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Abstract. Acoustic scattering problems are considered when the material parameters (density
and speed of sound) are functions of position within a bounded region. An integro-differential
equation for the pressure in this region is obtained. It is proved that solving this equation is equivalent
to solving the scattering problem. Problems of this kind are often solved by regarding the effects of
the inhomogeneity as an unknown source term driving a Helmholtz equation, leading to an equation
of Lippmann–Schwinger type. It is shown that this approach is incomplete when the density is
discontinuous. Analogous scattering problems for elastic waves and for electromagnetic waves are
also discussed briefly.
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1. Introduction. Time-harmonic acoustic waves in an inhomogeneous com-
pressible fluid can be modelled using Bergmann’s equation (see (2.3) below). If the
waves are generated by a point source located at r

′, the pressure at r, G(r; r′), satisfies

∇2G(r; r′) − ρ−1(grad ρ) · gradG(r; r′) + k2(r)G(r; r′) = δ(r − r
′),(1.1)

where k2(r) = [ω/c(r)]2, ω is the frequency, c(r) is the speed of sound, and ρ(r) is the
density. (G is an exact Green’s function for the problem.) Equation (1.1) is supposed
to hold everywhere in space, and it is to be solved subject to a radiation condition at
infinity.

How does one solve (1.1)? According to a recent review article by Tourin, Fink,
and Derode [39], “the solution of (1.1) can be written as”

G(r; r′) = Ge(r; r′) +

∫

Ge(r; r1)V (r1)G(r1; r
′) dr1,(1.2)

where the integration is over all of space, V is a “potential operator”, defined by

V (r) = k2

e
− k2(r) + ρ−1(grad ρ(r)) · grad ,(1.3)

ke is the wavenumber for a related homogeneous medium, and Ge is the (known)
solution of the problem for that medium: Ge satisfies

∇2Ge(r; r1) + k2

e
Ge(r; r1) = δ(r − r1)(1.4)

and the radiation condition and is given explicitly by (3.1) below. Equation (1.2) is
not derived in [39] and no indication of its range of validity is given. In fact, as we
shall see, (1.2) is not valid when ρ(r) is discontinuous. (This is unfortunate, because
most of the applications in [39] are to arrays of discrete scatterers, such as steel rods
in water.)
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1.1. A formal derivation. Equations such as (1.1) are often treated by moving
all the complicated terms to the right-hand side where they are regarded as a forcing
term. Thus, write (1.1) as

∇2G(r; r′) + k2

e
G(r; r′) = V (r)G(r; r′) + δ(r − r

′).

Equation (1.2) then follows by noting that

u(r) =

∫

Ge(r; r′) f(r′) dr′ solves (∇2 + k2

e
)u = f.(1.5)

Formal derivations of this kind are often found in textbooks; see, for example, [9,
sect. 8.9.1] or [18, eqn. (21.37)]. The result (1.5) can be justified readily if one as-
sumes that f is (Hölder) continuous. However, for discrete scatterers, there will be
interfaces across which k(r) and the normal derivative of G, ∂G/∂n, will be discon-
tinuous (although G and ρ−1∂G/∂n are both continuous across such interfaces).

1.2. The present paper. The formal derivation in section 1.1 is incomplete.
It can be repaired so as to give the correct result. Thus, when considered as a
distribution, we have

V G = {V G} + [ρ] δ(S) (ρ−1∂G/∂n),

where {V G} denotes the value of V G anywhere but on the interfaces S and [ρ] denotes
the discontinuity in ρ across S [41, sect. 1.13]. Then, (1.5) suggests an additional term
on the right-hand side of (1.2), namely

∫

S

Ge(r; rs) [ρ](rs)

(

1

ρ

∂G
∂n

)

(rs; r
′) ds(rs).(1.6)

In this paper, we shall derive an equation, similar to (1.2), that respects the
proper transmission conditions across interfaces: we do not use distribution theory.
We prove that solving this equation is equivalent to solving the transmission problem
for the acoustic pressure (Theorem 3.1).

We are mainly concerned with the following problem: acoustic scattering by a
bounded inhomogeneity embedded in an unbounded homogeneous medium. The den-
sity and sound-speed are assumed to be functions of position within the inhomogene-
ity, and they can be discontinuous across the interface between the inhomogeneity and
the surrounding fluid. Problems in which the inhomogeneity is spherically symmetric,
so that ρ and c are assumed to be given functions of the spherical polar coordinate r
(only), have been studied by several authors; see [28] for references.

