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Abstract

The problem of a point force acting in a composite, two-dimensional, isotropic elastic half-plane is considered. An
exact solution is obtained, using Mellin transforms and the Melan solution for a point force in a homogeneous half-
plane.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a famous ‘discussion’, Dundurs (1969) introduced the dimensionless parameters, o and /3, that bear his
name. The discussion was of a paper by Bogy (1968) on two isotropic elastic quarter-planes, bonded to-
gether. One might expect that the eigenfunctions for this problem would depend on three dimensionless
parameters (such as the two Poisson ratios and the ratio of the two shear moduli), whereas Dundurs
showed that only two are needed.

We are interested in the same configuration as Bogy, but loaded by a point force inside one of the
quarter-planes. Indeed, as Dundurs (1969) remarked: ‘One desirable new result ought to be ...explicit
results for some specific cases of loading. In particular, concentrated unit loads for which the fields are
Green’s functions . . .could be suggested for such an investigation’. Bogy has shown how problems involving
bimaterial wedges, loaded on their faces, can be solved, in principle, using Mellin transforms (Bogy, 1968,
1970, 1971) but, as far as we know, this method has not been used to construct the Green’s function, G.
Bogy (1970) did give results for a point force acting perpendicularly to the boundary of one of the quarter-
planes. Tewary (1991) has constructed G using the Green’s function for the bimaterial full-plane (and
anisotropic materials). His method requires the inversion of a 6 x 6 matrix. We use a different method, limit
ourselves to isotropic materials, and have to invert a 4 x 4 matrix, which we do explicitly. Our strategy
begins by subtracting Melan’s solution (1932) for a point force in a homogeneous half-plane; this ensures
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that G has the correct singular behaviour. The difference is then calculated using eigenfunction expansions
and Mellin transforms.

The solution of the problem of a point force acting inside one of the quarter-planes can be used to study
the effect of various defects in that quarter-plane, perhaps by setting up a boundary integral equation
over the boundary of the defect. Use of G will mean that only the boundary of the defect has to be dis-
cretised: the effects of both the free surface and the interface have already been included, exactly, in G. Such
a Green’s function will be especially useful when the defect is near the intersection of the free surface and
the bimaterial interface. Problems of this kind, involving an edge crack perpendicular to the free surface,
have been considered in two recent papers. Xu et al. (2001) used a combination of approximate expansions
to estimate the stress-intensity factors. Bae and Krishnaswamy (2001) described experiments with thermal
and mechanical loadings, and compared their results with finite-element computations. By making use of G,
we will be able to analyse cracks of any shape and location within one of the quarter-planes (using a
hypersingular integral equation). Cracks lying in the interface require a different analysis; see, for example,
the paper by Antipov et al. (1997), and references therein.

The plan of the paper is as follows. After formulating the problem in Section 2, we discuss the anti-plane
problem in Section 3. The main purpose is to explain the method before it is used for the much more
complicated plane-strain problem. The method makes use of separated solutions of the governing diffe-
rential equations in wedge-shaped regions, solutions that are free of tractions on one boundary of the
wedge; the plane-strain version of these solutions are constructed in Section 4. Two of these solutions are
combined in Section 5 so as to construct eigenfunctions for composite wedges. The construction of G itself
is given in Section 6.

2. Formulation

Consider an elastic half-plane x > 0, where x, y are Cartesian coordinates. The boundary x = 0 is free
from tractions. A point force is acting at a point P with coordinates (x',)'); we assume that x’ > 0 (so that P
is in the solid) and )’ > 0. We want to calculate the Green’s function G(x;x’), where x = (x,y) and
x' = (x',)/) are the position vectors of a typical point in the solid and the point-force location, respectively,
with respect to the origin O. G has components Gy; as usual, G;;(x;x’) gives the ith component of the
displacement at x due to a point force acting in the jth direction at x’.

For a homogeneous isotropic half-plane, under plane-strain conditions, the Green’s function is well
known; it was found by Melan (1932) and so we write it as GM. Detailed expressions for G™ are given in
Appendix A; see also (Telles and Brebbia, 1981).

We are interested in composite half-planes, made from two isotropic quarter-planes, 2, and 2,, where 2,
is the first quadrant in the (x,y)-plane (x > 0 and y > 0) and 2, is the fourth quadrant (x > 0 and y < 0).
Suppose that the solid in 2, has Lamé moduli 4, and y,, and Poisson’s ratio v, £ = 1,2. Recall that P is at
x' € 2,. Write

oy GM(xx) + Gl (xx), xe€ 2,

Glx; ) = {Gz(x;x’), x €2y 1)
the problem is to calculate G' and G*. We know that G(x; x’) is singular at x = x/, has zero tractions on the
free surface x = 0, and has continuous displacements and tractions across the interface y = 0. By intro-
ducing GM, we have removed the singularity (G and G™ have the same singularities at x') and we have not
changed the free-surface conditions. However, we have changed the interface conditions: new conditions
relating G' and G” across y = 0 will be obtained. We then construct G' and G? using polar coordinates and
eigenfunction expansions in each quadrant. (Consequently, our method should extend to (straight) inter-
faces that are not perpendicular to the free surface and to certain composite wedges.)
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3. The anti-plane problem

The scalar, anti-plane problem is relatively easy to solve. We use it to explain our method of solution.
We seek a function G(x; x’) that has a logarithmic singularity at x = x/, satisfies Laplace’s equation in x > 0
and

0G/ox =0 onx =0, (3.1)

and is such that G and the corresponding tractions are continuous across the interface y =0, x > 0; in
addition, the stresses must — 0 as x*> + > — oo with x > 0.
The half-plane solution (satisfying Eq. (3.1)) is

