector wave-

functions for fm
n ; the scalar equivalent would be to use

cm
n : In his 1969 paper on acoustic scattering [8], he

showed that it is better to use regular spherical wave-

functions ĉm
n ; because this choice leads to a symmetric Q-

matrix if S is an ellipsoid. As he emphasised in his 1999

paper, this offers ‘a tremendous advantage: in the [low-

frequency] Rayleigh limit, for example, what are appar-

ently large numerical values below the diagonal are

replaced by their small counterparts above the diagonal.

Note that this replacement must be carried out to avoid

serious precision problems’ [31, p. 2970].

To understand this difficulty, observe that, for fixed w;

hnðwÞ,
2

w

� �
n G nþ

1

2

� �

iw
ffiffi
p

p and jnðwÞ,
w

2

� �
n

ffiffi
p

p

2G nþ
3

2

� � ;

as n!1; so that hnðwÞ grows rapidly with n whereas jnðwÞ
decays rapidly. Thus, the matrix Q

mm
nn ; defined by Eq. (23),

seems to grow as n!1: Also, Waterman’s Q
mm
nn ; defined by

Eq. (23) with fm
n ðqÞ ¼ ĉm

n ðrqÞ; seems to grow as n!1 but

seems to decay as n!1; however, the growth with n is

illusory when S is an ellipsoid because we know then that

Q
mm
nn ¼Q

mm
nn ; and this fact can be used to construct a

diagonally dominant Q-matrix. This explains why regular

wave-functions should be used for fm
n for ellipsoids of any

eccentricity.

If S is not an ellipsoid, other methods may help to

alleviate the rapid growth of hnðkrÞ: One way is to extract a

factor that grows with n; writing

hnðwÞ ¼
2

w

� �n G nþ
1

2

� �

iw
ffiffi
p

p HnðwÞ;

say, and then re-writing the null-field equations in terms of

Hn; see Ref. [32].

Another way is to replace the spherical wave-function cm
n

in Eq. (23) by a spheroidal wave-function. This method was

introduced by Bates and Wall [9]. They implemented it for

two-dimensional problems, using elliptical wave-functions

(Mathieu functions). Subsequently, spheroidal wave-func-

tions were used by Hackman [33]. The use of elliptical or

spheroidal wave-functions seems to give a Q-matrix that is

better conditioned when S is elongated, and this leads to a

better numerical scheme. The precise reason for this has not

been investigated, but, intuitively, it is because the region in

which the interior integral relation (7) is imposed ‘expli-

citly’ (rather than by analytic continuation) has been

enlarged from the inscribed ball B2 to an inscribed

spheroid. A third way to improve the conditioning of

the Q-matrix is simply to compute with higher precision,

thus reducing the rounding errors by carrying more digits in

the floating-point arithmetic. This ‘brute-force’ method was

shown to be very effective by Mishchenko and Travis [34],
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who used complex arithmetic with approximately 31

decimal digits; see also Refs. [18: p. 544,19: p. 160].

4.5. The T-matrix

Recall the two expansions Eqs. (17) and (19). As the

underlying problem is linear, we must be able to write

c
m
n ¼

X

n;m

T
mm
nn d

m
n ; ð27Þ

for some (infinite) matrix T with entries T
mm
nn : This is usually

called the T-matrix.

We may use the null-field method to calculate T: Let us

use an obvious matrix notation and write Eqs. (22) and (24)

as

Qu ¼ d and c ¼ 2Q̂u;

respectively. Eliminating u gives Eq. (27), which we write

as

c ¼ Td with T ¼ 2Q̂Q
21
: ð28Þ

The first of these equations is the definition of the T-matrix,

whereas the second gives a prescription for calculating the

T-matrix.

The T-matrix characterises the scattering properties of

the obstacle: it depends on the scatterer’s shape and other

properties (boundary condition or internal properties) and

on the frequency, but not on the incident field (which is

represented by the coefficients dmn in dÞ: This makes it useful

as a ‘building block’ for multiple-scattering problems.

