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Soundwavesalong a rigid axisymmetrictube with a variable cross-sectiorare consideredThe
governing Helmholtz equationis solved using powerseries expansionsin a stretchedradial
coordinate, leading to a hierarchy of one-dimensionalordinary differential equationsin the
longitudinaldirection.The lowestapproximatiorfor axisymmetricnotionturnsout to be Webstets
horn equation.Fourth-orderdifferential equationsare obtainedat the next level of approximation.
Comparisonswith existing asymptotictheoriesfor wavesin slendertubesare made. © 2004
Acoustical Society of America. [DOI: 10.1121/1.177527

PACS numbers: 43.20.Mv[LLT]

I. INTRODUCTION

Websters hornequation(1919 givesa one-dimensional
approximationfor low-frequencysoundwavesalong a rigid
tube with a variablecross-sectionahreaA(z). The equation
itself can be written as

1d dP )

KE(A(Z)E +kP(z)=0, (1

wherek=w/c, w is the frequencyc is the (constank speed
of sound,andzis the coordinatealongthe tube.Equation(1)

canbe derivedby consideringa thin layer of the fluid at z,

perpendiculato the z-direction,with the assumptiorthatthe
acousticpressurds constantover this layer; this pressurds

P(z). For a succinctderivation,see(Pierce,1989, p. 360).

Alternative derivations and extensionsto other problems
(suchaswith fluid flow throughthe tube areavailable;see,
for example (Reinstra,2002 and (Helie, 2003. Exactsolu-
tions of Eq. (1) are availablefor variousspecificA(z); for

somerecentresults,see(Kumar and Suijith, 1997).

In 1967, Eisnerpublishedan excellentreview of early
work basedon Eq. (1). On p. 1127, we read: “Eq. (1) is
usually called ‘Webstets horn equation,’but we see that
there s little justification for this name.Daniel Bernoulli,
Euler, and Lagrangeall derivedthe equationand did most
interestingwork on its solution,morethan 150 yearsbefore
Webster’

We are interestedin giving a systematicderivation of
Webstets equation,and of higherorder variants.We limit
our analysisto axisymmetrictubes, and obtain Webstets
equatiorwhenwe seekaxisymmetricsolutions We alsocon-
sider nonaxisymmetrianotions.To be specific,we consider
a tube of finite length, and seekthe frequenciesf free vi-
brationof the compressibldluid within the closedtube.

In 1916 (threeyearsbeforeWebstets papej, Lord Ray-
leigh publisheda paperon axisymmetricmotionsin an axi-
symmetrictube.He beganby writing the generalsolution of
the axisymmetricHelmholtzequationin cylindrical polar co-
ordinates(r, #,z) as
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d2
u(r,ﬁ,z)zJO(r\/EJrkz) Uo(2), (2)

whereugy(z) =u(0,0,z) is the value of u on the axis of the
tube;asthe BesselfunctionJy,(w) hasa powerseriesexpan-
sion in integerpowersof w?, this providesmeaningto the
right-handside of Eq. (2) [seeEq. (26) below]. Rayleigh
then obtainedan equationfor ug(z) by applyingthe bound-
ary conditionon therigid wall of the tube;asa first approxi-
mation,he obtainedEq. (1) [seeEq. (8) in (Rayleigh,1916].
He also discussedsome higherorder approximations.We
shall adopt a similar approach,althoughwe do not begin
with anexplicit representatiosuchasEg. (2): we shallusea
Frobenius-typegpowerseriesexpansionfor the radial varia-
tion of u(r,0,z).

After formulatingthe problemin Sec.ll, we examinethe
special caseof circular cylindersin Secs.lll and IV. The
exactsolutionfor the eigenfrequencies recalledin Sec.lll.
Then,the approximatemethodis developedn Sec.IV. It is
basedon someobservationsof Bostran (2000 for the re-
lated axisymmetricproblemsof elastic wavesin isotropic
rods. In principle, we can obtain a heirarchyof approxima-
tions: We give explicit resultsfor the first two membersof
this heirarchy Apart from the merits of explaining the
methodfor a simple case we arealsoableto give a quanti-
tative comparisorwith the exactsolutionsfrom Sec.lll.

