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Abstract

It is well known that, under certain circumstances, discrete plane waves can propagate through lattices. Waves can also
be generated by oscillating one point in the lattice: the corresponding solution of the governing partial difference equations
is the discrete Green’s function, g,,,. The far-field behaviour of g,,, is obtained using three methods: textbook derivations
are corrected and a formula for g, as a Legendre function is derived. The low-frequency behaviour of g,,, is also obtained
using Mellin transforms. These results are useful in the development of a discrete scattering theory.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Partial difference equations have been studied extensively. One motivation was the development of finite-
difference approximations to partial differential equations. For example, one might try to compute u,,, for
integer m and n by solving some partial difference equations, where u,,, is supposed to be an approximation
to u(mh,nh) and u(x,y) solves a partial differential equation. The parameter / is the constant mesh spacing, so
that one would want to know if the approximation converges to u as 4 — 0 [12]. Further applications occur in
mechanics, where the ‘continuum limit’ of lattice models has a large literature; see [25] for a recent review.

We are interested in methods for solving the discrete problem for fixed, finite %, especially when the gov-
erning partial difference equations can support waves: this topic is known as lattice dynamics. Analogous static
problems also arise; see, for example, [29] for a study of lattice defects and [10, Chapter IV] for an application
to the interpolation of data given on an integer mesh. The classic applications of lattice dynamics are in solid-
state physics [20]. There, one considers a periodic arrangement of interacting cells; each cell contains the same
arrangement of interacting atoms. The propagation of waves through such a perfect lattice is a textbook sub-
ject [3]. If the lattice contains a defect, waves will be scattered. The corresponding scattering theory for a point
defect was instigated by I.M. Lifshitz in the late 1940’s; see [16, 17, 18] and [20, pp. 376-381]. A key role in this
theory is played by the lattice Green’s function; this is the main subject of the present paper.
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We consider the simplest problem, with a two-dimensional, square lattice. We envisage that each lattice
point can move out of the plane of the lattice, and that each point is connected to its neighbours by springs;
only nearest-neighbour interactions are included. This leads to a system of partial difference equations. The
same equations are obtained if the two-dimensional Helmholtz equation is discretized using the central-differ-
ence approximation for the Laplacian. The corresponding lattice Green’s function, g,,,, can be written down
as a Fourier integral over a square, Bj. If propagating lattice waves can exist (this is the situation of most inter-
est), then the integrand is singular along a certain closed curve within By; this singularity must be treated prop-
erly in order that g,,, be ‘outgoing’ at infinity. This leads to a far-field analysis of g,,,,.

We describe three methods for calculating the far-field behaviour of g,,,,. The first method (see Section 4.1)
is due to Koster [15]. It begins by writing g,,,, as a three-dimensional integral followed by a stationary-phase
argument. This approach is described in textbooks, but the argument given is incomplete; we show how this
can be remedied, and then use the three-dimensional method of stationary phase (as described in the book of
Bleistein and Handelsman [2]).

Second, in Section 4.2, we describe a method that goes back to Lifshitz [16]. (We have not found a descrip-
tion in English of his method.) The basic idea is to make a change of variables in the double integral for g,,,,,.
The inner integral is non-singular, and can be estimated by the standard one-dimensional method of station-
ary phase. The outer integral is replaced by a double integral, which is then estimated using the two-dimen-
sional method of stationary phase.

Third, in Section 4.3, we use an integral representation for g,,, as a single infinite integral of Lipschitz—-Han-
kel type (the integrand contains the product of an exponential and two Bessel functions). This is convenient
along the diagonal, where m = n, because it yields an explicit formula for g, as a single Legendre function of
the second kind. The far-field behaviour of this function is shown to agree precisely with that obtained using
the other two methods.

In Section 5, we obtain the low-frequency behaviour of g,,,, using Mellin-transform techniques.

Once the behaviour of g,,, is known, we can begin to build a discrete scattering theory. Thus, we can use
discrete versions of Green’s theorems [8, 6] and discrete layer potentials [14, 22] in order to study the interac-
tion of lattice waves with finite-sized defects in the lattice: this is the subject of ongoing work.

