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Abstract

It is well known that, under certain circumstances, discrete plane waves can propagate through lattices. Waves can also
be generated by oscillating one point in the lattice: the corresponding solution of the governing partial difference equations
is the discrete Green’s function, gmn. The far-field behaviour of gmn is obtained using three methods: textbook derivations
are corrected and a formula for gnn as a Legendre function is derived. The low-frequency behaviour of gmn is also obtained
using Mellin transforms. These results are useful in the development of a discrete scattering theory.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Lattice Green’s function; Partial difference equations; Method of stationary phase; Mellin transforms

1. Introduction

Partial difference equations have been studied extensively. One motivation was the development of finite-
difference approximations to partial differential equations. For example, one might try to compute umn for
integer m and n by solving some partial difference equations, where umn is supposed to be an approximation
to u (mh,nh) and u (x,y) solves a partial differential equation. The parameter h is the constant mesh spacing, so
that one would want to know if the approximation converges to u as h ! 0 [12]. Further applications occur in
mechanics, where the ‘continuum limit’ of lattice models has a large literature; see [25] for a recent review.

We are interested in methods for solving the discrete problem for fixed, finite h, especially when the gov-
erning partial difference equations can support waves: this topic is known as lattice dynamics. Analogous static
problems also arise; see, for example, [29] for a study of lattice defects and [10, Chapter IV] for an application
to the interpolation of data given on an integer mesh. The classic applications of lattice dynamics are in solid-
state physics [20]. There, one considers a periodic arrangement of interacting cells; each cell contains the same
arrangement of interacting atoms. The propagation of waves through such a perfect lattice is a textbook sub-
ject [3]. If the lattice contains a defect, waves will be scattered. The corresponding scattering theory for a point
defect was instigated by I.M. Lifshitz in the late 1940’s; see [16, 17, 18] and [20, pp. 376–381]. A key role in this
theory is played by the lattice Green’s function; this is the main subject of the present paper.
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We consider the simplest problem, with a two-dimensional, square lattice. We envisage that each lattice
point can move out of the plane of the lattice, and that each point is connected to its neighbours by springs;
only nearest-neighbour interactions are included. This leads to a system of partial difference equations. The
same equations are obtained if the two-dimensional Helmholtz equation is discretized using the central-differ-
ence approximation for the Laplacian. The corresponding lattice Green’s function, gmn, can be written down
as a Fourier integral over a square, B1. If propagating lattice waves can exist (this is the situation of most inter-
est), then the integrand is singular along a certain closed curve within B1; this singularity must be treated prop-
erly in order that gmn be ‘outgoing’ at infinity. This leads to a far-field analysis of gmn.

We describe three methods for calculating the far-field behaviour of gmn. The first method (see Section 4.1)
is due to Koster [15]. It begins by writing gmn as a three-dimensional integral followed by a stationary-phase
argument. This approach is described in textbooks, but the argument given is incomplete; we show how this
can be remedied, and then use the three-dimensional method of stationary phase (as described in the book of
Bleistein and Handelsman [2]).

Second, in Section 4.2, we describe a method that goes back to Lifshitz [16]. (We have not found a descrip-
tion in English of his method.) The basic idea is to make a change of variables in the double integral for gmn.
The inner integral is non-singular, and can be estimated by the standard one-dimensional method of station-
ary phase. The outer integral is replaced by a double integral, which is then estimated using the two-dimen-
sional method of stationary phase.

Third, in Section 4.3, we use an integral representation for gmn as a single infinite integral of Lipschitz–Han-
kel type (the integrand contains the product of an exponential and two Bessel functions). This is convenient
along the diagonal, where m = n, because it yields an explicit formula for gnn as a single Legendre function of
the second kind. The far-field behaviour of this function is shown to agree precisely with that obtained using
the other two methods.

In Section 5, we obtain the low-frequency behaviour of gmn, using Mellin-transform techniques.
Once the behaviour of gmn is known, we can begin to build a discrete scattering theory. Thus, we can use

discrete versions of Green’s theorems [8, 6] and discrete layer potentials [14, 22] in order to study the interac-
tion of lattice waves with finite-sized defects in the lattice: this is the subject of ongoing work.