In Sec.V, we consider axisymmetric, noncylindrical
tubes We changevariablesin thegoverningHelmholtzequa-
tion from r andz to p and¢, wherep is a scaledversionof r
choserto thatthe lateralboundaryis mappedo p=constant;
this has the effect of complicating the partial differential
equation(via thechainrule) but hasthevirtue thatthe lateral
boundarycondition is appliedon a coordinatesurface.The
complicationsbring the shapeof the boundaryinto the dif-
ferentialequatior| cf. Webstels equation(1)] buttheycanbe
dealtwith readily becauseve thenusea Frobenius-typex-
pansionin the new “radial” variable p. Again, we obtaina
hierarchyof approximationsThefirst approximationgivesa
second-orderordinary differential equation;it reducesto
Webstets equationfor axisymmetricmotions. The second
approximation gives a fourth-order ordinary differential
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equation.In orderto assessheseapproximationswe com-
parewith someresultsof Ting and Miksis (1983 and Geer
and Keller (1983. Theseauthorsheganwith the governing
elliptic boundary-valugproblemfor wavesin slendertubes,
and then obtainedvarious asymptoticapproximationsThe
comparisongremadein Sec.Vl. Someconcludingremarks
canbe foundin Sec.VII.

In summary the approximatemethoddescribedbelow
hastwo virtues. First, the approximationscan be improved.
Secondthe useof powerseriesmeanghatthe basicmethod
canbe appliedto much more complicatedequationsof mo-
tion, and to systemsof such equations.For example,the
propagatiorof elasticwavesin nonuniformanisotropicrods
canbe studied;for somepreliminaryresultsin this direction,
see(Martin, 2004).

Il. FORMULATION

Considera tube of circular cross-sectiorand length L.
Using cylindrical polar coordinates(r, 6,z), the interior of
the tubeis specifiedby

0<F<aR(%), 0<@<2m, 0<z<L,

where0<~R(E)$1, sothat 2a is the maximumdiameterof
the tube. It will be convenientto definedimensionleswvari-
ables,usingL asour lengthscale.Thus,we put
R(Z)=R(z) ande=all.

(Later, we shall regarde as a small parametej Hence,the
tube becomes

r=r/L, z=7/L,

0=r<eR(z), 0=6<2w, 0<z<l1.

Inside thetube, the acousticpotentialU(r, 8,z,t) satis-
fies the wave equation

U N
o

19

19°U0 4°U L?%4%U
roar 2 o2

_+_: —_—,
r2 90> 9z2 c? at?

)

wherec is the speedf sound.Onthelateralwall of thetube,
the normalderivativeof U vanishes

ou oU
——SR,(Z)EZO on r=¢gR(2z),

ar o<z<1. (4

We assuméhat R(0) and R(1) areboth positive,and close
the two endsof the tubewith rigid circular discs,giving

dUloz=0 a z=0 and atz=1. (5)

We seekfree vibrationsof the compressibldluid within
the axisymmetric tube. Thus, we put U(r,0,zt)
=u(r,z)cosmécoswt, where m is a non-negativeinteger
and w is the frequency The wave equationbecomes
d( du d%u

(r—)+r2—+(k2r2—m2)u=0, (6)
ar (922
where(now) k= wL/c is a dimensionlessvave number We
areinterestedn determiningeigenfrequencies w sothatthere
is a nontrivial u that satisfiesEg. (6) andthe boundarycon-
ditions.
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lll. CIRCULAR TUBE: EXACT SOLUTION

Considera circular tube with R(z) =1 for 0<z<1.We
can write down separatedsolutions of Eq. (6), u(r,z)
=Jn(\r)cosuz, whered,, is a Besselfunction,and\ and u
arearbitrary constantssatisfyingk?=\2+ 2. The boundary
conditionsgive A& =, , andu =N, whereN=0 and (=1
are integersand j, , is the €-th zero of J{:J; (i ¢)=0,
{=1, 2,...,.Hence,

k2= (Nm)2+ (j )% 2. @)

This is the exactsolution of the problem.It canbe foundin
textbooks[for examplep. 221 of (Kinsler et al., 1982] and
wasgivenby Lord Rayleighin thefirst edition of volumell

of The Theory of Sound, publishedin 1878(Rayleigh,1945.

A. Axisymmetric modes (m=0)

The axisymmetricproblem (m=0) is unusual,because
we can take A\=0: both Eq. (6) and the lateral boundary
conditionon r=¢ are satisfiedby u(r,z)=cosuz, so that
onesetof eigenfrequencies given by

k=N for all ¢>0. (8)

This setis elementaryijt canbe foundin Sec.62 of Lamb’s
book (1960.
The nextsetcomesby usingj ,=3.832

k?’=(Nm)?+14.6& 2, N=0,1,2,..., 9

B. Flexural modes (m=1)

We are alsointerestedn nonaxisymmetrianotions.As
an example we considerthe casem= 1 (*‘flexural modes”).
As j;,=1.841andj;,=5.331,Eq. (7) gives the first two
setsof eigenfrequencieas

k?=(Nm)2+3.3% 2 and k®=(Nm)2+28.4% 2

(10

for N=0,1,2,...,later, we will comparethe coefficients3.39
and 28.42with thoseobtainedby certainapproximatetheo-
ries.