2. Lattice dynamics

Consider the two-dimensional wave equation. For time-harmonic solutions, with a time dependence of
e ', we obtain the Helmholtz equation,

Pu u  o?
—+—=+—u=0, 1
ox2  0y? (1)
for u(x,y), where ¢ is a constant.
Now, consider a uniform mesh (or lattice) and write
Uy = u(mh, nh),
where /1 is a constant and m and n are integers. Then, using central-difference approximations for the partial
derivatives in Eq. (1), we obtain
(‘Q{u) (m,n) = uerl,n + umfl.,n + Um n+1 + Umpp—1 — 4umn + kzumn = 07 (2)

where k = wh/c.
Suppose that Eq. (2) holds for all integers m and n; we write (m,n) € Z?, the set of all points in the plane
with integer coordinates. Then, solutions of Eq. (2) are given by

tnn = exp{i(m& +nn)}, 3)
where ¢ and # solve
a(&mik) =0 (4)

and the symbol, o, is given by
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a(E k) = k* —4+2cos &+ 2cosy (5)
= k* — 4sin’ - 4sinZl (6)
=k —8+4cos’ L& +4cos’ Iy (7)
= k2—4+4COS([5+'7]/2)C05([5—77}/2); (8)

evidently, there are no real solutions when k%> 8. When k* = 8, the solution Eq. (3) reduces to u,,, = (—1)""".
When they exist, solutions Eq. (3) are called lattice waves [3, §24]. For more details, see [4] and [23, §4].
The solution Eq. (3) is 2n-periodic with respect to £ and 7, so we can suppose that

—1<é<n and —-n<n<~n

this is known as the first Brillouin zone (later, we denote this square by By).
Suppose that (¢,1) = (,10) solves Eq. (4) with k* <8. Then, (—&o,70), (o, — 1) and (—&o, —1o) are also
solutions. Hence, we can assume that

0<¢é<nm and 0<p, < 9)

Denote this square by By; it has corners at A(n,0), B(n, ), C(0,7) and O(0,0) in the &- plane. Notice that the
term cos([¢ — 17)/2) in Eq. (8) is non-negative in Bj.

The solutions of Eq. (4) define a closed curve in B;. This curve can be parametrized easily. We identify two
cases, depending on the value of k°.

Case 1: k* < 4. Eq. (6) shows that solutions of Eq. (4) in By are given by
sinié =tkcos0 and siniy=lksin0 (10)

for 0 < 0 < in. Examination of the sign of cos([¢ + #7)/2) in Eq. (8) shows that all solutions lie in the triangle
OAC; there are no solutions in the other half of Bj.

Case 2: 4 < k? < 8. Eq. (7) shows that solutions of Eq. (4) in By are given by

coslé =1v8 —kcost and cosly=1v8—k’sin¢

for 0 < 0" < in. These solutions lie in the triangle ABC.

3. Lattice Green’s function

In Section 2, we considered solutions of (.«7u)(m, n) = 0 for all (m,n) € Z*>. Now, we suppose that the lattice
is forced at one grid point. This point can be taken to be the origin because of the periodicity of the lattice.
Thus, we consider

(/) (m,n) = Sowdon for all (m,n) € 22, (11)

where J;; is the Kronecker delta; any solution g, may be called a lattice Green’s function. Define a function ¥
by

Y& Z Z o€ —i(m&+nn)

m=—0o0 n=—0o0

for —n < ¢ < mand —n <5 < n. Thus,

1 n n o
mn = T2 2 £ 57 el(mg+’1,7)déd
§ (27’[)2 /—n /;n ( ]/I) 1

() (m n) = / / (& m )G (E )™ m de dn,

and
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where ¢ is defined by Eq. (5). This equation and Eq. (11) imply that ¢% = 1, whence

= " gcan. (12)
o | ewn

As g (&, n;k) is even in ¢ and in 5, we obtain

- / / cosmicosnndéd
= a(& ik

which shows that g,,,,, is even in m and in n; hence, we can assume that m > 0 and n > 0. Also, interchanging m
and n, and ¢ and 5, shows that g,,,, = g.un.

The formula Eq. (12) is well known. See, for example, [11, Eq. (5.31)].

The Green’s function for a discrete waveguide, with g,,,, = 0 at m = =M for all n and a finite positive integer
M, has been used by Glaser [13]. Such a g,,,, can be called an exact Green’s function, as it satisfies some addi-
tional boundary conditions. For the calculation of some static exact Green’s functions, see [27].

4. The far-field behaviour of g,,,

In order to build a scattering theory, we need to know the far-field behaviour of the Green’s function. Thus,
we require the behaviour of g, as R — oo where R = vm? + n?.