GM(x;x') = logR + logRy,
where R =[x — x| = {(x = x)* + (v — ¥/)*}""* and Ry = {(x + )" + (y — /)*}'/*. Define
G'(x) = GM(0;x') = 2log/

and
GM(x;x') = GM — G° = log(RRy/1").
We write
ML | g
Glx: x) = GOx' GV (x;x') + Gl (x;x), x¢€ 2, 39
i) = +{ G xe o, 32

where G' and G? are to be found.
The conditions on G lead to the following conditions on G*:

VG'=0 in2, (=12, (3.3)
(0/dx)G'(0,y;x') =0 for y > 0, (3.4)
(0/x)G*(0,y;x') =0 fory <0, (3.5)
G'(x,0+;x) — G*(x,0—; x') = —GM(x,0;x'), x>0, (3.6)
oG , 0G? , oGM ,
ula(x,O—l—,x)—,qu(x,O—,x)——,ula—y(x,O,x), x> 0. (37)

In each quarter-plane, we can write down separated solutions in plane polar coordinates, namely
UL 0) in 2, =12,

where U (0) = cos{w(0 —in)}, U2 (0) = cos{w(0 + in)} and w is an arbitrary parameter. These expressions

w

automatically satisfy Egs. (3.3)-(3.5). We now consider a superposition of these solutions, and write
1 c+ioo )
G' = 3 A'(z)r=U"(0)dz in 2, (=12, (3.8)
L Je—ioo
where A'(z) and 4%(z) are to be found, and the contour in the complex z-plane will be chosen later.
Let us write the first interface condition, Eq. (3.6), as
[Gl(x) = f(x), x>0, (3.9)

where the left-hand side gives the jump, G' — G2, across y = 0, and f(x) is known. Substituting from Eq.
(3.8) gives
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[Gl(x) = 2Lm /C loox*Z{Al(z) —A%(2)} cos% dz,

using x = r on 0 = 0. This contour integral is in the form of an inverse Mellin transform (Bleistein and
Handelsman, 1975). Thus, if f(x) has a Mellin transform F(z), defined by

F(z) :/ ¥ f(x)dx
0
its inverse is given by

1 c+100
flx)= i /_‘ X°F(z)dz.
So, Eq. (3.9) gives
{4'(2) 7A2(Z)}COS%T£Z:F(Z). (3.10)

Similarly, write the second interface condition, Eq. (3.7), as [T](x) = A(x) for x > 0, where [T] denotes the
jump in the tractions and 4 is given. As du/dy = r~'0u/d0 on 0 = 0, we obtain

{,ulAl(z)Jr,uzAz(z)}zsin%nz:H(er1). (3.11)

Solving Egs. (3.10) and (3.11) gives
Al(z) = {H( + l)cos;nz+u2F zsm;nz}/Aa

1 1
AZ(Z):{H(z—i—l)cosEnz—u] zsmznz}/Aa

1

A(z) = = (y + wy)zsin nz.

G’ can then be found from Eq. (3.8). To evaluate these contour integrals, we have to select ¢, and this
requires us to know the strips of analyticity of F(z) and H(z). As

O(x) as x — 0,
O(logx) asx— oo,

7t ={

it follows that F(z) is analytic for —1 < Re(z) < 0. (If we had not subtracted G° from GM, F(z) would not
have existed for any z.) Similarly, we find that

[ O(1) x—0,
h(x)_{o(xl) sz—>00,

so that H(z) is analytic for 0 < Re(z) < 1. Hence, the parameter ¢ should be chosen with —1 < ¢ < 0.
Let us evaluate F(z) and H(z + 1). We have

e (e B (e !
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After an integration by parts,

1 S - /
F(Z):_/ a 2x ;T x+2x 2 xdx
ZJo ((x=x) 4y +¥)+)

| I 1 1 1 1 .
= + —+ + — |x*dx,
2z Jo X—w x—w x+w x+w

where w = X' + iy’ = /e and w = X' — iy’. Hence, using Eq. (B.3) four times,

F(z) = z:i(r’;g;z cos { <;n - 9’)2}.

Similarly,
/N\Z 1
H(iz+1)= uln(li’) cos { (—n — 0’)2},
COs 3Tz 2
whence

A'(2) =y, ZSZZ); cos { (%n - 9’)2},

where y; =y, — p, and y, = 2p,.
Next, let us evaluate G. From Eq. (3.8), we have
Gl - /"'*iOC ( r )—z cos{(3m — 0')z} cos{(3m — 0)z} o, (3.12)

r/

N (i + 1) Jeoine zsinnz

with —1 < ¢ < 0. The integrand has simple poles at z = +N, N = 1,2, ..., with residues

L () coof (- oo (L o))

1 ( ; )IN {COS{N(TC +0—0)} +cos{N(0+ 9/)}]’

T TNz \#
and a double pole at z = 0 with residue n~! log(#'/r). Moving the inversion contour to the left, we pick up
residue contributions from the poles at z = —N, giving
=y~ L\ / /
G'= -1 —(—) cos{N(m+0—0)} +cos{N(0+ 0 3.13
e 2 () Teostv )} + cos{N (0 + )} (313)
Hy — /
= —={logR| +1logR, — 2logr'}, 3.14
MJFMZ{gl gR, gr'} (3.14)

where Ry = {(x +x)* + (y + )" }"% Ry = {(x = ¥')* + (y + »')*}"/* and we have summed the series in Eq.
(3.13) using

> XV 1 )
Z—coqu5:——log(1—2Xcosd$+X ),
= N 2

the series being convergent for |[X| < 1. Exactly the same formula, Eq. (3.14), is obtained by moving the
contour in Eq. (3.12) to the right instead. Similarly, we obtain

2
G = ¢{logR +logRy — 2logr'},

M+
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and then Eq. (3.2) gives

SN log(RRo) + [(1y — 12)/(y + )] 10g(RiR2),  x € 24,
G(x;x) _Ga(x)+{ 20,/ (i, + 11,)] log(RRy), x € 9,,

where G, = —=2[(p; — )/ (y, + 1,)] log#' is an additive constant (that can be discarded). One can verify
that this expression for G satisfies all the relevant conditions.
In the sequel, we shall use a similar method for the corresponding plane-strain problem.