2. Lattice dynamics

Consider the two-dimensional wave equation. For time-harmonic solutions, with a time dependence of
e�ixt, we obtain the Helmholtz equation,

o
2
u

ox2
þ o

2
u

oy2
þ x2

c2
u ¼ 0; ð1Þ

for u (x,y), where c is a constant.
Now, consider a uniform mesh (or lattice) and write

umn ¼ uðmh; nhÞ;
where h is a constant and m and n are integers. Then, using central-difference approximations for the partial
derivatives in Eq. (1), we obtain

ðAuÞðm; nÞ � umþ1;n þ um�1;n þ um;nþ1 þ um;n�1 � 4umn þ k2umn ¼ 0; ð2Þ
where k = xh/c.

Suppose that Eq. (2) holds for all integers m and n; we write ðm; nÞ 2 Z
2, the set of all points in the plane

with integer coordinates. Then, solutions of Eq. (2) are given by

umn ¼ expfiðmnþ ngÞg; ð3Þ
where n and g solve

rðn; g; kÞ ¼ 0 ð4Þ
and the symbol, r, is given by
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rðn; g; kÞ ¼ k2 � 4þ 2 cos nþ 2 cos g ð5Þ
¼ k2 � 4 sin2 1

2
n� 4 sin2 1

2
g ð6Þ

¼ k2 � 8þ 4 cos2 1
2
nþ 4 cos2 1

2
g ð7Þ

¼ k2 � 4þ 4 cosð½nþ g�=2Þ cosð½n� g�=2Þ; ð8Þ

evidently, there are no real solutions when k2 > 8. When k2 = 8, the solution Eq. (3) reduces to umn = (�1)m+n.
When they exist, solutions Eq. (3) are called lattice waves [3, §24]. For more details, see [4] and [23, §4].

The solution Eq. (3) is 2p-periodic with respect to n and g, so we can suppose that

�p < n 6 p and � p < g 6 p;

this is known as the first Brillouin zone (later, we denote this square by B1).
Suppose that (n,g) = (n0,g0) solves Eq. (4) with k2 < 8. Then, (�n0,g0), (n0, �g0) and (�n0,�g0) are also

solutions. Hence, we can assume that

0 6 n0 6 p and 0 6 g0 6 p: ð9Þ
Denote this square by B4; it has corners at A(p, 0), B(p,p), C(0,p) and O(0,0) in the n-g plane. Notice that the
term cos([n � g]/2) in Eq. (8) is non-negative in B4.

The solutions of Eq. (4) define a closed curve in B1. This curve can be parametrized easily. We identify two
cases, depending on the value of k2.

Case 1: k2 6 4. Eq. (6) shows that solutions of Eq. (4) in B4 are given by

sin 1
2
n ¼ 1

2
k cos h and sin 1

2
g ¼ 1

2
k sin h ð10Þ

for 0 6 h 6 1
2
p. Examination of the sign of cos ([n + g]/2) in Eq. (8) shows that all solutions lie in the triangle

OAC; there are no solutions in the other half of B4.

Case 2: 4 < k2 < 8. Eq. (7) shows that solutions of Eq. (4) in B4 are given by

cos 1
2
n ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

8� k2
p

cos h0 and cos 1
2
g ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

8� k2
p

sin h0

for 0 6 h0 6 1
2
p. These solutions lie in the triangle ABC.

3. Lattice Green’s function

In Section 2, we considered solutions of ðAuÞðm; nÞ ¼ 0 for all ðm; nÞ 2 Z
2. Now, we suppose that the lattice

is forced at one grid point. This point can be taken to be the origin because of the periodicity of the lattice.
Thus, we consider

