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Abstract The analysis of moiré data obtained in
bimaterials with near-interface cracks is examined.
To extract stress intensity factors, a collocation-type
method is developed where Westergaard crack-tip exp-
ansions are used for displacements in the cracked por-
tion of the bimaterial, expansions from the method of
fundamental solutions are used for displacements in
the uncracked portion of the bimaterial, and continuity
conditions at the interface are used to couple the two
expansions. Proof-of-principle numerical experiments
performed on synthetic data from a boundary element
analysis of a cracked bimaterial successfully demons-
trated the analysis method. Mixed-mode stress intensity
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factors were then determined from actual moiré data
obtained in a copper–tungsten specimen.
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1 Introduction

A variety of optical methods of experimental mecha-
nics have been used successfully to measure the stress
intensity factor at a crack tip. Methods such as pho-
toelasticity (Dally 1979; Etheridge and Dally 1977;
Sanford and Dally 1979; Schroedl and Smith 1975)
and caustics (Rosakis and Zehnder 1985; Theocaris
and Gdoutos 1972; Kalthoff 1987) have been extensi-
vely applied to both stationary and propagating cracks
to extract stress intensity factors in both the opening
mode, KI, and the forward shear mode, KII. The advan-
tage of these methods is the determination of either the
stress intensity factor or the fracture toughness directly
from the experiment. This is especially useful when
the experiments being analyzed are non-standard and
no readily available formulas are available for determi-
ning the stress intensity factor from measured load and
displacement data.

Moiré methods are another optical technique which
have been widely used for the analysis of crack-tip
stress fields. Moiré methods rely on the geometric inter-
ference between a deforming grating and a fixed grating
to generate quantitative, full-field displacement data.
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208 K. Rozenburg et al.

The fixed grating may be a physical grating, or may
be generated by the interference between two mutually
coherent beams of laser light (Epstein and Dadkhan
1993). The latter technique is commonly referred to as
moiré interferometry. The moiré method has also been
employed in a scanning electron microscope (Dally and
Read 1993) where electron-beam lithography is used to
generate the specimen grating and the scanning motion
of the electron beam in the microscope naturally forms
a reference grating. Electron-beam moiré has been used
to study fracture of fiber reinforced plastics (Read and
Dally 1994) and the mechanical behavior of conductive
adhesives (Drexler and Berger 1999).

One difficulty in terms of the analysis of displace-
ment data obtained by moiré methods is the wealth of
data available from a particular experiment.
Barker et al. (1985), developed a linear least-squares
method to extract the opening mode stress intensity fac-
tor, KI, from the measured displacement fields. The dis-
placement field around the crack tip was written using
generalized Westergaard expansions (Sanford 1979),
which are equivalent to the usual Williams expansions
(Williams 1957). The unknown coefficients in the dis-
placement field expansions are determined through
least squares fitting to the displacement data. The eff-
ects of rigid body rotations, uncertainty in crack-tip
location, and the degree of redundancy in the data were
all investigated in Barker et al. (1985).

In this paper, we extend the method of Barker et al.
(1985) to problems involving a cracked bimaterial. In
particular, we are interested in the analysis of moiré data
obtained around a crack tip which is in close proximity
to the interface between the two parts of the bimate-
rial. Some of the moiré data available for analysis is in
the uncracked portion of the bimaterial; however, the
Westergaard expansions are only valid in the material
containing the crack. These solutions will not satisfy
the continuity requirements on displacement and trac-
tion across the interface, so they are not valid in the
uncracked portion of the bimaterial. We use expres-
sions for the displacements in the uncracked portion
of the bimaterial determined from the expansions used
in the Method of Fundamental Solutions (MFS) (Fair-
weather and Karageorghis 1998). The MFS is a mesh-
free numerical method which has been applied to a
variety of problems including harmonic and biharmo-
nic boundary value problems (Poullikkas et al. 1998),
potential, Helmholtz and diffusion problems (Golberg
and Chen 1999), and elasticity problems (Berger and

Karageorghis 2001). Here, we use the MFS expansions
for displacement in the uncracked material, the Wes-
tergaard expansions for displacement in the cracked
material, and enforce continuity conditions across the
interface between the two materials. The continuity
conditions then serve to couple these two expansions.
We then use a linear least-squares method to deter-
mine the coefficients in the two expansions from the
moiré data. Knowledge of the coefficients allows us to
calculate the stress intensity factor(s), the T -stress, and
other stress-field related parameters.