IV. CIRCULAR TUBE: APPROXIMATE METHOD

If thetubeis slendefe=a/L <1, we expectto beableto
derive one-dimensionaltheories. We shall do this using
power seriesin r. Note that we do not limit ourselvesto
polynomials in r, and so we are not limited, in principle, to
very long waves.Neverthelesst turnsout thatthe low-order
truncationsobtainedbelow work bestfor longerwaves.

We begin,asin the methodof Frobenius by writing

u(r,z)znz,0 r2ntey (2), (11

wherea and u,(z) areto be found. Substitutionin Eq. (6)
gives

(@?=m?)ug(2)+ X 12" o (a)ups,+ul+k2u,} =0,
n=0

whereo,(a)=(2n+2+ a)?>—m?. Justasin the methodof
Frobeniugfor ordinarydifferentialequationsye requirethat
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every coefficientof r¢ vanishesFor the first term to vanish,
we obtain#?=m?. As we wantu to be boundedatr =0, we
take =+ m, andthenwe obtain

ur(2)+k2un(2)=—4(n+1)(n+m+1)u,,1(2),
n=0,1,2,...,

Notice that this proceduredoes not determineug(z).
However following Bostran (2000, we note that u,,

U,,..., are dl determinedby ug; for example we have
up+k>2ug
YT meD) (12
and
uj+k2u; Ul +2k2ug+ k*ug
Ur,= =

-~ 8(m+2) 32m+1)(m+2)°

Then,regardless of the choice of ug, theinfinite seriesin Eq.
(11) will give anexactsolutionof Eq. (6), assuminghatthe
seriesconvepes.

The end boundary conditions, Eq. (5), give
Sy or?"u/(2)=0 at the two ends,whence
u,(0)=u/(1)=0, n=0,12,.., (13

The lateral boundarycondition reduceso du/dr=0 on
r=g, andthis gives

> (2n+m)e?u,(z)=0, 0<z<1.
n=0

Eliminating u,, in favor of ugy, we obtain an equationfor
Uo(2)
O=mug+ (M+2)e?u;+(m+4)su,+- -

(m+2)e?

" 2
a(m+1) (ot Ko

:mUO_
(m+4)g?

iv 2,7 4
+ 3Am+ 1) (m+2) Up +2k“ug+ Kk ug) +---. (14)

At this stage,no approximationshave beermade.We
obtainvariousapproximationsy truncatinggq. (14); thisis
donenext.

A. First approximation

If we discardall termswith powersof ¢ greaterthan2 in
Eq. (14), we obtain

ug(z)+EMug(z)=0, (15)
where
ED(k,e)=k>—[4m(m+1)/(m+2)]e 2. (16)

FromEq. (13), we seethatEq. (15) is to be solvedsubjectto
Up(0)=uy(1)=0.
If we look for solutionsof Eq. (15) in the form

7

we find that u?=&Y(k,e). Then, in order to satisfy the
boundaryconditionson the two endsof the tube,we obtain
u=Nm, whence

Ug(z)=cosuz,
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k?=(Nm)2+[4m(m+1)/(m+2)]e 2

This can be comparedwith the exactsolution, Eq. (7). For
m= 0, we recoverthe exactsetof solutionsgivenby Eq. (8).
For m=1, we can comparewith Eq. (10); whenm=1, we
have 4m(m+1)/(m+2)=8/3=2.67 which is in error by
about20%.