ðAgÞðm; nÞ ¼ d0md0n for all ðm; nÞ 2 Z
2; ð11Þ

where dij is the Kronecker delta; any solution gmn may be called a lattice Green’s function. Define a function G

by

Gðn; gÞ ¼
X

1

m¼�1

X

1

n¼�1
gmne

�iðmnþngÞ

for �p < n 6 p and �p < g 6 p. Thus,

gmn ¼
1

ð2pÞ2
Z p

�p

Z p

�p

Gðn; gÞeiðmnþngÞdndg

and

ðAgÞðm; nÞ ¼ 1

ð2pÞ2
Z p

�p

Z p

�p

rðn; g; kÞGðn; gÞeiðmnþngÞdndg;
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where r is defined by Eq. (5). This equation and Eq. (11) imply that rG ¼ 1, whence

gmn ¼
1

ð2pÞ2
Z p

�p

Z p

�p

eiðmnþngÞ

rðn; g; kÞ dndg: ð12Þ

As r (n,g;k) is even in n and in g, we obtain

gmn ¼
1

p2

Z p

0

Z p

0

cosmn cos ng

rðn; g; kÞ dndg;

which shows that gmn is even in m and in n; hence, we can assume that mP 0 and nP 0. Also, interchanging m
and n, and n and g, shows that gmn = gnm.

The formula Eq. (12) is well known. See, for example, [11, Eq. (5.31)].
The Green’s function for a discrete waveguide, with gmn = 0 at m = ±M for all n and a finite positive integer

M, has been used by Glaser [13]. Such a gmn can be called an exact Green’s function, as it satisfies some addi-
tional boundary conditions. For the calculation of some static exact Green’s functions, see [27].

4. The far-field behaviour of gmn

In order to build a scattering theory, we need to know the far-field behaviour of the Green’s function. Thus,
we require the behaviour of gmn as R! 1 where R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

.
Now, formulas such as Eq. (12) have been studied extensively: changes in the difference relation Eq. (2) lead

to different symbols. The far-field properties of the corresponding Green’s function depend crucially on
the zeros of r within the square of integration, B1. If r 5 0 in B1, then gmn decays exponentially with
R [9, p. 404, 10, p. 82]; this is our situation when k2 > 8.

More generally, r will vanish at places within B1, implying that the integrand in Eq. (12) has singularities.
For certain equations, including the discrete form of Laplace’s equation (put k = 0 in Eq. (2)), r has a non-
integrable singularity at the origin, and so the formula Eq. (12) must be modified [28, 21].

Returning to our specific gmn, suppose that k2 < 8. Then r in Eq. (12) vanishes along certain curves in B1.
We have to specify how to handle the corresponding singularities. Physically, we seek a solution for gmn that is
outgoing at infinity.

4.1. The method of Koster

One standard approach begins by giving the wavenumber a small positive imaginary part: replace k2 by

k2 þ id; with 0 < d � 1; ð13Þ
and let d ! 0 at the end of the calculation. Then, use an integral representation for (r + id)�1, where r (n,g;k2)
is real. Koster [15] used the formula

1

rþ id
¼ �i

Z 1

0

eiðrþidÞfdf ð14Þ

in Eq. (12), giving

gmn ¼
1

ið2pÞ2
lim
d!0þ

Z p

�p

Z p

�p

Z 1

0

e�dfeiRðn cos aþg sin aÞþifrdfdndg; ð15Þ

where m = Rcosa and n = R sina; we can assume that 0 6 a 6 1
2
p. Then, Koster ‘follows the method of

stationary phases and assumes that the principal contribution to the integral comes from that region where
the variation of the exponent is small’ [15, p. 1440]. However, it is not immediately clear how to justify
this assumption, because the large parameter R is not a factor in the exponent. Instead, we simply replace
Eq. (14) by

1

rþ id
¼ �iR

Z 1

0

eiRðrþidÞfdf;
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when substituted in Eq. (12), we obtain

gmn ¼
R

ið2pÞ2
lim
e!0þ

Z p

�p

Z p

�p

Z 1

0

e�efeiRUðn;g;fÞdfdndg; ð16Þ

where

Uðn; g; fÞ ¼ n cos aþ g sin aþ frðn; g; k2Þ
is real and we have put

d ¼ e=R with 0 < e � 1:

The integral in Eq. (16) is amenable to the three-dimensional method of stationary phase. Thus, from [2, Eq.
(8.4.44)], we obtain

gmn �
R

ið2pÞ2
2p

R

� �3=2 expfiRUðx0Þ þ 1
4
ipsigAg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detAj
p

as R ! 1, where x0 = (n0,g0,f0) is a relevant point of stationary phase, the 3 · 3 matrix A has entries

Aij ¼
o
2U

onionj
evaluated at x0;

with n1 = n, n2 = g and n3 = f, and sigA is the signature of A (equal to the number of positive eigenvalues of A
minus the number of negative eigenvalues).