We will demonstrate the developed methodology on
two example problems. In the first example, we ge-
nerate synthetic moiré data using a boundary element
analysis of a cracked bimaterial. The results show good
convergence for KI values as the number of terms in
the expansions are increased. For the second example,
we apply the methodology to experimental moiré data
obtained from a copper–tungsten bimaterial specimen
loaded in bending. Again the results for KI, and also
KII in this example, show good convergence with very
low least-squares residuals.

2 The MFS

We first consider the displacement field in the uncra-
cked portion of the bimaterial shown in Fig. 1 (material
A). We assume the material is isotropic with Poisson’s
ratio ν, so in the absence of body forces the displace-
ments u1 and u2 are governed by the Navier equations,

(λ+ µ)u(P)i,i j + µu(P)i, j j = 0 i, j = 1, 2, (1)

where λ andµ are the Lamé constants, P is the calcula-
tion point for the displacements, P = (x1P , x2P ), and
the usual summation convention is implied over repea-
ted indices. The strains εi j , i, j = 1, 2, are related to
the displacement gradients by

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2)

and the stressesσi j , i, j = 1, 2, are related to the strains
through Hooke’s law by

σi j = λδi jεkk + 2µεi j , (3)

where δi j is the Kronecker delta. The fundamental solu-
tions of the system of Eq. 1, which physically represent
the displacement field due to a point load in the solid,
are given by the two-point functions
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Analysis of moiré data for near-interface crack 209

Fig. 1 Cracked bimaterial specimen

G11(P, Q) = (3 − 4ν) log rP Q − (x1P − x1Q )
2

r2
P Q

, (4)

G12(P, Q)=G21(P, Q)= (x1P −x1Q )(x2P −x2Q )

r2
P Q

,

(5)

G22(P, Q) = (3 − 4ν) log rP Q − (x2P − x2Q )
2

r2
P Q

, (6)

where Q is the location of the point load, Q =
(x1Q , x2Q ), and

rP Q =
√
(x1P − x1Q )

2 + (x2P − x2Q )
2.

Note in Eqs. 4–6 that some constant factors premul-
tiplying the Gi j terms have been dropped; however,
these constants are absorbed in the coefficients of the
expansions taken below.

In the MFS, the displacements are approximated by
a linear combination of fundamental solutions as

u1(P) =
N∑

n=1

anG11(P, Qn)+
N∑

n=1

bnG12(P, Qn), (7)

u2(P) =
N∑

n=1

anG21(P, Qn)+
N∑

n=1

bnG22(P, Qn), (8)

where a = (a1, a2, . . . , aN ), b = (b1, b2, . . . , bN ) and
Q is a 2N -vector containing the coordinates of the point
sources Q j , which lie outside the physical domain of
the problem. Since the calculation point, P , and the
source points, Q j , are never coincident, the log terms
in the fundamental solutions, Eqs. 4–6, are never sin-
gular. In the standard MFS, a set of points {Pi }M

i=1 is

selected on the boundary of the physical domain and
the coefficients a,b and the locations of the sources Q
are determined by minimizing the functional

F(a,b,Q) =
M∑

i=1

|B1[u1, u2, t1, t2](Pi )− f1(Pi )|2

+|B2[u1, u2, t1, t2](Pi )− f2(Pi )|2,(9)

where the operators B1 and B2 specify displacement,
traction or mixed boundary conditions and f1(P), f2(P)
are the prescribed boundary values. If needed, the exp-
ansions for the tractions t1 and t2 are obtained from the
expansions for the displacement field. The minimiza-
tion of the functional in Eq. 9 to determine a,b, and
Q is performed by minimizing the sum of squares of
m non-linear functions in n variables using a modified
version of the Levenberg–Marquard algorithm.

Alternatively, the locations of the sources Q may be
prescribed. In this case, a linear least-squares problem
is obtained in the coefficients a,b. This is the technique
we will use for the displacements in the uncracked por-
tion of the bimaterial. Movable sources could be inclu-
ded in future investigations, but we shall see that the
simpler algorithm based on prescribed source locations
is effective.