4. Elastic wedges

In plane polar coordinates r, 0, the equilibrium equations for plane-strain deformations are (Graff, 1991,
p. 600)

a‘[-'rr l a‘l:r() T — Too

o r 00 r o (4.1)
61,.0 1 6100 2 o
o Tro0 =0 2

in the absence of body forces. The stresses are given by Hooke’s law as

du, 19 :
= (4 20) +A(—ﬁ+u—>,

or r o r

0w, 1 %uy u,
T99—/15+(A+2,u)<;@+7),

_ L0 Ou uo
=G T )

where u, and uy are the radial and angular components, respectively, of the displacement.
We look for solutions of the equilibrium equations in the form

u,(r,0) = o/r°e™ =% and  uy(r,0) = iBrem =0

3

where .o/, %, w, m and 0, are constants. Substitution in Egs. (4.1) and (4.2) gives
2(1 —=v)(w? = 1) —m*(1 = 2v)].Z + m(3 —4v — )% = 0, (4.3)
m(3 —4v+ o) +[(1 —2v)(0? — 1) = 2m*(1 —v)|% =0, (4.4)
using A/u = 2v/(1 — 2v). Setting the determinant of this system to zero gives
m* —2m*(w® + 1) + (0* — 1)* =0,
whence m = +(w + 1) and m = £(w — 1). Then, Eq. (4.3) gives the following results:
if m=+(w+1), then .o/ ==+,
whereas

ifm=+(w—-1), then 3—4v+w) /£ 3—-4v—w)%=0.
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Hence, combining these four solutions and writing in real form, we obtain
u, = r’{dcos(w+ 1)y + Bsin(w + 1)y + Ccos(w — 1) + Dsin(w — 1)y},

ug = r°{—Asin(w + 1)y + Bcos(w + 1)y — CQsin(w — 1) + DQcos(w — 1)y},
where A, B, C and D are arbitrary constants,
v=0-0, Q=(w+kK)/(w—x) and r=23—4v.
We want solutions that also satisfy
T9=109=0 on 8=060()=0). (4.5)
These conditions will be satisfied if
(w—Kx)A+ (w+1)C=(w—Kx)B+ (w—1)D=0.

Hence, renaming the remaining arbitrary constants, we obtain the following expressions,

u, =r°U,() and uy =r"V,(¥), (4.6)
where
U, () = A{(w + 1) cos(w + 1)} + (kx — @) cos(w — 1)y}
+ B{(w — 1)sin(w + 1)} + (x — o) sin(w — 1)/}, (4.7)

V() = A{—(ow + 1) sin(w + 1){ + (k + ) sin(w — 1)y}
+ B{(w —1)cos(w+ 1)y — (k + w) cos(w — 1)}, (4.8)
and 4 and B are arbitrary constants (that can vary with ). The corresponding stress components are
T = Zuwr‘”’lSw(lp) and  tgp = 2uwr” ' T,(Y),
where
So(¥) =A{— (0w + 1)sin(w + ) + (0 — 1) sin(w — 1)} —2B(w — 1) sin wy sin i,

T,(y) =24(w + 1) sinwy siny + B{—(w — 1) sin(w + 1)}y + (o + 1) sin(w — 1)y}.

Evidently, S,,(0) = T,,(0) = 0 in accordance with Eq. (4.5), for any choice of 4, B and w.
Later, we will also need the Cartesian components of the displacement. As u, = u,.cos 8 — uysin 6 and
u, = u, sin 0 + uy cos 0, we obtain

ue =X, (,0) and u, =¥, (4, 0), (4.9)
where
X, (0, 0) = ADy (0,1, 0, ) + BY (0,4, 0, x), (4.10)
Yo (W, 0) = Ads(, 1, 0, K) + B2 (w0, 4, 0, k), (4.11)
B (0,1, 0,K) = (0 + 1) cos(@ + Y — 0) + rcos(wy — i + 0) — wcos(wy — y — 0), (4.12)
W, (0,,0,5) = (0 — 1) sin(op + ¢ — 0) + rcsin(wy —  + 0) — wsin(oy —y — 0), (4.13)
By (0,1, 0, 1) = —( + 1) sin(@ +  — 0) + xsin(wy — Y + 0) + wsin(wy — — 0), (4.14)
Wy (., 0,1) = (0 — 1) cos(wy + 1) — 0) — rccos(wf — Y + 0) — o cos(wy — i — 0). (4.15)
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5. Composite elastic wedges
Let us return to the geometry of interest, namely two right-angled wedges, 2, and 2,. We use the ex-
pansions (4.6), and write
u.=r°U(Y,) and up=r"V'(y,) in 2, £=1,2,

where Y, = 0 — in, , = 0+ 1n, and U/ and V! are defined by Egs. (4.7) and (4.8), respectively, with co-
efficients 4(w), B*(w) and x; = 3 — 4v,, £ = 1,2. The parameter o is unspecified at present.