To find x0, we put oU/oni = 0 for i = 1,2,3, giving three equations,

rðn0; g0; k2Þ ¼ 0; cos a� 2f0 sin n0 ¼ 0; sin a� 2f0 sin g0 ¼ 0: ð17Þ
The first of these shows that the pair (n0,g0) corresponds to a propagating lattice wave; see Eq. (4). Hence,
RU(x0) = mn0 + ng0. The other two equations in Eq. (17) determine the (artificial) parameter, f0, and the
direction of propagation: the direction of observation (given by a) coincides with the direction of the group
velocity. Thus,

2f0 ¼ ðsin2
n0 þ sin2

g0Þ�1=2
and sin a sin n0 ¼ cos a sin g0: ð18Þ

Relevant points x0 have f0 > 0, so that Eq. (17)2,3 give sinn0P 0 and sing0P 0. (Recall that 0 6 a 6 1
2
p.) Giv-

en a solution x0 with 0 6 n0 < p and 0 6 g0 < p, we see that Eq. (17)2,3 are also satisfied if we replace n0 by
p � n0, or g0 by p � g0, or both; however, these replacements do not satisfy Eq. (17)1. Consequently, there
is only one relevant point of stationary phase, x0. For A, we obtain

A ¼ �2

f0 cos n0 0 sin n0

0 f0 cos g0 sin g0

sin n0 sin g0 0

0

B

@

1

C

A
;

whence detA = 8f0(cosn0 + cosg0) (1 � cosn0cosg0). We notice that detA = 0 when k2 = 4, so that the station-
ary-phase calculation must be modified for this special case.

The eigenvalues of A, ki with i = 1,2,3, are given by solving the cubic, det(A � kI) = 0. They are all real.
The product k1k2k3 = detA. Elementary considerations show that sigA = �1 when 0 < k2 < 4 and sigA = 1
when 4 < k2 < 8.

For more explicit results, suppose that 0 < k2 < 4 so that we can use Eq. (10),

2 sin 1
2
n0 ¼ k cos h0 and 2 sin 1

2
g0 ¼ k sin h0:

Then, h0 is determined from Eq. (18)2:

tan h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ tan2 a
p

q

with k ¼ 2ð1� tan2 aÞ
4� k2

: ð19Þ

We find that detA > 0,
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detA ¼ kð4� k2Þð2� k2 sin2
h0 cos

2 h0Þf4� k2ðcos4 h0 þ sin4
h0Þg�1=2:

Finally, we obtain

gmn � � eiðmn0þng0Þ
ffiffiffiffiffiffiffiffiffiffiffi

2pkR
p eip=4f4� k2ðcos4 h0 þ sin4

h0Þg1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4� k2Þð2� k2 sin2
h0 cos2 h0Þ

q as R ! 1: ð20Þ

Apart from a constant multiplicative factor, the formula Eq. (20) agrees with one on p. 84 of Economou’s
book [11], where a paper by Callaway [5] is cited. In fact, Callaway’s paper contains the analogous result
for a three-dimensional cubic lattice. See also [26] and [20, pp. 376–381].