B. Second approximation

If we retainthe termsin ¢* in Eq. (14), we obtain

ul(2)+ Cuig(2) + £ ug(2) =0, (18
where
Co(K,e)=2K>? 8(m+2)2 (19
e (m+4)e?’
32(m+1)(m+2 m+2)(ke)?
(0 mky MDD (m+2)(ke)
(m+4)e? 4(m+1)
(20)
The fourth-orderEg. (18) is to be solvedsubjectto
up(0)=ug(0)=ug(1)=ug(1)=0, (21

"

usingEq. (12) to expressu; in termsof ug
(13).
SubstitutingEg. (17) in Eq. (18) gives

andug, andEg.

w— pn2C(k,e)+ 32 (k,e)=0, (22)
andthena routine calculationyields

,LLZZkZ_Vm/&‘z:/.Lﬁ.](k,S), (23
say wherev,= ym+4(m+2)%/(m+4) and

1 -1
Xm=* ( 1+ Zm) J(m+2)(8+4m—4m?—m?).
(24)

Finally, the endboundaryconditionsgive

k?=(Nm)2+ vy,le?. (25)

1. Axisymmetric modes (m=0)

Whenm=0, Eq. (25) reduceso Eg. (8) whenwe take
the minussignin =. If we takethe plus sign, we obtain k?
=(Nw)?+8& 2, wherethe coefficient8 can be compared
with the exact14.68in Eq. (9).

For this axisymmetricproblem, we can comparewith
Rayleighs approach.As Jo(w)=1—1/4w?+ 1/64n*—---,
Eq. (2) gives

u(r,z)=uo(z)— r2(ug+k>3up)

+ g2 r(ug + 2k2ug +kfug) — -+ (26)

If we discardthe higherordertermsandapply the boundary
condition, du/dr=0 onr =g, we obtain preciselyEq. (18)

with m=0. This is reassuringout notsurprising:The repre-
sentationgivenby Egs.(2) and(11) areequivalentalthough
the latter can be usedfor nonaxisymmetrigroblems.
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2. Flexural modes (m=1)

Whenm= 1, we obtain
k2= (Nm)2+ 2(9=\2D)e 2. (27)

To obtainthe lowestvalues,we take the minus sign, giving
k?=(N)%+3.5% 2; the coefficient3.53 differs from the
exact3.39 by about4%. Thus, the fourth-ordermodel gives
goodaccuracyfor the lowestsetof eigenfrequencies.

If we takethe plus signin Eq. (27), the coefficientmul-
tiplying ¢ 2 becomesl10.87, which can be comparedwith
the exactvalue of 28.42 given in the secondof Eq. (10).
Thus,aswhenm=0, the secondset of eigenfrequenciess
not approximatedvell by the fourth-ordermodel.

V. NONCYLINDRICAL TUBES

Oncewe move awayfrom cylinders,we no longerhave
exact solutions. Therefore,an approximatemethodwill be
required. For this reason,we chooseto make a simple
changeof the independentariables,from (r,z) to (p,{), 0
thatthe new geometryis a circularcylinder. The price of this
changeis that the new partial differential equationis more

complicated.
Thus, definenew variablesp and ¢ by
p=r/R(z) and{=z, (28)

so that the tube is mappedonto the circular tube, given by
0=p<e, 0<¢<1. (Later, we will usezin placeof ¢, butit is
clearerto distinguishthe two variablesat this stage) The
chainrule gives

du 1lou du 1 d4u

o Rdp' g2 R2gp?’

Jdu du R’ du

iz . PR ap’

U du ) R’ d%u au R\’
022 a2 PRoopat Pap\R

+(R'25 au
PIR ap pr?p'

Hence,Eq. (6) becomes

d | du au J%u
1+ ZRIZ _( _)+ 3 R!Z_RRH — 4 2R2_
(1+p )p&p Pan p( )&p P e

2p°RR’ 02u+ kpR)?—m?lu=0 29
p pal [(kpR)*—m“]u=0, (29

the lateralboundarycondition, Eq. (4), becomes
Ju

2pr2 u ’
(1+&°R )%—SRR (%:O on p=e, 0<{<1,
(30)
andthe end boundaryconditions,Eq. (5), become
du R’ du
ﬂ—g—pE%ZO a (=0 and at¢=1. (31
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To solve Eq. (29), we proceedasin Sec.IV, andwrite

u<p,g>:go P2 eun(Q). (32)

Substitutionin Eq. (29) gives

<012—m2>uo<4>+n§0 P2 (@) U1+ An(L @)} =0,

whereo,(a)=(2n+2+ a)?>—m?, and
An(z,@)=R2U—2RR’(2n+ a)u;,
+[k?R?+(2n+ a)?R’?
+(2n+a)(R"2—RR")u,,.
As before,we take =+ m andthen
Ap(zym)y=—=4(n+1)(n+m+1)u,,1(2),
n=0,1,2,...,.
In particular we find that
—4(m+1)u; =R?uj—2mRR’u
+[k?R?+m(m+1)R’2—mRR"]uy,
—8(m+2)u,=R%uj—2(m+2)RR'u; 33
+[k2R%+ (m+2){(m+3)R’>—~RR"}]u; .
Eliminating u; from the last equation,using Eq. (33), gives