Next, we calculate the discontinuity in the displacement and traction across the interface at 6 = 0; later,
these discontinuities will be prescribed, and this will lead to a determination of the coefficients 4° and B’.
The desired discontinuities are

] = r*{U,,(—3m) — Us(3m)},
o] = r*{¥,(=3m) = V2 Gm)},
(6] = 200 {1, S, (=5m) — 1S5, Gm)

[to] = 2c0r” {1y Zi(_%”) - ,usz(%n)}

Straightforward calculation gives

] = r*{(x; — 1 = 20)4" — (ky — | — 2w)4’} sinlon
+7°{(k1 + 1 = 20)B" + (k2 + 1 — 2w)B*} cosiwn, (5.1)

o] = r*{(1c1 + 1 + 2w)A4" + (1, + 1 + 2w) 4’} coslwn

+r°{=(k1 — 1 + 2w)B" + (1, — 1 + 20)B*} siniomr, (5.2)
[t,] = 4or” H{o(uA" + pA4°) coslon — (0 — 1)(u,B' — p,8%) sinlon}, (5.3)
[tg) = 4or” {(w + 1) (A" — uA*) sindon + w(pB' + p,B%) cosiwn}. (5.4)

Setting these four quantities to zero leads to a determinantal equation for w, and the construction of
eigenfunctions for the bimaterial wedge. Explicitly, we obtain

P (w)a =0, (5.5)
wherea= (4' 4> B' B?)’,
—(k1—=1=-20)S (kr—1=-2w)S (kK1+1-2w0)C (k2+1-2w)C
(ki +14+20)C (k2 +1420)C (k1 —1420)S —(k2—1+2w)S

9(w) = , (5.6)
4’ C 40’ 1, C do(w— DS —do(w — 1)u,S
—do(o+ DS 4o+ 1)w,S 4’ C 40’ 1, C
S = —sindwn and C = cosiwn. Tedious calculation shows that

det 7 = —4 0 (1 — ) + (1 — v2)y PP A(w), (5.7)
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where
A(@) = (B = D)S* + {1 + 207 (2 = B)B}S” + o™ {0 (2 — B) — o’} (5-8)
and « and f are the Dundurs parameters (Dundurs, 1969), defined by

C A =v)uy — (I =)y and = (1 =2v)p, — (1 = 2vo)p,

(= + (1 =)y 201 = vy +2(1 = va)py

Expressions for A(w) were found previously by Dundurs (1969) and by Bogy (1968, 1970, 1971).
We are interested in the zeros of A(w) because they lead to non-trivial solutions of Eq. (5.5) and they
determine the behaviour near » = 0. Note that det 2 and A are even functions of w, so that we can write

Axw,) =0, n=12,...,

where Re(w,) > 0. Some of these zeros have been plotted by Bogy (1971, Fig. 4(c)) as functions of o and f.
In addition, w = 0 is a double zero of A(w): for small w, A(w) ~ {(n/2)* — 2}w* > 0 as |«| < 1 (Dundurs,
1969). This zero at w = 0 corresponds to an eigenfunction that is logarithmically singular as » — 0.

Inspection of Eq. (5.8) shows that A(£1) = 0. In fact, if ® = 1 + ¢, we have A(1 + &) ~ 2ea(o — 2f) for
small ¢. Thus, +1 are double zeros if a(a — 28) = 0; this condition was found by Dundurs (1969, Eq. (8a)).
Moreover, if a(a —2f) > 0, there must be a (real) zero of A(w) between 0 and 1 (because A(w) increases
from @ = 0 but A(1) = 0 and the slope A'(1) > 0).

6. Construction of Gj

Let G'(x') = GM(0;x') and GM(x;x') = GM(x;x') — G'(x'). (G is given explicitly in Appendix A.)
Change the decomposition (2.1) to

L (0 E;M(x;x’)JrGl(x;x’), x €9, 6.1
G(x’x)_G(x)+{G2(x;x’), re 2, (6.1)

(so that the definition of G* has changed too). We have to calculate G' and G*. Let the corresponding stress
components be

, o o o
0 4 4 4
T};qj = )ugépq —an ij + My <—axp qu + —axq Gpj> .

The boundary and interface conditions are

Tpllj(O,y; X)=0, y>0, (6.2)
T3,(0,y:x) =0, y<O0, (6.3)
G (x,0+;x) — G2 (x,0—;x') = =G (x,0:x), x>0, (6.4)
T;zj(x, 0-+;x) — T;zj(x,O—;x') = —Tpl\z/lj(x,O;x'), x>0, (6.5)

for p=1,2 and j = 1,2. We also require that all the stresses Y;f'qj — 0 as x* +y* — oo in 2.

For j=1,2 and £=1,2, let ij(x; x') and Gf’,j(x; x') denote the radial and angular components, res-
pectively, of the displacement at x; we use this mixed formulation because the point force acts in the jth
Cartesian direction at x’ but the displacement is most conveniently written in polar coordinates. Thus, we
write
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1 c+ioo
l —zr7l
o % - r U,Z(l//[j) dZ, (66)
. 1 c+ico ,
Gy = 5 / L)z, (6.7)

in 2, where the unknown coefficients in U’_ and V*, are 4/(z) and Bj(z). These representations automati-
cally satisfy Egs. (6.2) and (6.3).
We determine 4/(z) and BY(z) using Eqs. (6.4) and (6.5). Let

f;,,(x):—ég(x,o;x') and  h,(x) = —TY

(6,0, X)), x> 0.