4.6. Properties of the T-matrix

It is clear that the unique-solvability of the underlying

boundary-value problem implies that the T-matrix exists

and is unique. This in turn implies that the T-matrix must be

independent of the choice of {fm
n ðqÞ}: However, this choice

may be important in numerical calculations, when T must

necessarily be truncated.

The T-matrix must also satisfy additional constraints.

These follow from considerations of reciprocity and energy.

With our definitions and normalisations, we have

T
mm
nn ¼ ð21Þmþm

T
2m;2m
nn ; ð29Þ

and

T
mm
nn þ T

mm
nn þ 2

X

L;M

TMm
Ln T

Mm
Ln ¼ 0; ð30Þ

where the overbar denotes complex conjugation. These

relations can be used as a check on computations of T; or

they can be incorporated into schemes for computing T

[35–37]; see Ref. [17] for further references.

5. Some connections

We have described two methods for solving problems of

acoustic scattering. One uses BIEs; these can be solved in

various ways, such as by using boundary elements. This

method is not very convenient for multiple-scattering

problems, where there are several scatterers: good methods

should separate the scattering properties of each scatterer

from the spacing and geometrical arrangement of the

scatterers. This separation can be made explicit when the

T-matrix for each scatterer (in isolation) is known. We have

seen that these T-matrices may be calculated using the null-

field method, via the second formula in Eq. (28), or one of

its variants. However, we have also seen that (some) null-

field methods can be sensitive to numerical errors and ill-

conditioning.

Thus, it is natural to consider ways of computing the T-

matrix using BIEs. Before pursuing this idea, let us review

some other connections that have been made.

5.1. Modified fundamental solutions

BIEs can be derived using a different fundamental

solution instead of G: These usually have the form

G1ðP;QÞ ¼GðP;QÞ22ik
X

n;m

ð21Þmamn cm
n ðrPÞc2m

n ðrQÞ; ð31Þ

where the coefficients amn are prescribed. Fundamental

solutions of this type can be used to eliminate irregular

frequencies [1, Section 3.6], [38].

In Ref. [39], the authors generalise Eq. (31), and consider

G1ðP;QÞ ¼ GðP;QÞ2 2ik
X

n;m

X

n;m

ð21Þmamm
nn c

m
n ðrPÞc2m

n ðrQÞ;

where a
mm
nn are constants. They show that

ð

S2

ð

S

›

›nq
G1ðp; qÞ

�
�
�
�
�

�
�
�
�
�

2

dsq dsp

will be minimised if a
mm
nn ¼ T

mm
nn ; which means that G1 will

then be the best L2-approximation to the exact Green’s

function for the exterior Neumann problem (see Ref. [40]

for more information on exact Green’s functions). Ahner

[41] has discussed further connections with exact Green’s

functions.

5.2. The Petrov–Galerkin method

Let us suppose that k2 is not an eigenvalue of the interior

Dirichlet problem, so that Eq. (8) is uniquely solvable. A

general method for solving such equations is the Petrov–

Galerkin method [42, Section 3.1.2] [43, Section 3.2]; this is

also called the method of moments. Thus, truncate Eq. (21)
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and write

uðqÞ .
XN

n¼0

Xn

m¼2n

u
m
nf

m
n ðqÞ ¼ uNðqÞ;

say. Then, determine the coefficients u
m
n by solving

ðLuN 22uin;x
m
n Þ ¼ 0; n¼ 0;1;2;…;N; m¼2n;…;n;

where the test functions {xmn ðqÞ} are chosen and we have

used the inner product in L2ðSÞ

ðu;vÞ ¼
ð

S
uðqÞvðqÞ dsq:

(The choice xmn ¼fm
n gives Galerkin’s method). Explicitly,

we have the system

XN

n¼0

Xn

m¼2n

A
mm
nn u

m
n ¼ b

m
n ;

n¼ 0;1;2;…;N

m¼2n;…;n;

where

A
mm
nn ¼ ðLfm

n ;x
m
n Þ and b

m
n ¼ 2ðuin;xmn Þ: ð32Þ

The Petrov–Galerkin method is a well-studied projection

method. For example, necessary and sufficient conditions on

fm
n and xmn can be found which guarantee that uN !u as

N!1; see Ref. [44, Section 16.2].