32(m+1)(M+2)Upy= amul + BrmUly + YmUg+ Smlo+ €mUo,
(34
where

am(2)=R*  Bn(z)=—4mR°R’,

Ym(2) = 2R?{k?R?+ 3m[(m+1)R'>—RR"]},

Sm(2) = —4mR{k’R?R’ + R?R"
—(m+1)R'[3RR"—(m+2)R'?]},

em(2)=k*R*+2mk?R2{(m+1)R'2— RR"} —mR°RV
+m(m+1){R?(4R'R"+3R"?)
—(m+2)R'Y6RR"—(m+3)R'?]}.

WhenEqg. (32) is substitutedn thelateralboundarycon-
dition Eq. (30), togetherwith «=m, we obtain

©

0=mug(2)+ >, 2" 2{(2n+2+m)u,.1(2)
n=0

+(2n+m)R’2u,—RR"u/}. (35
Similarly, the endboundaryconditionsEg. (31) give

!

- R
> PP ul(2)— = (2n+m)uy(2)|=0 &
n=0 R

z=0 and at z=1, (36)

which immediatelygives
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R(z)u,(2)—R'(z)(2n+m)u,(2)=0 a z=0
and at z=1,

for n=0,1,2,...,
Below, we shall usethe following shorthandchotation:

S51(2)=R'IR, &,=R'IR, S8;=R"IR, S&,=RVIR.
(38)

(37

A. First approximation

If we retainonly thetermsup to &2 in Eq. (35), we find
that

0=muge 2+ (m+2)u; + mR"%uy— RR'U}.
Uponusing Eqg. (33), this gives

ug(2)+ DM (2)up(2) + EF(2)ug(2) =0, (39)
where

DY(2)=28,(2—m?)/(m+2),

m(m+1)(m—2)
EST:]L)(Z) =5(n1')(k,8R) + TSE_ mSz,
and&Y aredefinedby Eq. (16). FromEq. (37), Eq.(39) is to
be solvedsubjectto Rug—mR'uy=0 & z=0 andat z=1.
Equation(39) canbe transformedso asto eliminatethe
first-derivativeterm. Thus, put

Ug(2)=R"Wgy(z) with y=(m?—2)/(m+2). (40
Then,we find that U,(z) solves
UG(2) +[K*—K(2)]Uo(2)=0, (41)
where
K(z)zz(m—w[lSﬁSﬁZ—m],
m+2 |m+2 £2R?

subjectto (m+2)U5—2(m+1)S;Ug=0 a z=0 andat z
=1. Notice that Eq. (41) hasoscillatory solutionswhen k?
>K but exponentialsolutionswhenk?<K.

Equation (39) and its associatedboundary conditions
can also be written as a regular Sturm-Liouville problem.
Thus,

(p(2)ug)" +[a(z) +Aw(z)]ug(2) =0,
wherep=w=R"2?, A\=k?, vy is definedby Eq. (40), and

s

4
(M=2)8t— ——
e2R?

m+1
= -2y
q(z)=mR [m+2

1. Axisymmetric modes (m=0)
Whenm=0, Eq. (39) reduceso
(Auf) +k2Auy=0, (42

whereA(z) = ma?[R(z) ]? is the areaof the (circulan cross-
sectionat z; Eq. (42) is recognizedas Webstets horn equa-
tion Eq. (1). The appropriate boundary conditions are
Ug(0)=ug(1)=0.
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2. Flexural modes (m=1)
Whenm=1, Eq. (39) reduceso
" 2 ’ 2 2 2 8 _
Ug(2)+ §Slu0(z)+ k=— 581—82— @ Ug(z)=0,

subjectto Ruj—R'uy=0 & z=0 andatz=1.

B. Second approximation

If we retainthetermsup to ¢* in Eq. (35), we obtainan
equationcontainingug, Ug, Uy, U;, andu,. If we eliminate
u,, U, andu,, usingEgs.(33) and(34), we obtaina fourth-
orderequationfor ug(2z),

uy +BZ(2)uf+C2(2)up+ D2 (z)uf+EZ (2)up=0,

(43
where

B\?'=48,(4—2m—m?)/(m+4),

C2=Cn(k,eR)—6M{S,+ (4—m—m?)S2(m+4)},
amsS; (44)
D =D, (k,eR)—4mS;+ g l(m+ 1)(4—m?)S?

