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Abstract

Various functions, defined as infinite series of products of Bessel functions

of the first kind, are studied. Integral representations are obtained, and then

used to deduce asymptotic approximations. Although several methods have

been investigated (including power series expansions and integral transforms),

methods based on Fourier series emerge as the most useful.
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1. Introduction

In a recent investigation into multiple scattering of acoustic waves by random configurations

of penetrable circular cylinders [7], we encountered the functions

S1(x) ≡
∑

n

J
2
n (x) and S2(x;µ) ≡

∑

m,n

Jn(x)Jm(x)Jn−m(µx). (1)

Here, the function Jn is defined in terms of the Bessel function Jn by

Jn(x) = J 2
n (x) − Jn−1(x)Jn+1(x), (2)

µ is a constant and we have used the shorthand notation

∑

n

=
∞

∑

n=−∞
and

∑

m,n

=
∑

m

∑

n

.

We are especially interested in the asymptotic behaviour of S1(x) and S2(x;µ) for

large positive values of x. (The behaviour near x = 0 is easily obtained; in particular,

S1(0) = S2(0;µ) = 1.) In the application we have in mind, large values of x (≡ka)

correspond to high frequencies and the parameter µ satisfies µ � 2, with µ = 2 being of

special interest.
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We shall obtain integral representations for S1 and S2, and then we shall show that

S1(x) ∼
c1

x
and S2(x;µ) ∼

c2(µ)

x
as x → ∞,

with explicit expressions for the constants c1 and c2. Thus, see (27) for c1, see (33) for c2(µ)

and, when µ = 2, see (34):

c2(2) = (4/5)[(2/π)Ŵ(3/4)]4.

To see that the determination of the asymptotic behaviour of S1 and S2 may not be

straightforward, consider the following well-known fact:

S0(x) ≡
∑

n

J 2
n (x) = 1 for all x. (3)

Each term in the sum decays as x−1 with increasing x, and yet the sum itself does not decay.

A related formula is
∑

n

Jn(x)Jn+m(x) = 0 for all x, where m = ±1,±2, . . . . (4)

Combining this formula with (3) gives
∑

n

Jn(x) = 1 for all x. (5)

The formulae (3) and (4) are special cases of addition theorems for Bessel functions. For

example, it is known that
∑

n

Jn(r)Jn(s) e−inθ = J0(
√

r2 + s2 − 2rs cos θ). (6)

In particular,

S0(x;µ) ≡
∑

n

Jn(x)Jn(µx) = J0(x(µ − 1)).

Thus, S0(x;µ) decays as x−1/2 when x increases, provided that µ �= 1, whereas S0(x; 1) =
S0(x) ≡ 1, which is (3).

In order to estimate S1,S2 and related infinite series, we need a general method. It is

instructive to develop these methods by using them to verify (3); some potential methods (and

their drawbacks) are outlined in the following section. We then focus on methods based on

Fourier series. These lead to integral representations for S1 and S2; we also consider other

functions, including

S3(x) ≡
∑

n

J 4
n (x). (7)

The asymptotic approximations follow from the integral representations. We only give the

leading term in the asymptotic behaviour (as that is sufficient for our application), but it

is likely that full expansions could be derived with more work; such expansions have been

obtained previously for S3(x), as described in section 3.

2. A short survey of methods for proving (3)

2.1. Use of a differential equation

Perhaps the simplest way to prove (3) is to form a differential equation for S0(x). Thus,

S
′
0(x) =

∑

n

2Jn(x)J ′
n(x) =

∑

n

Jn(Jn−1 − Jn+1) =
∑

n

JnJn−1 −
∑

m

Jm−1Jm = 0

2
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so that S0(x) is a constant; but S0(0) = 1 and so the result follows. A similar calculation

also gives (4). However, we have not succeeded in using this approach for more complicated

series, such as S3.