The new equation is derived in section 3. It reduces to the well-known Lippmann–
Schwinger equation when the density in the inhomogeneity is constant and equal to
the density of the surrounding homogeneous fluid. It also reduces to the equation
derived formally above, namely (1.2), but only when there is no discontinuity in the
density across the boundary of the inhomogeneity. If there is such a discontinuity
(as is typical in applications), an extra term is needed; see (1.6) and (4.4) below.
Analogous scattering problems for electromagnetic waves and for elastic waves are
discussed briefly in sections 4.4 and 4.5, respectively.

2. Formulation. Consider the scattering of time-harmonic sound waves in a
homogeneous compressible fluid by an inhomogeneous obstacle. In the exterior fluid,
Be, we can write

pe = pinc + psc,(2.1)
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where pe is the (total) acoustic pressure, pinc is the given incident field, and psc is the
scattered field. The governing equation for psc is

(∇2 + k2

e
)psc = 0 in Be,(2.2)

where ke = ω/ce is the wave number (assumed to be real and positive), ω is the
frequency, and ce is the constant speed of sound. We assume that the incident field
pinc satisfies (2.2) everywhere, except possibly at some places in Be (so that pinc could
correspond to a point source in Be, for example). We require that psc satisfies the
Sommerfeld radiation condition at infinity.

Within the obstacle, B, the governing equation is Bergmann’s equation ([3, 28]
and [29, p. 408])

ρi div
(

ρ−1

i
grad pi

)

+ k2

i
pi = 0 in B,(2.3)

where pi is the pressure and ki = ω/ci. The interior density ρi and speed of sound ci
can vary with position in B. At the interface S between B and Be, we have a pair of
transmission conditions, expressing continuity of pressure and normal velocity. These
are

pe = pi and
1

ρe

∂pe

∂n
=

1

ρi

∂pi

∂n
on S,(2.4)

where ρe is the (constant) density of the fluid in Be.
Summarizing, we have the following problem to solve.
Scattering Problem. Let pinc be a given incident field. Find a pair of functions,

{pe, pi}, where psc = pe − pinc satisfies (2.2) and the Sommerfeld radiation condition,
pi satisfies (2.3), and pe and pi satisfy the transmission conditions (2.4) across the
interface S.

Werner wrote an important paper on the Scattering Problem in 1963 [43]. He
reduced the problem to a system of coupled integral equations, using single-layer,
double-layer, and volume potentials; see Appendix A. Werner’s approach is an ex-
ample of an indirect method , meaning that the unknown quantities do not have any
physical relevance. He proved that the Scattering Problem has exactly one solution;
his uniqueness result is in [42]. However, as far as we know, his system of integral
equations has not been used in computations.

We shall use a direct method , meaning that the unknown quantity is recognized
as a physical variable, namely pi. Moreover, we shall use only volume potentials;
this is convenient from a computational point of view, because one does not have to
approximate a mixture of surface and volume contributions.

In solving the Scattering Problem, we seek classical solutions. We shall appeal
to Werner’s existence result, so we suppose that psc ∈ C2(Be) ∩ C1(Be) and pi ∈
C2(B) ∩ C1(B). We assume that ρi ∈ C2(B) and ci ∈ C1(B) are both positive.
Finally, we assume that S is smooth (C2). It is likely that these conditions can be
weakened; for example, Werner’s uniqueness theorem [42] requires that ρi and ci be
in Hölder spaces, with ρi ∈ C1,α(B) and ci ∈ C0,α(B).

Bergmann’s equation (2.3) can be written in other ways. One alternative is

∇2pi + ρi

(

grad ρ−1

i

)

· grad pi + k2

e
Npi = 0 in B,(2.5)

where N = (ki/ke)
2 = (ce/ci)

2 is the (square of the) refractive index. Another is

∇2pi + k2

e
pi = V pi in B,
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where (see (1.3))

V u = k2

e
(1 −N)u + ρ−1

i
(grad ρi) · gradu.(2.6)

Bergmann’s equation can also be reduced to an equation without first derivatives

by introducing a new dependent variable [3], u = piρ
−1/2
i

: u is found to satisfy

∇2u + (k2

i
+ K)u = 0,(2.7)

where

K = 1

2
ρ−1

i
∇2ρi − 3

4
ρ−2

i
|grad ρi|2(2.8)

= −ρ1/2
i

∇2

(

ρ
−1/2
i

)

.(2.9)

Equations (2.7) and (2.8) (but not (2.9)) can be found in [4, p. 171]. Equation (2.7)
can also be written as Schrödinger’s equation [32, eqn. (10.59)].