Now, we are going to make a specific choice for xmn [45].

Write

c2m
n ðrPÞ ¼

i

2k
ð21Þm

ð

S
tmn ðqÞGðP;qÞ dsq; P[Be; ð33Þ

where tmn is a source density. As k2 is not an eigenvalue of

the interior Dirichlet problem, we could determine tmn by

solving the integral equation

22ikð21Þm
›

›np
c2m
n ðrpÞ

¼ r
m
n ðpÞþ

ð

S
tmn ðqÞ

›

›np
Gðp;qÞ dsq; p[ S; ð34Þ

which is obtained by calculating the normal derivative of

Eq. (33) at p[ S: Also, use of Eq. (13) in Eq. (33) for

P[Bþ shows that

ðĉm
n ;t

m
n Þ ¼ dnndmm: ð35Þ

Next, we make the choice xmn ¼ tmn in Eq. (32). Changing the

order of integration, using Eqs. (9) and (34), and the

symmetry of G gives A
mm
nn ¼ 2Q

mm
nn ; where Q

mm
nn is defined by

Eq. (23). Combining Eqs. (17) and (35) gives bmn ¼ 2dmn :

Hence, solving the Helmholtz integral equation using a

particular Petrov–Galerkin method leads to precisely the

equations Qu¼ d; Eq. (22), obtained when we solved the

null-field equations.

This connection does not have any practical value, but it

may lead to a numerical analysis of the null-field method.

(There is a convergence analysis for the null-field method

[46,47], but it assumes that the set {›cm
n ðrqÞ=›nq} forms

a ‘Riesz basis’ of L2ðSÞ; and this is now known to be false;

see Refs. [48,49: chapter V]).

5.3. Using a boundary integral equation to calculate

the T-matrix

It is obvious that we can compute the field scattered by an

object in (at least) two ways. We could solve a BIE, such as

Eq. (8) or (12), for uðqÞ; and then use Eq. (6) to calculate

uscðPÞ: Alternatively, we could use the T-matrix, combining

Eqs. (17), (19) and the first of Eq. (28). As the underlying

boundary-value problem has exactly one solution, both

ways must give the same result.

The idea of using an integral equation to obtain the T-

matrix is explicit in a short note of Gurel and Chew [50]. In

the context of electromagnetic scattering by thin strips, they

‘show how to obtain a TMM ½T-matrix method� solution

from an IE [integral-equation] solution, i.e.

IE ) ½Surface� Current Distribution
) T Matrix ð) Scattered FieldÞ:

ð36Þ

…Although both of the methods have long histories, the idea

of bridging the two has not attracted much attention…The

use of Eq. (36) is best appreciated when the individual T

matrix of a particular…scatterer is difficult, complicated, or

simply impossible to compute using a conventional TMM’

[based on a null-field approach] [50, p. 1624].

Let us explain how to realise this idea. First, we make a

specific choice for the incident field. Thus, we suppose that

d
m
n ¼ dnNdmM ;

in Eq. (17), so that

uinðPÞ ¼ ĉM
N ðrPÞ and c

m
n ¼ T

mM
nN :

Denote the corresponding solution of Eq. (8) by UM
N ðqÞ; so

that

LU
M
N ¼ 2ĉM

N : ð37Þ

More generally, we should solve Eq. (12) if we want to

avoid irregular frequencies. Then, having found UM
N ; the

scattered field is given by Eqs. (19) and (20). In particular,

we can calculate cmn ; whence

T
mM
nN ¼ ikð21Þm

ð

S
U

M
N ðqÞ

›

›nq
ĉ2m
n ðrqÞ dsq: ð38Þ

This is a formula for the entries in the T-matrix.

Notice that the integral equations to be solved, Eq. (37),

have the same L but many different right-hand sides; their

solutions, UM
N ; can be obtained efficiently.

The formula (38) is simple and explicit. It bypasses

all the problems associated with the ill-conditioning of

the Q-matrix, and it permits the use of sophisticated

boundary-element methods in the computation of UM
N ðqÞ

for q [ S: As far as we know, this connection between
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BIEs and T-matrix methods has not been exploited: it

should be!
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