2.2. Use of power series

Bessel functions are defined by power series, so it is natural to use these. The power series

for J 2
n is known [1, 9.1.14], and this can be summed over n (use the second ‘check’ on p 822

of [1]) to recover S0 = 1. In principle, this method could be used for other series. However,

power series are not usually convenient when the goal is to estimate functions such as S3(x)

for large values of x, unless the series obtained can be recognized as a known special function.

2.3. Use of Mellin–Barnes integrals

Mellin transforms can sometimes be used to obtain asymptotic expansions. However, we

see immediately that S0(x) does not have a Mellin transform. Nevertheless, we can use a

Mellin–Barnes integral for J 2
n . Thus, for n � 0, we have the following integral representation

(obtained by putting µ = ν = n and s + n = z in Watson’s formula for Jµ(x)Jν(x) [12,

p 436], or by comparison with the power series for J 2
n (x) [1, 9.1.14]),

J 2
n (x) =

1
√

π

1

2π i

∫ cn+i∞

cn−i∞

Ŵ(n − z)Ŵ
(

z + 1
2

)

Ŵ(z + 1)Ŵ(n + z + 1)
x2z dz, (8)

with − 1
2

< cn < n. (Later, we shall use a Mellin–Barnes integral for J1; see (32).) To

calculate S0, we sum over n. We want to interchange the order of summation and integration.

As [1, 6.1.47]

Ŵ(n − z)

Ŵ(n + z + 1)
∼

1

n2z+1
as n → ∞,

the interchange will be permissible if Re z > 0. Thus, we fix cn = c1 (with 0 < c1 < 1) and

sum over n with n � 1. We have
∞

∑

n=1

Ŵ(n − z)

Ŵ(n + z + 1)
=

Ŵ(−z)

Ŵ(z + 1)

∞
∑

n=1

(−z)n(1)n

(z + 1)nn!

where (α)n = Ŵ(α +n)/Ŵ(α). The sum is F(−z, 1; z+1; 1)−1 = − 1
2
, where F(a, b; c; z) is

the Gauss hypergeometric function [1, 15.1.1] and we have used a known formula [1, 15.1.20]

for F(a, b; c; 1). Hence,

S0(x) = J 2
0 (x) −

1
√

π

1

2π i

∫ c1+i∞

c1−i∞

Ŵ(−z)Ŵ
(

z + 1
2

)

[Ŵ(z + 1)]2
x2z dz. (9)

But we know that J 2
0 (x) is given by (8); moving the contour from Re z = c0 to Re z = c1, we

pick up the residue contribution from z = 0, and then (9) gives S0(x) = 1.

It is possible that this method will generalize, but we have not pursued it; for applications

to the evaluation of certain integrals of products of Bessel functions, see [5].

2.4. Use of Laplace transforms

Another possibility is to consider the Laplace transform of S0. It is known that [2]
∫ ∞

0

J 2
n (x) e−sx dx =

(−1)nk

π

∫ π/2

0

cos 2nψ dψ

(1 − k2 sin2 ψ)1/2

=
k

4π

∫ π

−π

einθ dθ

[1 − k2 cos2 (θ/2)]1/2
, (10)

3
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where k2 = 4/(s2 + 4) and s is the transform variable. Summing over n gives

∫ ∞

0

N
∑

n=−N

J 2
n (x) e−sx dx =

k

4π

∫ π

−π

DN (θ) dθ

[1 − k2 cos2(θ/2)]1/2
, (11)

where

DN (θ) =
N

∑

n=−N

einθ =
sin(N + 1/2)θ

sin(θ/2)
(12)

is the Dirichlet kernel; from the theory of Fourier series (see, for example [11, p 317]), we

know that DN has the following filtering property

lim
N→∞

∫ π

−π

f (t)DN (t) dt = 2πf (0), (13)

for any smooth functions f . Hence, letting N → ∞ in (11) gives
∫ ∞

0

S0(x) e−sx dx =
k

4π

2π
√

1 − k2
=

1

s
,

which is the Laplace transform of unity.