Much has been written on the case where ρi is constant, so that the second term
on the left-hand side of (2.5) can be deleted [12, Chap. 8]; see [23] for a review of
available point-source solutions (Green’s functions) for various functional forms of N .
Here, we do not make this assumption: we allow both ρi and N to vary with position.
Note that if the material in B is actually homogeneous, so that ρi and ki are both
constants, boundary integral equations over S can be used; see [20] for a review.

Kriegsmann and Reiss [22] have given long-wave approximations to the solution
of the Scattering Problem, assuming that ρi/ρe ≃ 1. Specifically, they take ρi/ρe =
1 + O(ε2) and kea = O(ε), where a is the diameter of B and 0 < ε ≪ 1.

Colton and Monk [13] have reviewed progress with inverse problems for (2.3),
which they write as div

(

ρ−1

i
grad pi

)

+k2

e
Ñpi = 0, where Ñ = N/ρi. They also assume

that ρi is constant near S so that the ratio ρe/ρi occurring in (2.4)2 is constant; in
general, this need not be true.

2.1. Uniqueness. The Scattering Problem has at most one solution [42]. This
uniqueness theorem can be proved as follows. Set pinc ≡ 0 and then apply Green’s
theorem to pe and its complex conjugate, pe, in the exterior, giving

2ike lim
R→∞

∫

SR

|pe|2 ds +

∫

S

(

pe

∂pe

∂n
− pe

∂pe

∂n

)

ds = 0.(2.10)

Here, the unit normal to S, n, points out of B, SR is a large sphere of radius R that
encloses S, we have used the radiation condition, and we have assumed that ke is real.
Next, apply the divergence theorem in B to the vector field (pi/ρi) grad pi, giving

∫

B

(

|grad pi|2 − k2

i
|pi|2

) dV

ρi

=

∫

S

pi

ρi

∂pi

∂n
ds,

where we have used (2.3). The imaginary part of this equation gives

∫

S

(

pi

∂pi

∂n
− pi

∂pi

∂n

)

ds

ρi

=

∫

B

(

k2

i
− k2

i

)

|pi|2
dV

ρi

.

Then, making use of the transmission conditions (2.4), (2.10) gives

ke lim
R→∞

∫

SR

|pe|2 ds + 2

∫

B

Re (ki) Im (ki) |pi|2
ρe

ρi

dV = 0.
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Rellich’s lemma [11, Lem. 3.11] then implies that pe ≡ 0 in Be, provided that

Re (ki) Im (ki) ≥ 0.

The transmission conditions then imply that pi = 0 and ∂pi/∂n = 0 on S. Thus, pi

solves the Cauchy problem for the elliptic partial differential equation (2.3), in which
the (positive) coefficients ρ−1

i
and k2

i
/ρi are C2 and C1, respectively. It follows that

pi ≡ 0 in B, as required. Here, we have used a unique continuation result due to
Müller [30] and Aronszajn [2]; see [21] for a brief review.

3. An integral representation and an integro-differential equation. We
shall consider integral representations obtained using the free-space Green’s function
for the exterior fluid,

Ge(P,Q) = − exp (ikeR)/(4πR),(3.1)

where P and Q are typical points in three-dimensional space and R = |rP − rQ| is
the distance between P and Q.

An application of Green’s second theorem in Be to psc and Ge gives
∫

S

{

Ge(P, q)
∂psc

∂nq
− psc(q)

∂

∂nq
Ge(P, q)

}

dsq =

{

psc(P ), P ∈ Be,
0, P ∈ B.

A similar application in B to pinc and Ge gives
∫

S

{

Ge(P, q)
∂pinc

∂nq
− pinc(q)

∂

∂nq
Ge(P, q)

}

dsq =

{

0, P ∈ Be,
−pinc(P ), P ∈ B.