The approximation Eq. (20) simplifies on the diagonal, where m = n. Then, R ¼ n
ffiffiffi

2
p

, h0 = p/4, n0 = g0,
cosn0 = (4 � k2)/4 and

cos2n0 ¼ 1� k2 þ k4=8;

so that Eq. (20) reduces to

gnn � � e2inn0eip=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pknð4� k2Þ
q

ð8� k2Þ1=4
as n ! 1: ð21Þ

4.2. The method of Lifshitz

For an alternative method, return to Eq. (12), the double integral over the square B1. Let B
0 denote the

smaller square, with corners at (n,g) = (±p, 0) and (0,±p), and put B00 = B1 n B 0. Suppose that 0 < k2 < 4
so that all zeros of r are in B 0 and not in B00. Then,

gmn ¼ g0mn þ g00mn;

where

g0mn ¼
1

ð2pÞ2
Z

B0

eiðmnþngÞ

rðn; g; kÞ dndg and g00mn ¼
1

ð2pÞ2
Z

B00

eiðmnþngÞ

rðn; g; kÞ dndg:

As r 5 0 in B00, it follows that g00mn = O (R�1) as R! 1. (This is the two-dimensional method of stationary
phase when there are no points of stationary phase; see [2, Eq. (8.4.2)].) For g0mn, we make a change of
variables, motivated by Eq. (10):

2 sin 1
2
n ¼ r cos h and 2 sin 1

2
g ¼ r sin h:

With these variables, r = k2 � r2. Taking account of the Jacobian, we obtain

g0mn ¼
1

p2

Z 2

0

F ðr;RÞr
k2 � r2

dr

¼ R

ip2
lim
e!0

Z 1

0

Z 2

0

e�efF ðr;RÞeiRðk2�r2Þfrdrdf; ð22Þ

with

F ðr;RÞ ¼
Z p

�p

eiRWðr;hÞdh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4� r2 cos2 hÞð4� r2 sin2
hÞ

q ð23Þ

and W(r,h) = ncosa + gsina. Note that F is real.
The idea of changing the variables was used by Lifshitz [16]; see also [17, p. 721, 18, p. 233] and [1].
To estimate F(r; R) for large R, we use the ordinary one-dimensional method of stationary phase. We have
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oW

oh
¼ 2r cos h sin a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� r2 sin2
h

p � 2r sin h cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� r2 cos2 h
p : ð24Þ

This vanishes at h0(r) and h0(r)�p, with 0 6 h0ðrÞ < 1
2
p. Thus, there are two points of stationary phase

within the range of integration. Also,

o
2W

oh2
¼ 2rðr2 � 4Þ cos h cos a

ð4� r2 cos2 hÞ3=2
þ sin h sin a

ð4� r2 sin2
hÞ3=2

( )

� Whhðr; hÞ: ð25Þ

Let P0ðrÞ ¼ Whhðr; h0ðrÞÞ. Then,

P0ðrÞ < 0 and Whhðr; h0ðrÞ � pÞ ¼ �P0ðrÞ > 0:

Hence, from [2, Eq. (6.1.5)],

F ðr;RÞ �
ffiffiffiffiffiffi

2p
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�RP0ðrÞ
p

eiRW0ðrÞ�ip=4 þ e�iRW0ðrÞþip=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4� r2 cos2 h0ðrÞÞð4� r2 sin2
h0ðrÞÞ

q

as R ! 1, for 0 < r < 2, where W0(r) = W(r,h0(r)). Then, Eq. (22) gives

g0mn �
ffiffiffiffiffiffiffiffiffi

2pR
p

ip2
lim
e!0

Z 1

0

Z 2

0

f ðrÞe�ef eiRUþðr;fÞe�ip=4 þ eiRU�ðr;fÞeip=4
� �

rdrdf; ð26Þ

where

f ðrÞ ¼ �P0ðrÞ 4� r2 cos2 h0ðrÞ
� �

4� r2 sin2
h0ðrÞ

� �� ��1=2 ð27Þ
and

U�ðr; fÞ ¼ ðk2 � r2Þf�Wðr; h0ðrÞÞ:
We now estimate the remaining double integral in Eq. (26) using the two-dimensional method of stationary
phase. We have

oU�
of

¼ k2 � r2 ¼ 0;

so that relevant points of stationary phase have r = k. Then

oU�
or

¼ �2rf� oW

or

	

	

	

	

h¼h0

� oW

oh

	

	

	