We know that u, = u,, uy = u,, 7,9 = 7, and 799 = 15, on 0 = 0. Hence, following the method of Section 3
and making use of Egs. (5.1)—(5.4), we obtain

I(—z)a;=b;, j=1.2, (6.8)

where a; = (4} 4; B} B; )T, b, = (F;(z) Fy(z) Hy(z+1) Hy(z+1))" and the 4 x 4 matrix Z is
defined by Eq. (5.6). F,;(z) and H,;(z) are the Mellin transforms of f,;(x) and &,,(x), respectively; these are
calculated in Appendix B.

The explicit entries in the inverse matrix, [2 (—z)]fl, are given in Appendix C. ' We can write

&(2)

8(1 —INT'A(z)’
where I' = u, /1, A(z) is the Bogy determinant defined by Eq. (5.8), and &(z) is the 4 x 4 matrix defined in
Appendix C. Thus, solving Eq. (6.8), we obtain

(=) = (69)

A(z) = 2(2)/A) and B(2) = Z7(2)/AG), (6.10)

J

where / =1,2, j =1,2 and
1 2
20 =gy 2 Sn + Supa@Hy (e 1), (6.11)

The matrix &(z) is complicated, but each entry is an analytic function of z, except that &;; and &4,
i=1,2,3,4, all have a factor of z~!. However, these factors are cancelled by a factor of z in the expressions
for H,/(z+1). It is convenient to make these cancellations, and to identify the singularities of F,;(z) and
H,j(z+ 1). Thus, from the expressions in Appendix B, we can write

~

Fy(2) = A(2)Fy(2) and  Hy(z+ 1) = uzA(z2) Hy(2),
where

Az) )

- 8 (1 —vy)zsinnz’

¥ =7 cos0 and y = ' sin@'. Similarly, from the expressions in Appendix C, we can write

Eipin(2) = (mz) " Epz), i=1,2,3,4.

! This calculation was done by W. Hereman, using Mathematica.
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Hence, we obtain

5 (5
0oy J 0y — J
4(z) = zsin nzA(z) and  Bj(2) zsinnzA(z)’ (6.12)
where £ =1,2, j =1,2, and
oy
Z/(z) - 64(,“ 'uz 'uz 1 _ V] Z{éép + g‘ﬁ( ) (Z)} (613)

p=1

In the form of Eq. (6.12), all the singularities are given by zeros of the denominator. Thus, there are poles at
z==%N and at z=twy, where N=1,2,... and A(fwy) =0. In partlcular there are double poles at
z = =£1 (triple poles if a(x — 2f5) = 0). There is also a double pole at z = 0 (as > ( ) =0(z%) as z — 0).

Having determined Aj and Bf we can construct G’ the cartesian components of G' and G’. They are
given by (cf. Egs. (6.6) and (6.7))

c+ico
y 1

e FEXE (), 0)dz

1 c+ioo .
Gy=ge [ L0

"—ico

in 2, where X’ and Y are given by Egs. (4.10) and (4.11), respectively, in which 4, B and « are replaced by
A, BS and K, respectively. Making these substitutions, we obtain

Gylox) =5 [ AR B200) + B~ 0.k (6.14)

where @, and ¥, are defined by Eqs. (4.12)~(4.15). This formula shows the dependence on A‘ and B” If we
want to dlsplay the singularities in the integrand, we find that we can write G‘ concisely i 1n the form

G (x;x) = 2:u /:m (”—) e 0,0)—29 (6.15)

s \ T sin nizA(z)’

where _@;j are known: they are complicated functions of 6 and ¢, and analytic functions of z.

To evaluate the contour integral in Eq. (6.15), we have to select c. We see that Fy,(z) is analytic for
—1 < Re(z) <0, Hij(z+ 1) is analytic for —2 < Re(z) < 1, and H,;(z+ 1) is analytic for —1 < Re(z) < 1;
their common strip of analyticity is —1 < Re(z) < 0. Within this strip, there may be a zero of A(z). Let —
be the first zero of A(z) to the left of z = 0, so that A(z) is free of zeros in the strip —Re(w;) < Re(z) < 0.
(Recall that Re(w;) < 1.) We choose the inversion contour in this strip by choosing ¢ so that

—Re(wy) < ¢ < 0.

(We cannot choose ¢ so that —1 < ¢ < —Re(w;) when 0 < Re(w;) < 1 because this choice would lead to
displacements that are algebraically large, O(rRe(®)), as r — 00.)

6.1. Asymptotic results

The contour integrals in Egs. (6.14) or (6.15) could be evaluated numerically with the substitution
z=c+1¢&, giving an infinite integral over ¢. Alternatively, as in Section 3, one can move the contour,
picking up residue contributions from the various poles. To outline this approach, let us move the contour
to the left, so that the first pole encountered is at z = —w;. Let us assume that a(« — 2f8) > 0 so that w; # 1.
Substituting from Eq. (6.10) in Eq. (6.14), we obtain
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ru) 1

8(1 — ITA (—w))

G (x: ) ~ {ZU = o) @01, 0,10 + 22— 01) Pplon, ¥, 0,10 |
as r — 0, where Z;.(z) is defined by Eq. (6.11). This formula gives the behaviour of G near the intersection
of the interface and the free surface. Further terms can be calculated by moving the contour further to the
left. If w; = 1, there is a double pole at z = —1, so that the leading term would then involve a term pro-
portional to »logr and another proportional to r.