Now, formulas such as Eq. (12) have been studied extensively: changes in the difference relation Eq. (2) lead
to different symbols. The far-field properties of the corresponding Green’s function depend crucially on
the zeros of ¢ within the square of integration, B;. If ¢ # 0 in Bj, then g,, decays exponentially with
R [9, p. 404, 10, p. 82]; this is our situation when k> > 8.

More generally, ¢ will vanish at places within By, implying that the integrand in Eq. (12) has singularities.
For certain equations, including the discrete form of Laplace’s equation (put kX = 0 in Eq. (2)), ¢ has a non-
integrable singularity at the origin, and so the formula Eq. (12) must be modified [28, 21].

Returning to our specific g,,.,, suppose that k> < 8. Then ¢ in Eq. (12) vanishes along certain curves in B;.
We have to specify how to handle the corresponding singularities. Physically, we seek a solution for g,,, that is
outgoing at infinity.

4.1. The method of Koster

One standard approach begins by giving the wavenumber a small positive imaginary part: replace k> by
2416, with 0 < 6 < 1, (13)

and let 5 — 0 at the end of the calculation. Then, use an integral representation for (¢ + i)', where o (&, ;&%)
is real. Koster [15] used the formula

1 o0
S _1/ el((T‘Fl(;)gdC (14)
0

o+1i0
in Eq. (12), giving

1 ) .4 n 0 o o
o = 1(2n)2 511%,}r / / /0 e—o(elR(gcosm+;7sm¢)+1wd€dgvd’7’ (15)

where m = Rcosa and n = Rsino; we can assume that 0 < o < %n. Then, Koster ‘follows the method of
stationary phases and assumes that the principal contribution to the integral comes from that region where
the variation of the exponent is small’ [15, p. 1440]. However, it is not immediately clear how to justify
this assumption, because the large parameter R is not a factor in the exponent. Instead, we simply replace
Eq. (14) by

1 S
= —IR/ eiR(rIJri(;)CdC;
0

o+ 10
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when substituted in Eq. (12), we obtain

—el QIRP(E.0)
B = 2 m [ ] dcdedn, (16)

where
®(&En, () = Ecosa+nsina+ {a(é,n; K?)
is real and we have put
0=¢/Rwith 0 < e < L.

The integral in Eq. (16) is amenable to the three-dimensional method of stationary phase. Thus, from [2, Eq.
(8.4.44)], we obtain

R <2n> * exp{iR®(xo) + timsigd}
i(2n) /[ det 4]

as R — oo, where xo = (&g, 10, {o) 1s a relevant point of stationary phase, the 3 x 3 matrix 4 has entries
2

0P
0%0¢,

Emn ™~

A, = evaluated at X,
with & =&, & =nand & =, and sigd is the signature of 4 (equal to the number of positive eigenvalues of 4
minus the number of negative eigenvalues).

To find x¢, we put 0¢/0&;, =0 for i = 1,2,3, giving three equations,

a(&o, N k*) =0, cosa—2(ysiné =0, sina — 2{,siny, = 0. (17)

The first of these shows that the pair (&, 7o) corresponds to a propagating lattice wave; see Eq. (4). Hence,
R®(xg) = méy + nng. The other two equations in Eq. (17) determine the (artificial) parameter, {y, and the
direction of propagation: the direction of observation (given by ) coincides with the direction of the group
velocity. Thus,

28y = (sin® & + sin’ ;) " and sinosin & = cosasin . (18)

Relevant points x( have {, > 0, so that Eq. (17), 3 give sin&, > 0 and sinzny > 0. (Recall that 0 < o < %n.) Giv-
en a solution xo with 0 < &, <= and 0 < 5o <7, we see that Eq. (17),3 are also satisfied if we replace &, by
n — &y, or o by m — 159, or both; however, these replacements do not satisfy Eq. (17);. Consequently, there
is only one relevant point of stationary phase, xo. For 4, we obtain

{ocosé, O sin &,
A=-2|0 {ocosn, sinn, |,
sin &, sin#, 0

whence det4 = 8{y(cos&, + cosig) (1 — coséycosngy). We notice that det4 = 0 when k? = 4, so that the station-
ary-phase calculation must be modified for this special case.