+3m(m+3)S,},

E@=£2(k,eR)—mS,+3m(m+1)S2

o A2 o, | AME(ME3)
m+4 172 m+4 13

em* (m+1)(m+2)

m-+4 192
m(m+21)(m+2)
T mra(MmeAS
8am(m+2)

- m{(m 1)(m=2)Si—(m+2)S,},

Cr and £2) are definedby Egs. (19) and (20), respectively
and

4S8,
m+4

Di(k,e)= [(4—2m—m2)k2

4
+?(m+2)(m2—2)}. (45)

Note that Eq. (43) reducedo Eq. (18) whenR(z)=1.
Equation(43) is to be supplementeavith boundarycon-

ditions. From Eq. (37), theseare
Rupg—mR’up=0 and Ruj—(m+2)R'u;=0 (46)

atz=0 andat z=1. Eliminating u, from the secondof Eq.
(46), using Eq. (33), andthenusingthe first of Eq. (46), we
obtain
ug —3mS;ug+{2(m?—1)S7+ 38, uy— mS;up=0;
(47)
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both this condition and ug=m&,u, areto be imposedat z
=0 andat z=1. Notice that the boundaryconditionsdo not
involve k.

1. Axisymmetric modes (m=0)
Whenm=0, Eq. (43) reduceso

!

4
U3/+ ?u6’+2

4
&?R?

4 - 4R’
£2R2 Uo™ R~

k2— k2 — ug

(48)

., 8K
k —; UOZO.

FromEq. (47), we seethatEq. (48) is to be solvedsubjectto
Eqg. (21). We observethat Eq. (48) involvesR andR’, but
not higher derivativesof R. Also, Eq. (48) can be derived
directly by applying Eq. (4) to Eq. (26).

2. Flexural modes (m=1)
Whenm= 1, we obtain
4

B¥(2)=¢ 51,

12, 2
T 8-68- ¢ (sR) 2,

(2) — K2 _
C?(z)=2k :

D@ (2)= & Sy{Kk+ 652+ 125, 12(eR) -2} — 4.
1 (2)=g8d 1 »—12(eR) "} —48s,

2
EP(2)=k*~ 8, + 685~ £ k(283 +55,+36(eR) 2}

2
+ £ 51{85;-185,5,~ 1253}
24 ) 8
+ e 282+38,+ el

Then,the differentialequationEqg. (43) (with m=1) is to be
solvedsubjectto

Ug—S1Uug=0 and ug —3S;ug+3S,uy— S3ug=0

atz=0 andat z=1.

VI. COMPARISON WITH ASYMPTOTIC
APPROXIMATIONS

A numberof formal asymptotictheorieshave beerde-
velopedfor wavesin slendertubes.In the papersy Ting and
Miksis (1983 andby GeerandKeller (1983, thetubesneed
not have circular cross-sectionsand they need not be
straight. Here, we shall comparethe resultsobtainedfrom
our one-dimensionatheory with thoseobtainedby special-
ising the analysisin (Ting and Miksis, 1983 and (Geerand
Keller, 1983 to our axisymmetricgeometries.

Two asymptoticregimesare of interestto us. In one, k
=0(1) as e—0, sothatthe wavelengthis comparableo L,
the lengthof the tube.All solutionsof this kind are axisym-
metric. In a secondregime,k=0(e 1) as e—0, sothatthe
wavelengthis comparableto a<L. Both kinds of solution
areseenin the exactsolutionsfor circular tubes(Sec.lll).
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A. Wavelength comparable to L

For axisymmetricmotion, we obtainedthe fourth-order
Eq. (48), which we write hereas

(R2up)’ +k2R2uy= % £2R3(RuY + 4R’ ug + 2k*Rup

+4k2R"uy+k*Rug). (49)

In this equation,k and ug(z) are unknown;they are to be
determinedsubjectto the four boundaryconditions,Eq. (21).
Let us lookfor solutionsof the form

k2=k2+ek3+: -+, (50)

where ky and k, are to be found. Thus, we put ugy(2)
=vo(2)+e%v,(2)+--- and Eq. (50) in Eq. (49). This is a
classicsingularperturbation,becauseEq. (49) reducesto a
second-ordeequationwhen ¢=0, implying that the bound-
ary conditionswill haveto be modified. Indeed,writing out
thefirst two termsof the exactboundarycondition,Eq. (36),
we have

0=u{(2)+pFu;—2(R'/R) U]+
=up(2)~ §p?RP(Ug+K?Ug) ++ -,
at eachend of the tube, wherewe haveusedEq. (33). We
will not be ableto satisfy this condition for all allowablep
with 0<p<e, and so we integrateover eachcircular end of
the tube,andimpose