	

h¼h0

dh0
dr

¼ 0: ð28Þ

The last term vanishes because of the definition of h0(r). Also

oW

or
¼ 2 sin h sin a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� r2 sin2
h

p þ 2 cos h cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� r2 cos2 h
p ;

which is positive at h = h0(r). Thus, to obtain a positive f, we must take the ‘+’ in Eq. (28): the term in Eq. (26)
involving U� gives a negligible contribution compared to the U+ term. Notice that

RUþðk; fÞ ¼ RWðk; h0Þ ¼ mn0 þ ng0;

where n0, g0 and h0 � h0(k) are the same as in Section 4.1.
Thus, from [2, Eq. (8.4.44)], we obtain

g0mn �
ffiffiffiffiffiffiffiffiffi

2pR
p

ip2

2p

R

f ðkÞk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detAj
p expfiRUþðk; fÞ � ipð1� sigAÞ=4g

as R ! 1, where the 2 · 2 matrix A has entries
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Aij ¼
o
2Uþ

onionj
evaluated at r ¼ k;

with n1 = r and n2 = f. We find

A ¼
A11 �2k

�2k 0

� �

so that detA = �4k2 and sigA = 0. (The eigenvalues of A are real and their product equals detA; fortunately,
we do not need to calculate A11.) Hence

gmn �
ffiffiffi

2
p

i
ffiffiffiffiffiffi

pR
p eiðmn0þng0Þe�ip=4f ðkÞ as R ! 1: ð29Þ

Now, from Eq. (24), we have

cos h0 sin a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� k2 cos2 h0

q

¼ sin h0 cos a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� k2 sin2
h0

q

which gives

cos a

cos h0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� k2 cos2 h0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� k2ðcos4 h0 þ sin4
h0Þ

q :

Then, using P0ðkÞ ¼ Whhðk; h0Þ, Eqs. (25) and (27), some calculation gives

f ðkÞ ¼ f4� k2ðcos4 h0 þ sin4
h0Þg1=4

2
ffiffiffi

k
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4� k2Þð2� k2 sin2
h0 cos2 h0Þ

q :

It follows that Eqs. (29) and (20) agree precisely.

4.3. An integral representation

As a by-product of Eq. (15), we can derive an integral representation for gmn as a single integral. Thus,
using Eq. (5) and the formula

Z p

�p

eimne2if cos ndn ¼ 2pimJmð2fÞ;

twice, we obtain

gmn ¼ imþn�1 lim
d!0þ

Z 1

0

eifðk
2�4þidÞJmð2fÞJ nð2fÞdf; ð30Þ

where Jm is a Bessel function. This formula is [7, Eq. (A1)]. The corresponding formula for k2 > 8 is older; see
[31, p. 368] or [30].

On the diagonal, where m = n, the integral in Eq. (30) can be evaluated in terms of a Legendre function [32,
p. 389],

gnn ¼
ð�1Þn
2pi

lim
d!0þ

Qn�1=2ðZÞ:

Here, the complex quantity Z is given by

Z ¼ 1þ ½dþ ið4� k2Þ�2=8
’ 1� ð4� k2Þ2=8þ idð4� k2Þ=4

for 0 < d � 1. Thus, for 0 < k2 < 8, jReZj 6 1 and sgn{ImZ} = sgn (4�k2).
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The function Qm(Z) is defined in the complex Z-plane, with a cut between Z = �1 and Z = +1. Thus, we
require Qn � 1/2(cosu + i0) for 0 < k2 < 4 and Qn � 1/2(cosu�i0) for 4 < k2 < 8, where cosu = 1 � (4 � k2)2/8
so that 0 < u < 1

2
p.

Suppose that 0 < k2 < 4 and n is large. Then

gnn ¼
ð�1Þn
2pi

Qn�1=2ðcosuþ i0Þ

� ð�1Þn
2pi

p

2i

u

sinu

� �1=2

H
ð2Þ
0 ðnuÞ

as n ! 1, where H
ð2Þ
0 is a Hankel function and we have used the asymptotic approximation on p. 472 of

Olver’s book [24]. Since

H
ð2Þ
0 ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðpxÞ
p

e�iðx�p=4Þ as x ! 1;

we obtain

gnn � � einðp�uÞeip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pn sinu
p as n ! 1: ð31Þ

As cosu = 1 � (4 � k2)2/8, we have

cosðp� uÞ ¼ 1� k2 þ k4=8 and sinu ¼ ðk=8Þð4� k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

8� k2
p

:

Then, we see that Eq. (31) agrees precisely with Eq. (21).