Adding these gives
∫

S

{

Ge(P, q)
ρe

ρi

∂pi

∂nq
− pi(q)

∂

∂nq
Ge(P, q)

}

dsq =

{

psc(P ), P ∈ Be,
−pinc(P ), P ∈ B,

(3.2)

where we have used (2.1) and the transmission conditions (2.4). The first of these
gives an integral representation for psc(P ) in terms of a distribution of sources and
dipoles over S. Such representations are common in scattering theory. However, it is
not very convenient here because we do not know pi or ∂pi/∂n on S.

To make progress, recall Green’s first theorem,
∫

B

{

φ∇2ψ + (gradφ) · (gradψ)
}

dV =

∫

S

φ
∂ψ

∂n
ds,

where φ and ψ are sufficiently smooth in B. Choose φ(Q) = pi(Q) and ψ(Q) =
Ge(P,Q) with P ∈ Be, whence

∫

S

pi(q)
∂

∂nq
Ge(P, q) dsq(3.3)

=

∫

B

{

(grad pi) · (gradQGe) − k2

e
pi(Q)Ge(P,Q)

}

dVQ,

where we have used (∇2 + k2

e
)Ge(P,Q) = 0 for P �= Q. Similarly, if we choose

ψ(Q) = pi(Q) and φ(Q) = (ρe/ρi)Ge(P,Q) with P ∈ Be, we obtain
∫

S

ρe

ρi

∂pi

∂nq
Ge(P, q) dsq(3.4)

=

∫

B

ρe

ρi

{

(grad pi) · (gradQGe) − k2

e
N(Q) pi(Q)Ge(P,Q)

}

dVQ,
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where we have used (2.5). Subtracting (3.3) from (3.4) gives the left-hand side of
(3.2) for P ∈ Be, whence psc(P ) = (Lpi)(P ) for P ∈ Be, where

(Lv)(P ) =

∫

B

{

(α(Q) − 1) (grad v) · (gradQGe(P,Q))(3.5)

+ (1 −Nα) k2

e
v(Q)Ge(P,Q)

}

dVQ

and

α(P ) = ρe/ρi(P ).

We repeat the calculations for P ∈ B, having excised a small sphere centered
at P . The singularity at P = Q has no effect on (3.4) but it causes −pi(P ) to be
added to the left-hand side of (3.3). Then, (3.2) for P ∈ B becomes

−pinc(P ) = −pi(P ) + (Lpi)(P ), P ∈ B.

At this stage, we have proved one half of the following theorem.
Theorem 3.1. Let the pair {pe, pi} solve the Scattering Problem. Then v(P ) ≡

pi(P ) ∈ C2(B) solves

v(P ) − (Lv)(P ) = pinc(P ), P ∈ B,(3.6)

where Lv is defined by (3.5). Conversely, let v solve (3.6). Then the pair {pe, pi},
defined by

pe(P ) = pinc(P ) + (Lv)(P ) for P ∈ Be(3.7)

and pi(P ) = v(P ) for P ∈ B solves the Scattering Problem.

Proof. We have to prove the second half of the theorem. From (3.7), we define
psc using

psc(P ) = (Lv)(P ), P ∈ Be;(3.8)

evidently, psc satisfies (2.2) and the Sommerfeld radiation condition, as it inherits
these properties from Ge.

Next, let us show that pi ≡ v satisfies (2.3). As pinc satisfies (2.2) in B, (3.6)
gives

(∇2 + k2

e
)(v − Lv) = 0 in B.(3.9)

Now, from the definition (3.5), we have

(Lv)(P ) = − ∂

∂xPj

∫

B

(α− 1)
∂v

∂xQj
Ge(P,Q) dVQ(3.10)

+ k2

e

∫

B

(1 −Nα) v(Q)Ge(P,Q) dVQ,

where P ≡ (xP
1
, xP

2
, xP

3
), Q ≡ (xQ

1
, xQ

2
, xQ

3
), and summation over j is implied. The

second integral in (3.10) is an acoustic volume potential, and the first term is the sum
of three first derivatives of volume potentials. The properties of volume potentials are
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summarized in Appendix B. In particular, the result of applying (∇2 + k2

e
) is given

by (B.1), so that we obtain

(∇2 + k2

e
)(Lv) = − ∂

∂xPj

{

(α− 1)
∂v

∂xPj

}

+ k2

e
(1 −Nα) v(P )