3 Generalized Westergaard expansions near
a crack tip

We next consider the displacements in the cracked por-
tion of the bimaterial, material B in Fig. 1. For a mode
I crack, Sanford (Sanford 1979) generalized the Wes-
tergaard stress function approach to crack problems
(Westergaard 1939) in terms of two complex-valued
functions ZI(z) and YI(z) as

σ11 = Re ZI(z)− x2
[

Im Z ′
I(z)+ Im Y ′

I (z)
]

+2 Re YI(z), (10)

σ22 = Re ZI(z)+ x2
[

Im Z ′
I(z)+ Im Y ′

I (z)
]
,

(11)

σ12 = − Im YI(z)− x2
[

Re Z ′
I(z)+ Re Y ′

I (z)
]
.

(12)

Substituting these stresses into Hooke’s law, Eq. 3, and
integrating the strain–displacement equations, Eq. 2,
yields the displacements

Eu1,I = (1 − ν) Re Z̃I(z)− (1 + ν) x2[ Im ZI(z)

+ Im YI(z)] + 2 Re ỸI(z), (13)
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210 K. Rozenburg et al.

Eu2,I = 2 Im Z̃I(z)− (1 + ν) x2[ Re ZI(z)

+ Re YI(z)] + (1 − ν) Im ỸI(z), (14)

where

Z̃I(z) =
∫

ZI(z) dz, ỸI(z) =
∫

YI(z) dz

the subscript I indicates mode I, and E is Young’s
modulus. For mode II, the generalized Westergaard
stresses are Sanford (2003)

σ11 = Im YII(z)− x2
[

Re Y ′
II(z)+ Re Z ′

II(z)
]

+2 Im ZII(z), (15)

σ22 = Im YII(z)+ x2
[

Re Y ′
II(z)+ Re Z ′

II(z)
]
,

(16)

σ12 = Re ZII(z)− x2
[

Im Y ′
II(z)+ Im Z ′

II(z)
]
.

(17)

Again substituting these stresses into Hooke’s law and
integrating the strain–displacement equations yields the
mode II displacements

Eu1,II = (1 − ν) Im ỸII(z)+ (1 + ν) x2[ Re YII(z)

+ Re ZII(z)] + 2 Im Z̃II(z), (18)

Eu2,II = −2 Re ỸII(z)− (1 + ν) x2[ Im YII(z)

+ Im ZII(z)] − (1 − ν) Re Z̃II(z). (19)

For single-ended crack problems, the appropriate form
of the mode I and mode II stress functions are

ZI(z) =
J∑

j=0

A j z
j−1/2, ZII(z) =

J∑
j=0

C j z
j−1/2, (20)

YI(z) =
M∑

m=0

Bm zm, YII(z) =
M∑

m=0

Dm zm . (21)

Substituting Eqs. 20 and 21 in Eqs. 13–14 and Eqs. 18-
19, and then superposing the results yields the series
expansions for the mixed-mode displacements,

Eu1(r, θ) =
J∑

j=0

r j+1/2 [
A j f j (θ)+ C j p j (θ)

]

+
M∑

m=0

rm+1 [Bm gm(θ)+ Dm qm(θ)] ,

(22)

Eu2(r, θ) =
J∑

j=0

r j+1/2 [
A j h j (θ)+ C j s j (θ)

]

+
M∑

m=0

rm+1 [Bm km(θ)+ Dm tm(θ)] ,

(23)

where (r, θ) are local polar coordinates situated at the
crack tip and

f j (θ) = 1 − ν

j + 1/2
cos

(
j + 1

2

)
θ

−(1 + ν) sinθ sin

(
j − 1

2

)
θ, (24)

gm(θ) = 2

m + 1
cos(m + 1)θ

−(1 + ν) sinθ sinmθ, (25)

p j (θ) = (1 + ν) sinθ cos

(
j − 1

2

)
θ

+ 2

j + 1/2
sin

(
j − 1

2

)
θ, (26)

qm(θ) = 1 − ν

m + 1
sin(m + 1)θ

+(1 + ν) sinθ cosmθ, (27)

h j (θ) = 2

j + 1/2
sin

(
j + 1

2

)
θ

−(1 + ν) sinθ cos

(
j − 1

2

)
θ, (28)

km(θ) = 1 − ν

m + 1
sin(m + 1)θ

−(1 + ν) sinθ cosmθ, (29)

s j (θ) = − 1 − ν

j + 1/2
cos

(
j + 1

2

)
θ

−(1 + ν) sinθ sin

(
j − 1

2

)
θ, (30)

tm(θ) = − 2

m + 1
cos(m + 1)θ

−(1 + ν) sinθ sinmθ. (31)