5. The low-frequency behaviour of gmn

It is well known that the integral Eq. (12) defining gmn � gmn (k
2) diverges when k2 = 0. Here, we investigate

this divergence, using Mellin-transform techniques [2]. Put j = k2 and consider

~gðzÞ ¼
Z 1

0

jz�1gmnðjÞ dj:

This defines an analytic function of z within the strip 0 < Re z < 1. The inversion contour lies in this strip. We
shall see that there is a double pole at z = 0, implying that gmn is logarithmically singular at k = 0. We find that

~gðzÞ ¼ 1

ð2pÞ2
Z p

�p

Z p

�p

eiðmnþngÞIðn; g; zÞ dn dg;

where

Iðn; g; zÞ ¼ lim
d!0

Z 1

0

jz�1 dj

j� cþ id
;

c ¼ 4 sin2 1
2
nþ 4 sin2 1

2
g and we have used Eqs. (6) and (13). A standard contour-integral calculation gives

Iðn; g; zÞ ¼ � peipz

sin pz
cz�1;

so that

~gðzÞ ¼ � peipz

sin pz
~hðzÞ

with

~hðzÞ ¼ 1

ð2pÞ2
Z p

�p

Z p

�p

eiðmnþngÞcz�1 dn dg:
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We see that ~hð0Þ is divergent. This divergence is caused by the behaviour of the integrand near n = g = 0,
where c ’ n2 + g2 = .2, say. We consider a small disc . < a (inside B1) and put n = . cos# and g = . sin #.
This gives

~hðzÞ ’ 1

ð2pÞ2
Z a

0

Z 2p

0

eiR. cosð#�aÞ.2ðz�1Þ. d# d.

¼ 1

2p

Z a

0

J 0ðR.Þ.2z�1 d.

’ 1

2pz

J 1ðaRÞ
aR

;

for z near zero. Letting a ! 0 gives the approximation ~hðzÞ ’ ð4pzÞ�1
, so that

~gðzÞ ’ � eipz

4z sin pz
’ � 1

4pz2
near z ¼ 0:

Finally, moving the inversion contour to the left, we pick up the residue at the pole giving

gmn �
1

2p
log k as k ! 0: ð32Þ

6. Discussion

We have investigated properties of the lattice Green’s function, gmn, for the simplest square lattice. The far-
field behaviour is given by

gmn � ðkRÞ�1=2 eiRðn0 cos aþg0 sin aÞFða; k2Þ as R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

! 1; ð33Þ
where m = R cos a and n = R sin a, so that a gives the observation direction; the quantities n0, g0 and F are
known in terms of a and k2. A corresponding Green’s function for the Helmholtz equation, Eq. (1), is

Gðx; yÞ ¼ H
ð1Þ
0 ðKRÞ; ð34Þ

with K = x/c = k/h and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

; its far-field behaviour is given by

Gðx; yÞ � ðKRÞ�1=2
eiKRG0 as R ! 1; ð35Þ

where x ¼ R cos a, y ¼ R sin a and G0 is a known constant.
There are evident similarities and differences between Eqs. (33) and (35). For example, we see the same

inverse square-root decay, but the lattice Green’s function is anisotropic: the behaviour of G does not depend
on the direction a.

From Eq. (34), we have G ’ logðKRÞ as KR ! 0, so that G has a logarithmic singularity with respect to K

and with respect toR. On the other hand, gmn is also logarithmically singular as k! 0 (see Section 5) but g00 is
finite (for k5 0).

The methods described in Sections 4.1 and 4.2 generalize to more complicated lattices. In such generaliza-
tions, the associated curve (or curves or surfaces) in B1 (see Section 2) may also become more complicated, and
then it may become more difficult to identify the desired ‘outgoing’ solution; this issue was discussed in some
detail by Maradudin [19, Appendix D].