= (∇2 + k2

e
)v − ρe div

(

ρ−1

i
grad v

)

− k2

i
(ρe/ρi)v, P ∈ B,

whence (3.9) gives the desired result.
To verify the transmission conditions, observe that (3.6) gives

pi(P ) − pinc(P ) = (Lv)(P ), P ∈ B.(3.11)

However, as Lv comprises a volume potential and first derivatives of volume potentials,
it follows that (Lv)(P ) is continuous as P crosses S (see Appendix B). Thus, (3.8)
and (3.11) show that the first transmission condition, (2.4)1, is satisfied.

For the second transmission condition, we take the normal derivative of (3.8) and
(3.11) to give

∂

∂n
{psc − (pi − pinc)} =

[

∂

∂n
Lv

]

on S,(3.12)

where [f ] is the discontinuity in f across S, defined by

[f(p)] = lim
Pe→p

f(Pe) − lim
P→p

f(P ), Pe ∈ Be, P ∈ B, p ∈ S.(3.13)

It is shown in Appendix B that

[

∂

∂n
Lv

]

=

(

ρe

ρi

− 1

)

∂v

∂n
,(3.14)

and then (3.12) and v ≡ pi imply that (2.4)2 is satisfied. This completes the proof of
Theorem 3.1.

4. Discussion of the integro-differential equation (3.6).

4.1. Solvability. We have seen that solving the Scattering Problem is equiva-
lent to solving (3.6), which is an integro-differential equation for v(P ), P ∈ B. This
equation is uniquely solvable. To see this, we appeal to Werner’s existence result [43]:
the solution {pe, pi} of the Scattering Problem exists and, by the first half of Theo-
rem 3.1, pi solves (3.6). For uniqueness, suppose that v0(P ) solves (3.6) with pinc ≡ 0.
Construct pe = (Lv0)(P ) for P ∈ Be and pi = v0(P ) for P ∈ B. By the second half
of Theorem 3.1, these fields solve the homogeneous Scattering Problem; they must
vanish identically by the uniqueness theorem for the Scattering Problem (section 2.1).
In particular, v0(P ) ≡ 0 for P ∈ B, as required.

We note that an integro-differential equation equivalent to (3.6) was derived by
Gerjuoy and Saxon [15] in 1954. In fact, they derived a coupled system, involving the
pressure and the velocity, which they regarded as preferable to a single equation for
the pressure as they were motivated by a desire to obtain variational principles.

4.2. The Lippmann–Schwinger equation. As a special case of the Scattering
Problem, suppose that ρi(Q) = ρe for all Q ∈ B, so that the density of the scatterer is
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the same as that of the surrounding homogeneous fluid. Then, the integro-differential
equation (3.6) reduces to the integral equation

v(P ) − k2

e

∫

B

{1 −N(Q)}v(Q)Ge(P,Q) dVQ = pinc(P ), P ∈ B,(4.1)

where N(Q) = (ki/ke)
2 = {ce/ci(Q)}2. This integral equation and its numerical

treatment have been discussed in [10, 5, 46, 8] and [9, sect. 8.9.1]
Let us define N(P ) = 1 for P ∈ Be and

w(P ) =

{

pe(P ), P ∈ Be,
pi(P ), P ∈ B.

Then, we can combine (4.1) with the representation (3.7) to obtain

w(P ) − k2

e

∫

{1 −N(Q)}w(Q)Ge(P,Q) dVQ = pinc(P )(4.2)

for all P ∈ B ∪ Be, where the integration is over all Q. We recognize this equation
as the Lippmann–Schwinger equation [24]; see, for example, [1], [12, sect. 8.2] [32,
sect. 10.3], and [35, Thm. 9.4]. Notice that our derivation shows that the Lippmann–
Schwinger equation is valid even when N(Q) is discontinuous as Q crosses S. This
fact is implicit in [34] and explicit in [44].