The displacement fields of Eqs. 22 and 23 are valid in
the portion of the bimaterial containing the crack. In the
next section, we link these displacement components
with the MFS displacement fields for the uncracked
portion of the bimaterial.
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Analysis of moiré data for near-interface crack 211

4 Coupling of the Westergaard and MFS
expansions

We now consider the data collected in a typical moiré
experiment in a cracked bimaterial. With reference to
Fig. 1, we locate the origin of our coordinate system at
the tip of the crack in material B and the interface is
located at x2 = h. The local polar coordinates used in
Eqs.22 and 23 are then unchanged.

In a moiré experiment, the fringe order, N , is mea-
sured at a point in the material. The fringe order is then
related to the displacement at that point by

u j = N j p,

where j = 1 or j = 2 depending on which displace-
ment component is measured, and p is the pitch of the
moiré grating. Over the field of interest in the bimate-
rial, we then have from the moiré experiment data of
the form (xi

1, xi
2, ui

1, ui
2), i = 1, 2, . . . , 2M where we

assume that we have M data points in each of material
A and material B.

If the moiré data is obtained in material B, xi
2 < h,

and we obtain both displacements u1 and u2 at each
point (xi

1, xi
2), then we use Eqs. 22 and 23 and write

Eu B
1 (ri , θi ) =

J∑
j=0

r j+1/2
i

[
A j f j (θi )+ C j p j (θi )

]

+
M∑

m=0

rm+1
i [Bm gm(θi )+ Dm qm(θi )] ,

(32)

Eu B
2 (ri , θi ) =

J∑
j=0

r j+1/2
i

[
A j h j (θi )+ C j s j (θi )

]

+
M∑

m=0

rm+1
i [Bm km(θi )+ Dm tm(θi )] ,

(33)

where (ri , θi ) is obtained from the Cartesian coordi-
nates (xi

1, xi
2). For the M data points in the cracked

portion of the bimaterial we then have the 2M×2(J +
M + 2) linear system,

[
uB

1

uB
2

]
=

[W11 W12 W13 W14

W21 W22 W23 W24

]
⎡
⎢⎢⎣

A
B
C
D

⎤
⎥⎥⎦ , (34)

where the submatricesWIJ have elements given through
Eqs. 22 and 23 as

W11mn = rn−1/2
m fn−1(θm) W21mn = rn−1/2

m hn−1(θm)

W12mn = rn
m gn−1(θm) W22mn = rn

m kn−1(θm)

W13mn = rn−1/2
m pn−1(θm) W23mn = rn−1/2

m sn−1(θm)

W14mn = rn
m qn−1(θm) W24mn = rn

m tn−1(θm).

Finally, we note that the linear system of Eq. 34 is
overdetermined, with 2M > 2(J + M + 2).

Now consider the moiré data obtained in material
A, xi

2 > h, and again we obtain both displacements
u1 and u2 at each point (xi

1, xi
2). For the MFS calcula-

tion, we consider the point sources to be applied on a
line located outside of material A a distance d below
the interface at x2 = h − d. The point sources then
have coordinates Qn = (xn

1 , h −d) and the calculation
points have coordinates Pi = (xi

1, xi
2). We then use

Eqs. 7 and 8 and write

u A
1 (Pi ) =

N∑
n=1

anG11(Pi , Qn)

+
N∑

n=1

bnG12(Pi , Qn), (35)

u A
2 (Pi ) =

N∑
n=1

anG21(Pi , Qn)

+
N∑

n=1

bnG22(Pi , Qn). (36)

For the M data points in the uncracked portion of the
bimaterial we then have the 2M × 2N linear system,[

uA
1

uA
2

]
=

[G11 G12

G21 G22

] [
a
b

]
, (37)

where the submatrices GIJ have elements given through
Eqs. 7 and 8 as

G11mn = G11(Pm, Qn) G12mn = G12(Pm, Qn),

G21mn = G21(Pm, Qn) G22mn = G22(Pm, Qn).