Instead of moving the contour to the left, we can move it to the right. The first singularity encountered is
the double pole at z=0. In order to compute the residue at this pole, we use the following formulas:
@ =1+zloga+ O(Z%), sinnz = nz + O(*),

Az) = {(n/2)* — o} + O(2"),
D,(—z, 1, 0,K0) = q5£0 +Z¢§1 +0(2%),
Vo(—z,00,0,10) = Wiy + 2%, + O(2),

Z;(z) = ZZZ;Z +Z32;3 +0(zY),

qjé

0 4 0
as z — 0, where Dy D, ¥ 1o

S o8 2%, and X'; can be found by routine Maclaurin expansions. Hence

o {log(r/n) + 25}
riZAj‘.(z) ~ 5 =
n{(n/2)" — oa?}z

near z = 0, with a similar approximation for Bf(z) Finally, Eq. (6.14) gives

I S
n{(n/2)’ — a2}

This formula shows that G' grows logarithmically as » — oo, as expected. Again, further terms can be
calculated by moving the contour further to the right; the next term will come from the pole at z = w,.

C e x) ~
G, (x;x) ~

: PN P P ‘ ~
{@ﬁo ) log” 4 B0al, 4 5Ll + S, 4 17 lpf,o}.

7. Conclusion

We have shown how the problem of a point force acting in a bimaterial half-plane can be solved exactly;
both anti-plane and plane-strain problems have been solved. For the plane-strain problem, the resulting
formulas for G’ are complicated, but they are all computable. In practice, it may be adequate to compute a
few residues. Having found G, the Green’s function itself is given by Eq. (6.1); note that the singularity in G
is exactly the same as that for the (full-plane) Kelvin solution, G, which is itself one part of the (half-plane)
Melan solution, GM.

The method used was developed for a half-plane composed of two quarter-planes. However, the method
will extend to problems involving any two wedges bonded together. This extension may be useful for
problems such as a quarter-plane bonded to a half-plane. Extensions of this kind remain for the future.
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Appendix A. The Melan solution

The two-dimensional Kelvin solution for a point force in an infinite plane is G¥, with components
1 OR OR }

K. ./
Gij(x,x) {(3 4v)5ljlog +a—a—x]

where R=|x — x| ={(x =)’ + (= )*}'/2, xy =x, x2 =y and = [8zu(1 —v)]"". This gives the ith
component of the displacement at x due to a point force acting at x’ in the jth direction. The corresponding
stress components are given by

d 0 d
K __ K K K
Ty = 20w, (_a G~ +_aqu>

2;"{(1—2)(5 a—R—aAa—R—a-a—R) 26—R6—RG—R} (A.1)

Mo, Yox, Pox, Ox; Ox, Ox,
The Melan solution for a point force in a half-plane, GM(x; x), can be written as
GM =G" +G°,
where G°(x;x’) is a non-singular ‘correction’ to account for the traction-free boundary at x = 0. The
components of G° are defined by

G =n{ g R} Gh=nf e-00-0 - Al

G =] gle=) =)+ f Gu=n{ G-y +h

where k =3 —4v, Ry = {(x +xl)2 + (v _y,)z}uz’

2xx' dxx'
:JzilogRo—R—%+ R (x —|—x) ,

dxx’

F =
2 Rg

(x+2)0 =) - aran (222,
o =K —8(1 —v)*and # = 4(1 — v)(1 — 2v). Note that our Gy, is u§; in (Telles and Brebbia, 1981), and that
Gj(x;x') = Gj(x'5 x).

When calculating the corresponding stresses, we use the following formulas:

oF 1 45 16xx’ 3
- = 2 _ / 4 _ /
= ) <2 W ) - R '

oF, y—y 4xx’ 16xx )
—= of - !
o R TR TR P
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oF, y—y 4" 16xx/ "2
>R’ {ngRO( + 2x) xS (x+x)7 3,

o x+x 12xx"  16xx’ 5
—=— B ——+—F N
R R sl

Using a similar notation to Eq. (A.1), we obtain

RZ

/

{1 —2v +% [+ x(4vx' — Kx)] — 16}? (x +x’)2},
R Ry

T, 2/“7

(I —=2v)(x—x) + 2 (x+x)[—x/2+x{2x/(l+2v)—1<x}]—16xxl(x+x/)3},

Tlcll - R2 R4
0

0

2xm{
C 2 / 2 / 16xx’ n3
T221— (10v — T)x + (6v — 1)x' 17%(x+x)[—3x + x{wx = 2x'(34+2v)}] + = (x+x") 5,
¢ _ 2
{

2v —3)x' + ]% (x + X[ + x{20(5 — 2v) + xx}] — li)ix (x +x’)3},
0 0

2 p 16xx’
Tf, = Zun {2\) -1 —I—F[x’ —x{4(1 —v)x' + rx}] + = (x—&—x/)z},
6 0 0
2 . p 16xx’
Ty = 2,un 7 {6v ﬁ [Bx" + x{4(2 — v)xX' + rx}] — R (x +x’)2}.
0
The stresses corresponding to GM are given by Ty, M = TpI;j + T, As Ry = R onx = 0, it is easy to verify
that 7;,“{'/ = 0 on the half-plane boundary, x =0, for p=1,2and j=1,2, as expected. Also, on the line

y =0, we find that

M n_JO(l) asx—0, _ .
TPZJ'(x’O’x)_{O(xZ) as x — oo, forp=1,2 and j=1,2.