4.3. An alternative equation. As we know that v ≡ pi solves (2.5) in B, we
can use this fact to rewrite the expression for Lv. Thus

(α− 1) (grad v) · (gradQGe) = div {(α− 1)Ge grad v} −Ge div {(α− 1) grad v}

and

div {(α− 1) grad v} = (α− 1)∇2v + ρe

(

grad ρ−1

i

)

· grad v

= (α− 1)
{

∇2v + ρi

(

grad ρ−1

i

)

· grad v
}

+ ρi

(

grad ρ−1

i

)

· grad v

= (1 − α) k2

e
Nv − ρ−1

i
(grad ρi) · grad v.

Hence, substituting in (3.5), we obtain

(Lv)(P ) =

∫

B

Ge(P,Q) (V v)(Q) dVQ + (LEv)(P ),

where V v is defined by (2.6) and

(LEv)(P ) =

∫

B

div {(α(Q) − 1)Ge grad v} dVQ(4.3)

=

∫

S

{α(q) − 1} Ge(P, q)
∂v

∂n
dsq,

by the divergence theorem. Thus, the Scattering Problem can be reduced to solving

pi(P ) = pinc(P ) +

∫

B

Ge(P,Q) (V pi)(Q) dVQ + pE(P ), P ∈ B,(4.4)

where

pE(P ) = (LEpi) (P ) =

∫

S

(

∂pe

∂n
− ∂pi

∂n

)

Ge(P, q) dsq

and we have used (2.4)2 in (4.3).
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When both ρi and N are constants, (4.4) reduces to an equation obtained pre-
viously by Ramm [37]. However, in this situation, the scatterer is homogeneous and
the problem can be reduced to boundary integral equations over S; see [20].

If we had attempted to solve the Scattering Problem using the formal method
described in section 1.1, we would have obtained precisely (4.4) but with pE(P ) ≡ 0.
In general, this extra term is not zero, and its magnitude is difficult to estimate.
Observe that, from (4.3), pE does vanish if ρi(q) = ρe for all q ∈ S, which means that
the density is continuous across S. Otherwise, the single-layer potential pE(P ) should
be retained.

4.4. Electromagnetic waves. For Maxwell’s equations, we can encounter ex-
actly the same difficulty as in acoustics. Thus, in an inhomogeneous medium, the
electric field E satisfies

µ curl
{

µ−1curl E
}

− k2
E = 0,

where µ(r) is the magnetic permeability, k(r) = ω
√
µε, and ε(r) is the electric per-

mittivity. Moreover, the transmission conditions across an interface S are that n×E

and n× (µ−1curl E) should both be continuous. (See, for example, [9, sect. 8.9.2]; for
existence and uniqueness theorems, see [31].) We can then mimic the derivations in
section 3 to show that discontinuities in µ across S will lead to an extra term similar
to pE in (4.4).

Specifically, we find the following electromagnetic analogue of (3.6):
{

1 − 1

3

(

1 − εi(P )

εe

)}

Ei(P ) −
∫

B

W (P,Q) dVQ = Einc(P ), P ∈ B.(4.5)

Here, Ei is the field in B, Einc is the incident field, εe is the (constant) electric
permittivity in Be, and εi is the electric permittivity in B. The field W is defined by

W (P,Q) =

(

1 − µe

µi

)

(gradQGe) × curl Ei(Q)

+

(

1 − εi
εe

)

{

k2

e
GeEi − gradP (Ei · gradQGe)

}

,

where µe is the (constant) magnetic permeability in Be, µi is the magnetic perme-
ability in B, and ke = ω

√
µeεe. The integral in (4.5) is to be interpreted in the

Cauchy principal-value sense with a spherical exclusion volume. In the special case
that µi(Q) ≡ µe, (4.5) reduces to eqn. (2.1.41) in [40].

The electromagnetic analogue of (4.4) is

Ei(P ) = Einc(P ) +

∫

B

Ge(P,Q) V (Q) dVQ +

∫

S

F (P, q) dsq,(4.6)

where

V = (k2

e
− k2

i
)Ei − (µ−1

i
gradµi) × curl Ei + grad div Ei,

F =

(

1 − εi
εe

)

(n · Ei) gradq Ge

+

{(

1 − µe

µi

)