The eigenvalues of A, 4; with i = 1,2, 3, are given by solving the cubic, det(4 — Al) = 0. They are all real.
The product 4; 4,43 = detA. Elementary considerations show that sigd = —1 when 0 < k? <4 and sigd =1
when 4 <k” <8.

For more explicit results, suppose that 0 < k> <4 so that we can use Eq. (10),

2siniéy =kcosy and 2sinly, = ksin .
Then, 0, is determined from Eq. (18),:

2(1 — tan?
tan 0y = \/—/H— V2% + tan® o with i:w. (19)

4 —i?

We find that det4 >0,
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detA = k(4 — k*)(2 — k* sin’ 0y cos® 0) {4 — k*(cos* Oy + sin* 0)} /2.
Finally, we obtain
ellmeotm) gin/4£4 _ k2(cos* 0y + sin® 0p)}"/*
V2mkR \/(4 — K*)(2 — k* sin® 0, cos? 0;)

Gon ™~ — as R — oo. (20)

Apart from a constant multiplicative factor, the formula Eq. (20) agrees with one on p. 84 of Economou’s
book [11], where a paper by Callaway [5] is cited. In fact, Callaway’s paper contains the analogous result
for a three-dimensional cubic lattice. See also [26] and [20, pp. 376-381].

The approximation Eq. (20) simplifies on the diagonal, where m = n. Then, R = nv/2, 0y = n/4, & = no,
coséy = (4 — k*)/4 and

cos2éy = 1 —k* +k*/8,
so that Eq. (20) reduces to

e2inéogin/4
8 ™~ — /4
\/mkn(4 — K2)(8 — k)"

4.2. The method of Lifshitz

as n — oo. (21)

For an alternative method, return to Eq. (12), the double integral over the square B;. Let B’ denote the
smaller square, with corners at (¢,5) = (£n,0) and (0,+n), and put B” = B, \ B'. Suppose that 0 <k*<4
so that all zeros of ¢ are in B’ and not in B”. Then,

Emn = g:nn + g::nﬂ
where

. 1 / ei(/n€+nn) déd 4o 1 / ei(m§+m1) dé 4
= an = P .
Emn (2n)* Jy o(&,n:k) 1 S n) Jo o(En;k) 1

As ¢ # 0 in B", it follows that g/ = O(R™ ") as R — oo. (This is the two-dimensional method of stationary
phase when there are no points of stationary phase; see [2, Eq. (8.4.2)].) For g/ , we make a change of
variables, motivated by Eq. (10):

2sini¢ =rcos and 2siniy=rsind.

With these variables, ¢ = k> — 1*. Taking account of the Jacobian, we obtain

;1 2F(r;R)r

mn_; 0 k2_r2dr
177:2 s—aO / / e “F(r;R)e RE - drd, (22)
with
1R'P(r 0)
F(r;R) / 40 (23)
\/ — r2cos? 0)(4 — r2sin’ 0)

and Y(r,0) = Ecosa + ysino. Note that F is real.
The idea of changing the variables was used by Lifshitz [16]; see also [17, p. 721, 18, p. 233] and [1].
To estimate F(r; R) for large R, we use the ordinary one-dimensional method of stationary phase. We have
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h'd 2rcos 0sin o 2rsin 0 cos o
oF _ _ . (24)
00 /4 —j2sin’0 V4—rcos’

This vanishes at 0o(r) and 0o(r)—mn, with 0 < 6y(r) < im. Thus, there are two points of stationary phase
within the range of integration. Also,

oy ) cosfcoso sin 0'sin o _
o 2r(r* —4) { 4 s 0 @ e 0)3/2} = Yoo(r, 0). (25)
Let ,9”0(1") = 'ng(l", 90(}")) Then,
Po(r) <0 and Py(r,0y(r) — n) = =Py(r) > 0.
Hence, from [2, Eq. (6.1.5)],
V2r QiR¥0(r)—in/4 | o—iR¥o(r)-+in/4

F(r;R) ~
V=RZ4(r) ¢ (4 — r2cos? O(r))(4 — 12 sin” 0o (r))

as R — oo, for 0 <r <2, where Vo(r) = P(r,0o(r)). Then, Eq. (22) gives

V27R ©or? C(RDL (D) R ()
s 135%/0 /Of (r)e RO+ rDein4 4 ghP-(rdein/4 Y drdy, (26)
where
£(r) = {~2o(r) [4 = > cos” 0(r)] [4 — rsin® 0,(r)] } " (27)
and

&.(r,() = (k2 — ) £ P(r, 00(r)).