In Section 4.3, we obtained an expression for gnn as a Legendre function. Using the formula
Qmðx� i0Þ ¼ QmðxÞ � 1

2
piPmðxÞ, we obtain

gnn ¼
ð�1Þnþ1

4p
fpPn�1=2ðcosuÞ þ 2i Qn�1=2ðcosuÞg ð36Þ

for 0 < k2 < 4, where cos u = 1 � (4 � k2)2/8. This gives the real and imaginary parts of gnn explicitly. For
example,
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ImðgnnÞ ¼ ð2pÞ�1ð�1Þnþ1
Qn�1=2ðcosuÞ � ð2pÞ�1ð�1Þn logð4� k2Þ ð37Þ

as k2 ! 4�, using the approximation QmðxÞ � �1
2
logð1� xÞ as x ! 1 – [24, p. 186, Eq. (15.08)]. The logarith-

mic behaviour seen in Eq. (37) is well known in solid-state physics, where it is identified with the van Hove
singularities of the frequency spectrum; see [20, Chapter IV] for more information on this topic. Notice also
that the properties

gmn ¼ gjmj;jnj ¼ gnm

combined with the definition Eq. (11) mean that we can construct gmn recursively once we know gnn for
n = 0,1,2, . . ., and these values are given by Eq. (36).
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[17] I.M. Lifšic, Some problems of the dynamic theory of non-ideal crystal lattices, Il Nuovo Cimento. Supplemento 3 (1956) 716–733.

[18] I.M. Lifshitz, A.M. Kosevich, The dynamics of a crystal lattice with defects, Rep. Prog. Phys. 29 (1966) 217–254.

[19] A.A. Maradudin, Phonons and lattice imperfections, in: T.A. Bak (Ed.), Phonons and Phonon Interactions, W.A. Benjamin, New

York, 1964, pp. 424–504.

[20] A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, second ed.,

Academic Press, New York, 1971.

[21] P.-G. Martinsson, G.J. Rodin, Asymptotic expansions of lattice Green’s functions, P. Roy. Soc. A 458 (2002) 2609–2622.

[22] P.-G. Martinsson, G.J. Rodin, Boundary algebraic equations for lattice problems, in: A.B. Movchan (Ed.), IUTAM Symposium on

Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Kluwer, Dordrecht, 2003, pp. 191–198.

[23] E.W. Montroll, Frequency spectrum of vibrations of a crystal lattice, Am. Math. Monthly 61, No. 7, Part 2 (1954) 46–73.

[24] F.W.J. Olver, Asymptotics and Special Functions, A.K. Peters, Natick, Massachusetts, 1997.

[25] M. Ostoja-Starzewski, Lattice models in micromechanics, Appl. Mech. Rev. 55 (2002) 35–60.

[26] B. Preziosi, Causality conditions in crystals, Il Nuovo Cimento 6B (1971) 131–138.

[27] J. Schiøtz, A.E. Carlsson, Calculation of elastic Green’s functions for lattices with cavities, Phys. Rev. B 56 (1997) 2292–2294.

[28] V. Thomée, Discrete interior Schauder estimates for elliptic difference operators, SIAM J. Numer. Anal. 5 (1968) 626–645.

[29] R. Thomson, S.J. Zhou, A.E. Carlsson, V.K. Tewary, Lattice imperfections studied by use of lattice Green’s functions, Phys. Rev. E

46 (1992) 10613–10622.

[30] B. van der Pol, The finite-difference analogy of the periodic wave equation and the potential equation, Appendix IV in: M. Kac,

Probability and Related Topics in Physical Sciences, Interscience, London, 1959, pp. 237–257.

[31] B. van der Pol, H. Bremmer, Operational Calculus Based on the Two-sided Laplace Integral, third ed., Chelsea, New York, 1987.

[32] G.N. Watson, Theory of Bessel Functions, second ed., Cambridge University Press, Cambridge, 1944.

P.A. Martin / Wave Motion 43 (2006) 619–629 629