(n × curl Ei) + n(ε−1

i
grad εi) · Ei

}

Ge,

and ki = ω
√
µiεi. Notice that F vanishes if εi(q) = εe, µi(q) = µe and εi(P ) is constant

near S. Also, in the special case that µi(Q) ≡ µe, (4.6) reduces to eqn. (4.18) in [36].
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4.5. Elastic waves. We can also consider analogous problems for elastic waves:
scattering of elastic waves in a homogeneous solid by an inhomogeneous (and aniso-
tropic) inclusion. It turns out that the formal method of section 1.1 (described in
detail in [33, 17]) and the method of section 3 yield exactly the same equation for the
displacement within the inclusion, u. This is because the “extra term” analogous to
pE involves the discontinuity in the traction vector across the interface: this is zero for
a perfect (welded) interface. (For imperfect interfaces [27], a nonzero contribution is
obtained.) Some applications of the volume equation for u can be found in [38, 6, 7]. A
polarization approach (leading to a coupled system) has been developed by Willis [45].
Long-wave approximations can be found in [45, 38].

Appendix A. Werner’s solution. Werner [43] proved an existence theorem
for a problem that is very similar to our Scattering Problem: he considered inhomo-
geneous forms of (2.2) and (2.3) but supposed that pinc ≡ 0. His method leads to the
following integral representations:

psc(P ) = −
∫

S

{

α(q)µ(q)Ge(P, q) − ν(q)
∂

∂nq
Ge(P, q)

}

dsq, P ∈ Be,

pi(P ) =

∫

S

{

µGe(P, q) − ν
∂

∂nq
Ge(P, q)

}

dsq +

∫

B

ϕ(Q)Ge(P,Q) dVQ, P ∈ B.

The two surface densities, µ(q) and ν(q), and the volume density, ϕ(Q), satisfy the
following system of integral equations:

ν(p) +

∫

S

µ(q) {1 − α(q)}Ge(p, q) dsq +

∫

B

ϕ(Q)Ge(p,Q) dVQ = −pinc,(A.1)

1 + α

2
µ +

∫

S

µ(1 − α)
∂

∂np
Ge(p, q) dsq +

∫

B

ϕ
∂

∂np
Ge(p,Q) dVQ = −∂pinc

∂np
,(A.2)

ϕ +

∫

S

VP

{

µGe(P, q) − ν
∂Ge

∂nq

}

dsq −
∫

B

ϕ (VPGe(P,Q)) dVQ = 0.(A.3)

Equations (A.1) and (A.2) hold for p ∈ S, whereas (A.3) holds for P ∈ B. VP denotes
the operator V (defined by (2.6)) applied with respect to P .

Werner’s proof [43] can be adapted to show that the system (A.1)–(A.3) is
uniquely solvable.

Appendix B. Volume potentials. Define a volume potential W (P ) by

W (P ) =

∫

B

ϕ(Q)Ge(P,Q) dVQ,

where Ge(P,Q) = − exp (ikeR)/(4πR). The properties of such potentials are similar
to those of Newtonian potentials for which ke = 0: thus, define

W0(P ) = − 1

4π

∫

B

ϕ(Q)

R
dVQ.

From [12, sect. 8.2], we have

(∇2 + k2

e
)W =

{

0, P ∈ Be,
ϕ(P ), P ∈ B,

(B.1)

where Be is the region exterior to B. Also, if ϕ is piecewise continuous, then W (P )
and its first partial derivatives are continuous everywhere in three-dimensional space;
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see, for example, [19, Chapter VI, sect. 3], [14, Chapter IV, sect. 1.2], [41, sect. 3.9],
[12, Thm. 8.1], and [16, sect. 4.2].

We also require the behavior of the second derivatives of W near the boundary
of B, S. As Kellogg remarks [19, p. 156], “in general, the derivatives of second order
will not exist. It is clear that they cannot all be continuous, for as we pass from an
exterior to an interior point through the boundary where ϕ is not 0, ∇2W0 experiences
a break of ϕ.” This discontinuous behavior is described in [25, p. 175] and [26, p. 125]:

[

∂2

∂n ∂xPi
W0(P )

]

= −ϕ(p)ni(p), p ∈ S.

The same formula holds for W because the difference, W−W0, is less singular. Finally,
the result (3.14) is obtained from (3.10), using ϕ(Q) = (1 − α)∂v/∂xQi . Note that
the second term in (3.10) is a volume potential: it does not contribute as its first
derivatives are continuous across S.
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