At the interface, x2 = h, the traction and displacement
are continuous,

t1(x1, h+)− t1(x1, h−) = 0

t2(x1, h+)− t2(x1, h−) = 0, (38)

u1(x1, h+)− u1(x1, h−) = 0

u2(x1, h+)− u2(x1, h−) = 0, (39)
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212 K. Rozenburg et al.

where the terms evaluated at x2 = h+ are formed
from the MFS expansions and the terms evaluated at
x2 = h− are formed using the generalized Westergaard
expansions. In order to form these expressions, we first
need the traction components, ti = σi j n j , where σi j is
the stress tensor and n j is the local normal vector. From
the MFS expansions of Eqs. 7 and 8, we then obtain for
the tractions in material A,

t A
1 (P) =

N∑
n=1

[an δn(P, Qn)+ bn ζn(P, Qn)] , (40)

t A
2 (P) =

N∑
n=1

[an ξn(P, Qn)+ bn ρn(P, Qn)] , (41)

where

δn(P, Qn) =
{

2µ(1 − ν)

1 − 2ν

∂G11

∂x1
+ 2µν

1 − 2ν

∂G12

∂x2

}
n1

+
{
µ
∂G11

∂x2
+ µ

∂G12

∂x1

}
n2,

ζn(P, Qn) =
{

2µ(1 − ν)

1 − 2ν

∂G21

∂x1
+ 2µν

1 − 2ν

∂G22

∂x2

}
n1

+
{
µ
∂G21

∂x2
+ µ

∂G22

∂x1

}
n2,

ξn(P, Qn) =
{
µ
∂G11

∂x2
+ µ

∂G12

∂x1

}
n1

+
{

2µν

1 − 2ν

∂G11

∂x1
+ 2µ(1 − ν)

1 − 2ν

∂G12

∂x2

}
n2,

ρn(P, Qn) =
{
µ
∂G21

∂x2
+ µ

∂G22

∂x1

}
n1

+
{

2µν

1 − 2ν

∂G21

∂x1
+ 2µ(1 − ν)

1 − 2ν

∂G22

∂x2

}
n2,

where the derivatives of Gi j are evaluated at
(P, Qn) and, for the case of a planar interface along
the x1 axis, n = (0, 1)T . Similarly, from the definition
of the generalized Westergaard stresses given by Eqs.
10–12 and Eqs. 15–17, and the expansions Eqs. 20–21,
we obtain the tractions in material B

t B
1 (r, θ) =

J∑
j=0

r j−1/2 [
A j β j (θ)+ C j η j (θ)

]

+
M∑

m=0

rm [
Bm γm(θ)+ Dm κm(θ)

]
, (42)

t B
2 (r, θ) =

J∑
j=0

r j−1/2 [
A j φ j (θ)+ C j ψ j (θ)

]

+
M∑

m=0

rm [Bm χm(θ)+ Dm ωm(θ)] , (43)

where

β j (θ) = n1

[
cos

(
j − 1

2

)
θ

−
(

j − 1

2

)
sinθ sin

(
j − 3

2

)
θ

]

−n2

(
j − 1

2

)
sinθ cos

(
j − 3

2

)
θ

γm(θ) = −n1 [m sinθ sin(m − 1)θ − 2 cosmθ ]

+n2 [ sinmθ + m sinθ cos(m − 1)θ ]

η j (θ) = n1

[(
j − 1

2

)
sinθ cos

(
j − 3

2

)
θ

+2 sin

(
j − 1

2

)
θ

]

−n2

[(
j − 1

2

)
sinθ sin

(
j − 3

2

)
θ

+ cos

(
j − 1

2

)
θ

]

κm(θ) = n1 [ sinmθ + m sinθ cos(m − 1)θ ]

−n2 m sinθ sin(m − 1)θ

φ j (θ) = −n1

(
j − 1

2

)
sinθ cos

(
j − 1

2

)
θ

+n2

[
cos

(
j − 1

2

)
θ

+
(

j − 1

2

)
sinθ sin

(
j − 3

2

)
θ

]

χm(θ) = −n1 [ sinmθ + m sinθ cos(m − 1)θ ]

+n2 m sinθ sin(m − 1)θ

ψ j (θ) = n1

[
−

(
j − 1

2

)
sinθ sin

(
j − 3

2

)
θ

+ cos

(
j − 1

2

)
θ

]

−n2

(
j − 1

2

)
sinθ cos

(
j − 3

2

)
θ

ωm(θ) = −n1 m sinmθ sin(m − 1)θ

+n2 [ sin(m − 1)θ

−m sinθ cos(m − 1)θ ] .