We now estimate the remaining double integral in Eq. (26) using the two-dimensional method of stationary
phase. We have

0.,
— =k —-r=0
o T
so that relevant points of stationary phase have r = k. Then
0P, oY oY do,
St et —— — = 28
or - T (28)

The last term vanishes because of the definition of 0y(r). Also

oY _ 2sinfsina n 2cosfcosa

o \/4a_r2sin20 VA4—17cos?0’
which is positive at 0 = 0y(r). Thus, to obtain a positive {, we must take the ‘“+’ in Eq. (28): the term in Eq. (26)
involving @_ gives a negligible contribution compared to the @, term. Notice that

RO (k, () =RY(k,00) = m&y + nny,

where &g, 1o and 0y = 0y(k) are the same as in Section 4.1.
Thus, from [2, Eq. (8.4.44)], we obtain

, V2aR 2n  f(k)k
Em ™ Tm R | det 4]

exp{iR®. (k,{) —in(1 — sigd)/4}

as R — oo, where the 2 x 2 matrix 4 has entries
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o,
Yag0¢
with 61 =r and 52 = C We find

Ay 2k
A =
-2k 0
so that det4 = —4k” and sigd = 0. (The eigenvalues of A are real and their product equals det4; fortunately,
we do not need to calculate 4;,.) Hence

A

evaluated at r =k,

el(n1g0+n;1n)e—1n/4f(k) as R — oo. (29)

ngVl ~ i\/n_R
Now, from Eq. (24), we have

cos O sin o\/ 4 — k* cos? 0y = sin 0 cos o\/ 4 — k* sin® 0,

which gives

coso V4 — I cos? 0,
cos 0 \/ 4 — k*(cos* 0y + sin* 0y)
Then, using 2(k) = Yo(k, 6y), Egs. (25) and (27), some calculation gives
4 — k>(cos* 0 + sin* 0,)}'/*
1) = { (cos* 0y + sin” 0)}

2ﬂc\/(4 — k*)(2 — k% sin” 0, cos? 0,)

It follows that Eqgs. (29) and (20) agree precisely.
4.3. An integral representation

As a by-product of Eq. (15), we can derive an integral representation for g, as a single integral. Thus,
using Eq. (5) and the formula

/ eimgeZiCcosidé = 27‘[1me (2{:)7

T

twice, we obtain

G = 1" lim [ RO T 00T, (20)dE, (30)

=0+ Jo

where J,, is a Bessel function. This formula is [7, Eq. (A1)]. The corresponding formula for k> > 8 is older; see
[31, p. 368] or [30].

On the diagonal, where m = n, the integral in Eq. (30) can be evaluated in terms of a Legendre function [32,
p- 389],

—1)" .
8m = u hm Qn—l/Z(Z)'

27 6—0+

Here, the complex quantity Z is given by
Z=1+[0+i(4—-))/8
~ 1= (4—K)/8+10(4 — k%) /4
for 0 < < 1. Thus, for 0 <k* <8, |ReZ| < 1 and sgn{ImZ} = sgn (4—k?).
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The function Q,(Z) is defined in the complex Z-plane, with a cut between Z = —1 and Z = +1. Thus, we
require Q, _ 1/2(cosq + i0) for 0 <k* <4 and Q, _ 1/>(cosp—i0) for 4 < k* <8, where cosp = 1 — (4 — k*)*/8
so that 0 < ¢ < im.

Suppose that 0 < k* <4 and n is large. Then

_ =

nn Wanl/Z(COS ¢+ 10)

SO ()

2mi 21 sin ¢

as n — oo, where H(()z) is a Hankel function and we have used the asymptotic approximation on p. 472 of
Olver’s book [24]. Since

HY (x) ~ /2] (nx)e 7 as x — oo,

we obtain

ein(n—(p)ein/4
G ~ — ——F——= aS N — 00. (31)

2+/2nn sin ¢
As cosp = 1 — (4 — k*)*/8, we have

cos(m— @) =1 —k*+k*/8 and sin = (k/8)(4 — k*)V8 — k*.
Then, we see that Eq. (31) agrees precisely with Eq. (21).