0=u}(z)— 3?R%(up+Kk?up)'+--+ at z=0

and at z=1; (51)

this ensureghat Eq. (36) is satisfiedin an averagesense.
Thetermsin £° from Egs.(49) and(51) give

(R%{)' +k2R%=0 for 0<z<1, with
v6(0)=v4(1)=0. (52)

This is Webstels horn equationagain, written as a regular
Sturm-Liouville problem:it is an eigenvalueproblemfor kg
anduvy(z); we normalizethe solutionusing

1
fo {vo(2)R(2)}2dz=1. (53
Thetermsin &2 give
(R%})’ +kgR?v 1= —k5R%o+V, (59)

where

V= iR} (Ruy+4R v + 2k3Rv§+4k3R v+ kgRuo)

— %RZ(RIRH_RRW)U(I)_ %R?’R”US, (55)
afterusingEq. (52),. Similarly, Eq. (51) gives
v1(2)=— 7RR'vg=—3(RR'vg)’ at z=0
and at z=1. (56)

Thuswv, solvesa forced versionof Webstets horn equation
with inhomogeneoud®oundaryconditions.As the homoge-
neousform of Eq. (54) admitsnontrivial solutions,Eq. (54)
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will only have solutionsif a consistencyconditionis satis-
fied. Thus,we multiply Eq. (54) by vo(z) andEqg. (52); by
v41(2), subtractthe two, and integrateover 0<z=<1. This
gives

1, ,
— ZR%y(RR'v})’

1 1
2 :_kg'i‘f VUodZ,

z=0 0

wherewe haveusedEgs. (52),, (53), and (56). In orderto
cancel the left-hand  side, write V={V
+ U4 R?(RR'v()' "} =14 R?*(RR'v})']’. Then, an inte-
grationby partsgives

1 (1 1
kgzzfo R(RR'v¢) vodz+ fo Wo odz, (57)

where
W(z)=V+ :[R%(RR'vy)']’
= iR°R'vg +(RR")?vg+ 3 (3RR'R"+RR"®)ug
(58)
and we haveusedEg. (55). Integratingthe first integral in
Eq. (57) by parts,usingEq. (52),, thengives
1 (1
Ki=—— J (RR'v{)?dz+K,
2Jo

where K= [3(Wvo— 1/4R°R'vjv,)dz. We are going to
showthatK =0.

Noting thefirst termin Eq. (58), andmakinguseof Eq.
(52, we have

vevo—vgue=—[k3vo+ (2R R vg) Jug
+(kdvo+ 2R IR vy
=2R'R'v{?— 2R (RR"—R'?)v},
+RR'v{]vo.
Hence, K=1/2[}{(RR'v{)?+ [ (RR")2v4] vo}dz, and this
is seento vanishafter anotherintegrationby parts.Thus,

1 1
K2=k3— ESZJ'O (RR'v()?dz+0(e%) as e—0. (59

This elegantformulawasderivedin a differentway by Geer
andKeller (1983; seetheir Eq. (102).

B. Wavelength comparable to a

In the differential equationsEgs. (39) and (43), put k
=kle and

Ug(z)=E(z)w(z) with E(z):exprlfsz(t)dt},

.
(60)
where®d(t) andw(z) areto be determinedandz, is a con-

stant.Supposeurther that
W(Z2)=Wq(2)+eWq(2) +82Wp(Z) +-. (61)

Then,we obtainthe following approximations:
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Uo/E=wWo+ew,+0(g?), uy/E=e tidwy+0(1),

UY/E=—& 2D2Wy+ e L 2idw,+id ' wo— D?w;)
+0(1),

ug/E=—g Sid3wy+0(e?),

UY/E=g *d*Wy+e 3D D2, — 2i (3D Wy +2dwh)}
+O(s_2),

ase—0.

Let us begin with the second-ordeequation,Eq. (39).
We notethatD{M=0(1) and E(M=& ~261(«,R) + O(1) as
&—0. Then,the termsin £ 2 give

[@(2)P=ER(x,R). (62)
Thetermsin ¢ ! give

20w+ {P®'+ DD Mwy=0,

which is a first-orderdifferentialequationfor wy. Rearrang-
ing gives
(We®")"  wy @’

qu) 12

(1) ’
— = EZEL.::__q(l)jE_
wy 29 2 m R’
Whereq%)=(2—m2)/(m+ 2). An integrationgives
w3i®dR?9=constant, (63)

where wy, ®, and R are all functions of z only, and q

=qf.