Selecting N collocation points along the interface,[
(xi

1, h)
]N

i=1, we then write for the traction continuity of
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Analysis of moiré data for near-interface crack 213

Eq. 38, using Eqs. 40–43, and the displacement conti-
nuity of Eq. 39, using Eqs. 7–8 and Eqs. 22–23,

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a
b
A
B
C
D

⎤
⎥⎥⎥⎥⎥⎥⎦

(44)

which is a 4N ×2(N + J + M +2) linear system. The
submatrices AIJ are

A11mn = δn(Pm, Qn) A12mn = ζn(Pm, Qn)

A13mn = −rn−3/2
m βn−1(θm) A14mn = −rn−2

m γn−1(θm)

A15mn = −rn−3/2
m ηn−1(θm) A16mn = −rn−2

m κn−1(θm)

A21mn = ξn(Pm, Qn) A22mn = ρn(Pm, Qn)

A23mn = −rn−3/2
m φn−1(θm) A24mn = −rn−2

m χn−1(θm)

A25mn = −rn−3/2
m ψn−1(θm) A26mn = −rn−2

m ωn−1(θm)

A31mn = G11mn A32mn = G12mn

A33mn = −W11mn A34mn = −W12mn

A35mn = −W13mn A36mn = −W14mn

A41mn = G21mn A42mn = G22mn

A43mn = −W21mn A44mn = −W22mn

A45mn = −W23mn A46mn = −W24mn

where Pm = (xm
1 , h+), Qn = (xn

1 , h−d) and (rm, θm)

is computed from (xm
1 , h−).

Combining the linear systems of Eqs. 34, 37, and 44
yields the 4(M + N )× 4(N + J + M + 2) overdeter-
mined linear system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA
1

uA
2

uB
1

uB
2
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G11 G12 0 0 0 0
G21 G22 0 0 0 0
0 0 W11 W12 W13 W14

0 0 W21 W22 W23 W24

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a
b
A
B
C
D

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(45)

The system of Eq. 45 can be solved with standard lin-
ear least-squares procedures to obtain estimates for the
parameters (a,b,A,B,C,D)T . Here, we use the Q R
decomposition as discussed in Longley (1984).

5 Proof-of-principle numerical experiments

To investigate the proposed analysis procedure,
synthetic moiré data was generated for the symmetric
(mode I) crack problem shown in Fig. 2. To gene-
rate the synthetic displacement data, a boundary ele-
ment analysis based on a bimaterial Green’s function
(Berger 1994) was used. The use of a bimaterial Green’s
function in the boundary element analysis allows only
the remote boundaries of the specimen to be discre-
tized. The continuity conditions for displacement and
traction across the interface are enforced analytically
by the Green’s function so no discretization of the in-
terface is required.

The computational domain shown in Fig. 2 was used
for the analysis. Since the problem is symmetric, the
crack was modelled using symmetry boundary condi-
tions. Additionally, the crack-tip was fixed so that u1 =
u2 = 0. The problem is mode I only, so C = D = 0
in Eq. 45. The elastic constants of the bimaterial were
taken to be equivalent to those of the copper–tungsten
(Cu–W) composite used in the experiments discussed
in the next section. Specifically, material A is 80% Cu,
20% W, which has a modulus E A=160 GPa and a Pois-
son’s ratio νA = 0.330 and material B is 40% Cu,
60% W which has EB=190 GPa and νB=0.286 (Chapa-
Cabrera 2002). Displacements were obtained in the re-
gion indicated in Fig. 2. Both u1 and u2 were calculated
at each point in the region shown.

The displacement data was collocated using the for-
mulation outlined in the previous section. The same
number of unknown coefficients were used in the Wes-
tergaard and MFS expansions, so N = J + M + 2.
As we assumed in the formulation, the same number of
displacement data points were taken in material A as
in material B yielding a total of 4M displacement data
points. To emphasize the abundance of moiré data, we
select fewer than M data points along the interface to
evaluate Eq. 44; namely, we take N = 0.25M. The nu-
merical experiments reported on in Barker et al. (1985)
suggest using roughly 10 times as many data points
as unknown coefficients for good convergence, so we
choose 10(M + N ) = N + J + M + 2.