Let G’(x') = GM(0;x'). We have
G, = (2mp) Heos? 0 — 2(1 — v)logr}, G, = (2mu)”" {%sin 20— (1 — 2v)0’},
Gl = (2nu)_l{%sin20/ +(1- 2v)0/}, G, = (2mp) {sin? 0’ — 2(1 — v) log '},

where x' = 7/ cos 0 and y' = 7' sin . For each fixed x’, and for each j, G{,(x') and G),(x’) are the compo-
nents of a constant displacement vector. Evidently,

GM(x;x') = GM(x;x) — G*(x)
vanishes at x = 0, a fact that will be useful later. In fact, on the line y = 0, we have

M, oo ) O() as x — 0,
G (x’o’x)_{O(logx) as x — 00,
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whereas
GM(x,0;x) = {

this difference will enable us to use Mellin-transform techniques.

O(x) as x — 0,
O(logx) asx — oc;

Appendix B. Some Mellin transforms

Let us begin with fi;(x) = G¥(¥') — G} (x,0; x'). From the formulas in Appendix A, we have

Su) = nfiy () + 20 B = (x+ %)),
where 1 = [8zu, (1 —w)] ",
Fi1(x) = K1 log # — o log Ry — 8(1 — v;)* logr’ +4(1 —v)cos’ 0 — (x — X'V &2 — i, (x + X' ) %, 2,

K1 ::’3—4\}17 %:K1—8(1—V1)2, %:{(x—x/)z—&-y/z}l/z and ,@0:{()6"‘)(?) +y }1/2

As f,,(0) = 0, we can integrate by parts giving

/ 7 () dx———/ f11 dx, —1<Re(z)<0. (B.1)

Hence, the Mellin transform of fi;(x) is F};(z), where

n o[> .
Fe) =1 [ w7y (B2)
x—x x+x )X / 2 x +x
F11(x) = —k + o/ + 2y + 2K +2z — (x+x
1]( ) 1 <%2 @3 4 %4 1y @g 94 {y ( ) }

K1 1 1 o 1 1 v 1 1
=—-— + — o+ + — 1t 7 2
2 lx—w x—w 2 lx+w x+w 2| (x—w)” (x—w)

_Kly’{ oo }_Zx'{ L }
2 it w) (tw) (c+w) W) )

w=x+iy =re’ and w = x' —iy’. Then, we can evaluate the integral for F;,, Eq. (B.2), using two stan-
dard integrals, namely

~ AXf
dx = -1 < R 0 B.3
/0 x> Tsnnze <Re(z) <0, (B.3)
and
00 z le
/ T dv= 22X e —1<Re(z) < 1, (B.4)
0o (x+X) sin 7tz

where X = |X|e!® and |®| < n. We obtain

Fi1(z) = A(z){k; cos[z(n — )] — o/ cosz0' — zsin[(z — 1)(n — 0)] sin 0’ — xzsin[(z — 1)0'] sin ¢/
— 272 cos[(z — 1)0] cos 0'},
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where —1 < Re(z) < 0 and

A2) nr(r')”

T zsinmz’

Next, we have
fr(x) = nfay (x) + dmpex'y' (x + ) 2
where
Fou(x) =V (x =X B 2+ 112, +2(1 — ) sin 20’ + B{0' —tan™'y//(x + )]}

and 4 = 4(1 — v;)(1 — 2v;). Integrating by parts as in Eq. (B.1), we obtain /;(z) in the form of Eq. (B.2),
where

2 72
an _ / ('x—xl) _y _ ‘@ _
Tal) _y{ 7 "

1 2 P
o 2x 4x
rz A

0

_)i, 1 1 B 1 B 1 _iﬂ X +w B X +w
_2{(x—w)2+(x—v_v)2}+2i{x+w x+w} 2{(X—|—W)2 (X+17V)2}
+izx,{ 1 }

x+w)’ @+w) |

F(z) = A(2){—#sinz0 + zcos|[(z — 1)(n — )] sin 0’ + 2z(ic; — z) sin[(z — 1) cos ¢/
+Kjzcos[(z— 1)0]sin0'}, —1 < Re(z) < 0.

/
+ 4zx’x;:4x }

Then

Similarly,
Fi2(2) = A(2){#sinz0 + zcos[(z — 1)(rn — )] sin @' + 2z(x; + z) sin[(z — 1)0'] cos ¢/
+ K1zcos[(z — 1)0]sin 0'},
F(z) = A(z){k; coslz(n — 0')] — o/ coszl + zsin[(z — 1)(n — 0')] sin ' + k;zsin[(z — 1)0] sin &
— 272 cos[(z — 1)0] cos 0'}.

Let us now examine the tractions on the interface, 4,;(x). Making use of the formulas in Appendix A, we
obtain

hi(x) = =T5, (x,0;x') — Tfy, (x,0; x')
1 1 1 1 1 1
:2 1— - - - ,
iran( vl){x—w xX—w x+w+x+w} Mlny{(x—w)2+(x—w)2}

. 3 — kw B 3 — kyw + dig wo W
Tl ) Tletw )
To compute Hy;(z + 1), we use Egs. (B.3), (B.4) and

00 z—2
/ bt dr — — nz(z — 1)|X| (i-2)0
3 - .
0o (x+X) 2sin iz

, —l<Re(z) <2.
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We find that

Hyi(z+ 1) = =2u,z4(z){2(1 — vy)(sinfz(r — 0')] + sinz0') + zcos[(z — 1)(x — )] sin O’
+r1zsinz0 — z(2z + 1) sin[(z — 1)60'] cos 6'}.