Next, considerthe fourth-orderequation Eq. (43). Sub-
stituting as before,we find that

B2=0(1), C@=& 2C(x,R)+0O(1),

D?=¢~2D.(k,R)+0O(1) and

E@=¢4£2(k,R)+0(s 2

ase—0. Then,we seethatthe termsin ¢ ~* give

D*— D%C(k,R) +EP(k,R)=0, (64)
which shouldbe comparedwith Eg. (22). Thus,
[D(2)]%=piH(x.R), (65)

where u,, is definedby Eq. (23).
Thetermsin £ 2 give

0={D*— D2 (k,R)+E2(k,R) Wy
+ 2i PW{Cr( K, R) — 2P 2} +iWo{ P Dy k,R)
+®'Cr(k,R)—P3BP— 602D},

The factor multiplying w, vanishesdueto Eq. (64), leaving
a first-orderdifferential equationfor wy(z)

Wy  D?Dy(k,R)+ DD’ Cpy( k,R)— DBZ — 603D’ 0
—+ =0.
Wo 202 C(k,R)—2d2?]

Rearranginghis equationgives
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(Wod?)" 40D’ —Dp(x,R)+D?BE o
WD 2[Cr( K, R) —2D7?] TR
where
Oy’ = [4(m+2)(m?=2) = m(m+ 3) v }/[ (M +4) ]

Here, we have used®?= x?— v,/R?, and Egs. (19), (23),
(44), and (45). Hence,an integrationgives Eq. (63) again,
but with q=q'?.

Let uscompareour results(obtainedby solvingordinary
differentialequationsasymptotically with thoseof Ting and
Miksis (1983 andGeerandKeller (1983 (obtainedby solv-
ing an elliptic boundary-value problem asymptotically.
First, we obtainedapproximationgor ®, givenby Egs.(62)
and(65), whereaghe exactformulais

[®(2))°=x*~[jm/R(@)T. (66)

The errorsincurred here are exactly the sameas thosedis-
cussedn Sec.IV for acirculartube (constantross-section

We cannotexpectto do any betterfor tubesof varying cross-
section.Secondthe analysisof Ting and Miksis (1983 and
GeerandKeller (1983 leadsto Eq. (63) with g=1 (for all

m). If we takethe minussignin Eq. (24), we find that q{?)

=1 andq{?’=1.43;it is not clearwhy this lastnumberis not
closerto 1, given that the correspondingvaluesof ® are
close.

VIl. CONCLUDING REMARKS

The methodof Sec.V for wavesin axisymmetrictubes
leadsto eigenvalueproblemsfor ordinary differential equa-
tions. The simplest(first) approximationleadsto a regular
Sturm-Liouville problem.This is convenientbecauseeffi-
cientsoftwareis readily availablefor solving suchproblems
numerically (Pruessand Fulton, 1993. The next (secondl
approximationis expectedo be moreaccurateand,indeed,
we haveshownthis in someasymptoticregimes.The second
approximationleadsto an eigenvalueproblemfor a fourth-
orderdifferentialequation.However it doesnot fall into the
classof regularfourth-orderSturm-Liouville problems;see,
for example,the review by Greenbeg and Marletta (2000.
In fact, we cansaylittle aboutthe theoreticalpropertiesof
the simplestequation,namely Eq. (48), which modelsaxi-
symmetricmotions.

Evidently, higherorder approximationscould be devel-
oped,leadingto ordinary differential equationsof order2n
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with n=3,4,...;thenecessarygerivationswould be expedited
using softwarefor symbolic manipulations.The method of

Sec.V could alsobe extendedo othercross-sectiongjsing
a scaling p that dependson the angle 6 as well as on the

longitudinal coordinatez.

Another possibility is to abandonpower seriesin favor
of Neumannseries,which are seriesof Besselfunctions of
various orders. This would permit better representatiorof
u(r,z) for fixed z but at the expenseof additionalcompli-
cation.

Finally, the basicpowerseriesmethodcan be extended
to variouselastodynami@roblems generalizingthe work of
Bostran (2000 on rods and of Bostran, Johanssonand
Olsson(200)) on plates;for axisymmetricmotionsin non-
uniform anisotropicrods,see(Martin, 2004). Indeed thefact
thatthe powerseriesmethodis relatively insensitiveto com-
plications in the governing partial differential equations
meansthatit may be worth developingfurther.
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