The results of the combined Westergaard-MFS col-
location are shown in Figs. 3 and 4. In Fig. 3, we
have plotted the opening mode stress intensity factor,
KI, as a function of the total number of coefficients
N + J + M + 2. We see from the figure that good
convergence is obtained for KI at approximately eight
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Fig. 2 Copper–tungsten
model specimen showing
the region of u1, u2
calculation

Fig. 3 Convergence of KI from the collocation of the boundary
element data

coefficients. In Fig. 4 the least squares residual is plot-
ted again as a function of the total number of unknown
coefficients. Using 8 coefficients we see the residual is
approximately 4.0 × 10−10. Of course these numerical
experiments used perfect displacement data and good
results can be expected. The success of the numerical
investigation provided confidence to apply the analy-
sis method to actual experimental data. This analysis is
discussed in the next section.

6 Application to a Cu–W specimen

Based on the successful application of the analysis
method to the synthetic boundary element data, the data
analysis methodology presented in this paper was used
to extract stress intensity information from experiments
performed on copper–tungsten composite specimens.
The geometry of the Cu–W composite specimen is
shown in Fig. 5. The specimens were fabricated by

Fig. 4 Residual from the collocation of the boundary element
data

sintering through hot pressing, described in detail
elsewhere (Chapa-Cabrera and Reimanis 2002).
Four-point bend bars (3 mm×8 mm×30 mm) were
machined from the hot-pressed specimens with electro-
discharge machining. A notch of length 3 mm was then
machined into the specimen. A 1200 line/mm alumi-
nized grating was fixed to the surface of the four-point
bend bar with epoxy. Sharp precracks were grown at
the base of the notch in each specimen by fatigue,
parallel to the 8 mm dimension. Each specimen was
then loaded in four-point bending until the crack
extended.

Phase-shifted moiré intereferometry (PSMI)
was used to collect the crack-tip displacement field,
similar to experiments described in Steffler 2001. A
typical fringe pattern obtained for the u1-field is shown
in Fig. 6. The displacement data generated with PSMI
were analyzed using the Westergaard-MFS algorithm
to extract the stress field parameters. Figures 7 and 8
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Fig. 5 Copper–tungsten
specimen

Fig. 6 Phase-shifted moiré fields for the u1-displacement obtained in the copper–tungsten specimen

Fig. 7 Convergence of KI
from collocation of the
experimental moiré data
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Fig. 8 Convergence of KII
from collocation of the
experimental moiré data

illustrate the convergence of KI and KII as a function
of the number of unknowns in the series expansions.
Each figure shows the results of the collocation using
data from the u1 and u2 fields individually as well as
the combined u1 and u2 fields. The results from the
combined fields shows convergence to a slightly hig-
her value of KI than the results using the individual
fields, consistent with results in Sanford (2003); it is li-
kely that the increased redundancy in the combined data
from both u1 and u2 fields leads to higher accuracy. The
plot for KII shows only the combined u1 and u2 fields.

KIC measured for the 60%W–40%Cu composition is
4.5 MPa·√m. The KI value measured in the same com-
position here is approximately 4 MPa ·√m. This value
is lower because the displacement field is taken after
the crack has arrested and thus, KI should be lower than
KIC. KII is expected to be orders of magnitude lower
than KI because the crack is extending under mode I
conditions and a KII = 0 fracture criterion should apply.

7 Summary

In this paper we have developed a method applicable to
the analysis of moiré data obtained in cracked bimate-
rial specimens. The analysis technique allows the use
of displacement data obtained in the uncracked portion
of the bimaterial by using expansions from the MES
Coupling these expansions with the usual Westergaard
crack-tip expansions allows one to take full advantage
of the data available from a moiré experiment. Our nu-
merical results indicated the methodology worked well
on synthetic data generated from a boundary element

analysis, and the application of the methodology to ac-
tual experimental data was successful. Although both
example problems investigated here contained a planar
interface, the method can easily be used on problems
with curved interfaces.

Acknowledgements The authors acknowledge the support of
the Army Research Office, grant number DAAD19-01-1-0590,
to the Colorado School of Mines. The use of the moiré facilities
at the Idaho National Laboratories and the assistance of Dr. Eric
Steffler of INL are gratefully acknowledged.