Similarly,
1 1 1 1 1 1
h =— 1-2 - - i ! -
21 (%) n( VI){x—w+x—W Yiw x+w}+w‘"y{(x_w)2 (x—w)z}

o Klw—x’+K1v’v—x o w N w
T atw’ o+ w) Tlarw) @rw)’

1 1 1 1 1 1

ha(x) = (1 -2 - - — iy -

2(6) = pun( Vl){x—w+x—v‘v xX+w x+w} l'umy{(x—w)2 (x—w)z}

Kiw+3x kyw+ 3x , w w
+ wn + — 4pynx + )
! { (x+w)2 ()c—l—v’v)2 ! (x—i—w)3 (x—i—w)3

1 1 1 1 1 1

B (x) = 2ipyn(1 — - - /

2(x) = 2ipyn( Vl){x_w o x+w+x+17v}+M1ny{(x—W)2+(x—w)2}

. Kiw+x kw+x . , w w
- 1.“1'7 2 N +41:u1]7x 3 NG} )
(x +w) (x+w) (x+w) (x+w)

whence
Hy(z+ 1) = 2p,zA(z){(1 — 2v;)(cos[z(n — )] — coszl) + zsin[(z — 1) (= — 0')] sin &'
+K1zc0820" — z(2z — 1) cos|(z — 1)0] cos 0'},

Hiy(z + 1) = 2u;zA(2){—(1 — 2vy)(cos[z(m — )] — cosz0') — zsin[(z — 1)(n — )] sin &
+ k120820 +2z(2z + 1) cos|(z — 1)0] cos 0'},

Hy(z + 1) = 2pzA(2){=2(1 — vy)(sinz(n — 0')] + sinz0') + zcos[(z — 1)(n — )] sin O’
+r1zsinz0 + z(2z — 1) sin[(z — 1)60'] cos 6'}.

(As a simple check, one can verify that the residue of H,;(z+ 1) at z = —1 equals £,;(0).)

Appendix C. An inverse matrix

We require the inverse of the 4 x 4 matrix Z(—z), where Z(w) is defined by Eq. (5.6). Let S = sinizn,
C =cosizmand I' = p,/p;. We find that [%(—z)]"" can be written as Eq. (6.9), where the matrix & is given
by
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En =4 —PI2SEy, En=4da—BIPCE,
6= (wz) 'TCE;, 1= —(z) 'TSE L,
6 = 40— P)ISEn, Ep = —4(a— BICEx,
En=—(mz)'Céy, Eu=—(mz) 'Sx,
&3 = —4(o— B)[2CExy, &y = d(a— P)IPSE,
6 = (z) 'TSEx, Eu = (2) ' TCEy,
S =40 — P)ICEy, &4 =4(a— P)ISEs,
E43 = —(,ulz)_lsga@, Eaq = (MZ)—IC%;M,

and the matrix & is given by
G =Sz(p—1)+ B +z{P (e — p) —zB— a+ 1},
E1 =S z(f— 1) — 1} + P {z(a — ) + 0},

613 =820~ BT + (T = (1 +a)(1 = f) = 2z(x = f)(1 = )} +22°(x = )’
+ 2 (e — B){20l — (I' = 1)(1 + a)} — za(1 — o)(T" — 1),

Era=S{2B(a— B)r — (I = 1)(1 = B)(2B+ 1 — o) — 2z(ox — B)(1 — B)} + 22°(a — B’
+ 22— {2+ (I —=1)2B+1—a)} +z(1 —){2(x — B)I — (' — 1)} + (1 —a)(I' — 1),

& =SHz(B+ 1)+ B} +z{Z (e — B) —2f —a — 1},
G = SHz(B+1) + 1} +2{z(x — B) + o),

Exn =82 — P — (F=1)(1 = )1 4+ o) + 2z(0 — B)(1 + )T} + 223 (0 — B)°T
+ 2 (e — B){20l — (I' = 1)(1 + o)} — za(1 + o) (I = 1),

Fas = SH{2B(a— BT + (I = 1)(1 = B)(1 + ) + 22z — B)(1 + B} + 25 (x— BT
+ 2 (0= B{=2BT + (I = 1)(1+2)} +2(1 + {2z — BT + (I = 1)(z—28)} — (1 +2)(I — 1),

&1 =S {z(B— 1)+ 1} +2{z(a = p) — o},
Ep=Sz(f—1)— Y+ {0 — B) +zp + 1 — o},

3 =SH{=2p(a— BT + (I = 1)(1 = B)2B + 1 — ) — 2z(x = B)(1 = )} + 22" (2 = )’
+ 2= PP = (M = )2+ 1 =)} +2(1 = ) {200 = HI — (I = D)} = (1 = o)(I' = 1),

s =20 — B)T — (T = 1)(1 = B)(1 +2) = 2z( = B)(1 = p)} + 22" (e = B’
+ 22 (o — B){ 2ol + (I' = D)(1 + o)} — za(1 — a)(I' — 1),

Eu =SHz(B+1) = 1} +7{z(a = B) — o},
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S =SHz(p+1) = B} +2{Z(x — ) +2 — 1 — a1},

Ea3 =S {2B(a— )T + (I = 1)(1 = B)(1 + o) — 2z(er — B)(1 + B)I'} — 22° (. — B)°T
+ 2 (o= B{=2pT + (' = 1) (1 +0)} +z(1 + ) {2(x = H)I + (I = 1)(2p— )} — (1 + o) (I' = 1),

G =S {2(a = B)T — (T = 1)(1 = )(1 +e0) = 22( = B)(1 + T} = 22°(w = B)’T
+ 22 (o= B){2ol — (I' = 1)(1 + )} + zo(1 + o) (I = 1).
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