5. The low-frequency behaviour of g,,,

It is well known that the integral Eq. (12) defining g,,., = g (k%) diverges when & = 0. Here, we investigate
this divergence, using Mellin-transform techniques [2]. Put x = k* and consider

g(z) = /000 g, (k) dx.

This defines an analytic function of z within the strip 0 < Re z < 1. The inversion contour lies in this strip. We
shall see that there is a double pole at z = 0, implying that g, is logarithmically singular at k = 0. We find that

~ 1 i i i(m&+n
z(2) =—(2n)2/ / (& s z) & dn,
where

a7 dk
1 2y =1 - -
(& n;2) = lim Ay L
y = 4sin’ 1€+ 4sin’ 1n and we have used Egs. (6) and (13). A standard contour-integral calculation gives

inz

e

I . =—_ z—l7
(& n52) peRe—
so that

_ 7.Ceirtz

8(z) =~ —hz)
with

~ 1 L L
h(z) = / / elmermyit de dy,
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We see that A(0) is divergent. This divergence is caused by the behaviour of the integrand near ¢ =5 =0,
where y ~ &+ 5> = ¢ say. We consider a small disc ¢ < a (inside B;) and put ¢ = ¢ cos® and 5 = g sin V.
This gives

_ 1 a . )
h(Z) ~ (zn)z / / emgcos(#—a)QZ(z—l)Q dy dQ
0 0
1 a

_ 2z—1
=2, Jo(Rg)o™" do
1 J1 (ClR)

~

T 2nz aR '’

for z near zero. Letting a — 0 gives the approximation A(z) ~ (47nz) "', so that

inz
(5]

near z = 0.

gle) ~ - 4zsin iz =7 4rz?

Finally, moving the inversion contour to the left, we pick up the residue at the pole giving

1
8 ~ 5 logk as k — 0. (32)

6. Discussion

We have investigated properties of the lattice Green’s function, g,,,, for the simplest square lattice. The far-
field behaviour is given by

Gy ~ (kR)—]/Z eiR(‘focosoannosinoc)y(oc; kZ) as R = /m2 +n? — 0, (33)

where m = R cos o and n = R sin «, so that « gives the observation direction; the quantities &g, 7o and . are
known in terms of o and k*. A corresponding Green’s function for the Helmholtz equation, Eq. (1), is

G(x,y) = H (K®), (34)
with K = w/c = k/h and # = \/x* + y?; its far-field behaviour is given by
G(x,y) ~ (K#)"* ¢57G, as # — oo, (35)

where x = Zcosa, y = #Zsina and Gy is a known constant.

There are evident similarities and differences between Egs. (33) and (35). For example, we see the same
inverse square-root decay, but the lattice Green’s function is anisotropic: the behaviour of G does not depend
on the direction o.

From Eq. (34), we have G ~ log(K#) as KZ — 0, so that G has a logarithmic singularity with respect to K
and with respect to Z. On the other hand, g,,, is also logarithmically singular as & — 0 (see Section 5) but gq is
finite (for k& # 0).

The methods described in Sections 4.1 and 4.2 generalize to more complicated lattices. In such generaliza-
tions, the associated curve (or curves or surfaces) in B (see Section 2) may also become more complicated, and
then it may become more difficult to identify the desired ‘outgoing’ solution; this issue was discussed in some
detail by Maradudin [19, Appendix D].

In Section 4.3, we obtained an expression for g,, as a Legendre function. Using the formula
0,(x £i0) = Q,(x) F iniP,(x), we obtain

(1"

gnﬂ = 47'[ {nPﬂfl/Z(COS (p) + 21 anl/Z(COS (p)} (36)

for 0 < k* <4, where cos ¢ =1 — (4 — k*)?/8. This gives the real and imaginary parts of g, explicitly. For
example,
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Im(g,,) = 2n) ' (=1)""'Q,_i p(cos ) ~ (27) ' (~1)" log(4 — &) (37)

as k* — 4—, using the approximation Q,(x) ~ —1log(1 —x) as x — 1 —[24, p. 186, Eq. (15.08)]. The logarith-
mic behaviour seen in Eq. (37) is well known in solid-state physics, where it is identified with the van Hove
singularities of the frequency spectrum; see [20, Chapter IV] for more information on this topic. Notice also
that the properties

Emn = g\mMn| = 8um
combined with the definition Eq. (11) mean that we can construct g, recursively once we know g,, for
n=20,1,2, ..., and these values are given by Eq. (36).
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