References

Barker DB, Sanford RJ, Chona R (1985) Determining K and
related stress-field parameters from displacement fields. Exp
Mech 25:399–407

Berger JR (1994) Boundary element analysis of anisotropic bi-
materials with special Green’s functions. Eng Anal Boundary
Elements 14:123–131

Berger JR, Karageorghis A (2001) The method of fundamental
solutions for elastic layered materials. Eng Anal Boundary
Elements 25:877–886

Chapa-Cabrera J (2002) Fracture and deformation in Cu/W gra-
ded joints. Ph.D. dissertation, Colorado School of Mines

Chapa-Cabrera J, Reimanis I (2002) Crack deflection in composi-
tionally graded Cu–W composites. Phil Mag A 82:3393–3403

Dally JW (1979) Dynamic photoelastic studies of fracture. Exp
Mech 19:349–361

Dally JW, Read DT (1993) Electron beam moiré . Exp Mech
33:270–277

Drexler ES, Berger JR (1999) Mechanical deformation in
conductive adhesives measured with electron-beam moiré .
J Electron Packaging 121:69–74

Epstein JS, Dadkhah MS (1993) Moiré interferometry in fracture
research. Chapter 11. In: Epstein JS (ed) Experimental tech-
niques in fracture. VCH Publishers, New York, pp 427–508

123



Analysis of moiré data for near-interface crack 217

Etheridge JM, Dally JW (1977) A critical review of methods
for determining the stress intensity factor from isochromatic
fringes. Exp Mech 17:248–254

Fairweather G, Karageorghis A (1998) The method of funda-
mental solutions for elliptic boundary value problems. Adv
Comput Math 9:69–95

Golberg MA, Chen CS (1999) The method of fundamental solu-
tions for potential, Helmholtz and diffusion problems. Chapter
4. In: Golberg MA (ed) Boundary integral methods: numeri-
cal and mathematical aspects. WIT Press and Computational
Mechanics Publications, Boston, pp 105–176

Kalthoff JF (1987) Shadow optical method of caustics. In:
Kobayashi AS (ed) Handbook on experimental mechanics.
McGraw-Hill Publishers, New York, NY, pp 430–498

Longley JW (1984) Least squares computations using orthogo-
nalization methods. Marcel Dekker, Inc., New York, NY

Poullikkas A, Karageorghis A, Georgiou G (1998) Methods of
fundamental solutions for harmonic and biharmonic boundary
value problems. Comput Mech 21:416–423

Read DT, Dally JW (1994) Electron-beam moiré study of fracture
of a glass fiber reinforced plastic composite. J Appl Mech
61:402–409

Rosakis AJ, Zehnder AT (1985) On the method of caustics: an
exact analysis based on geometrical optics. J Elasticity 4:347–
367

Sanford RJ, Dally JW (1979) A general method for determining
mixed-mode stress intensity factors from isochromatic fringe
patterns. Eng Fract Mech 11:621–633

Sanford RJ (1979) A critical re-examination of the Westergaard
method for solving opening mode crack problems. Mech Res
Commun 6:289–294

Sanford RJ (2003) Principles of fracture mechanics. Prentice
Hall/Pearson Education, Upper Saddle River, New Jersey

Schroedl MA, Smith CW (1975) A study of near and far field
effects in photoelastic stress intensity determination. Eng Frac
Mech 7:341–355

Steffler ED (2001) Applications of phase shifted moiré interfe-
rometry. In: Trumble K, Bowman K, Reimanis I, Sampath S
(eds) Ceramic transactions, vol 114: Functionally grade mate-
rials 2000. Published by the American Ceramic Society, Wes-
terville, OH pp 595–602

Theocaris PS, Gdoutos E (1972) An optical method for deter-
mining opening-mode and edge-sliding-mode stress-intensity
factors. J Appl Mech 39:91–97

Westergaard HM (1939) Bearing pressures and cracks. J Appl
Mech 6:A49–A53

Williams ML (1957) On the stress distribution at the base of a
stationary crack. J Appl Mech 24:109–114

123


	Analysis of moiré data for near-interface cracks
	Abstract
	Abstract
	Introduction
	The MFS
	Generalized Westergaard expansions neara crack tip
	Coupling of the Westergaard and MFS expansions
	Proof-of-principle numerical experiments
	Application to a Cu--W specimen
	Summary
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