An obvious limitation with this method is that it needs the Laplace transform to be

available. However, the filtering property of the Dirichlet kernel does suggest using Fourier

series, and this emerges as our method of choice.

3. Use of Fourier series

If the terms in a series can be expressed as Fourier coefficients (as in (10), for example), then

it is trivial to sum the series. Thus, suppose that

tn(x) =
1

2π

∫ π

−π

h(θ; x) einθ dθ, (14)

where h is a smooth, 2π -periodic function of θ . Then, h(θ; x) =
∑

n tn(x) e−inθ and, in

particular,
∑

n

tn(x) = h(0; x). (15)

We can also use Parseval’s theorem [11, p 128] to sum a related series:

∑

n

|tn(x)|2 =
1

2π

∫ π

−π

|h(θ; x)|2 dθ. (16)

More generally, if we have a second function, g(θ; x) =
∑

n sn(x) e−inθ , then

∑

n

sn(x)tn(x) =
1

2π

∫ π

−π

g(θ; x)h(θ; x) dθ, (17)

where the overbar denotes complex conjugation.

Let us apply these formulae. From [4, 7.7.2 (11)], we have Neumann’s formula,

Jν(x)Jµ(x) =
2

π

∫ π/2

0

Jν+µ(2x cos ψ) cos [(µ − ν)ψ] dψ. (18)

If we put ν = n,µ = −n and ψ = θ − π/2, we obtain (see [1, 11.4.8] or [4, 7.7.2 (13)])

J 2
n (x) =

1

π

∫ π

0

J0(2x sin θ) cos 2nθ dθ =
1

2π

∫ π

−π

J0(2x sin [θ/2]) einθ dθ. (19)

4
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Comparison with (14) gives tn(x) = J 2
n (x) and h(θ; x) = J0

(

2x sin 1
2
θ
)

. Then, (15) gives

S0(x) = 1 whereas (16) gives the integral representation

S3(x) =
∑

n

J 4
n (x) =

1

2π

∫ π

−π

J 2
0

(

2x sin
1

2
θ

)

dθ =
2

π

∫ π/2

0

J 2
0 (2x sin θ) dθ. (20)

In fact, this is a known formula. It is equation (2b) in a paper by Stoyanov and Farrell [9].

These authors were interested in the integral, but they noted (20). They also obtained the

large-x behaviour of the integral’s value; using their results, we obtain

S3(x) =
1

xπ2
(log x + 5 log 2 + γ ) + O(x−3/2) as x → ∞,

where γ ≃ 0.5772 is Euler’s constant.

3.1. Application to the series S1(x)

Consider S1(x), defined by (1). Using (2), (18) and (19), we obtain

Jn(x) =
1

π

∫ π

0

[J0(2x sin θ) + J2(2x sin θ)] cos 2nθ dθ =
1

2π

∫ π

−π

g(θ; x) einθ dθ, (21)

where

g(2ϕ; x) = J0(2x sin ϕ) + J2(2x sin ϕ) =
J1(2x sin ϕ)

x sin ϕ
. (22)

As g(0; x) = 1, applying (15) confirms (5). From (16), we obtain

S1(x) =
∑

n

J
2
n (x) =

1

2π

∫ π

−π

[g(θ; x)]2 dθ, (23)

an integral representation for S1(x). Explicitly,

S1(x) =
2

π

∫ π/2

0

[J0(2x sin θ) + J2(2x sin θ)]2 dθ (24)

= (2/π)[S00(2x) + 2S02(2x) + S22(2x)], (25)

where

Sµν(λ) =
∫ π/2

0

Jµ(λ sin θ)Jν(λ sin θ) dθ. (26)

The asymptotic behaviour of this integral can be found in the literature: S00 is mentioned

above, Sνν was studied by Wong [13] and the general case is discussed in [10], [6] and [8].

Specifically,

Sµν(λ) =
cos[(µ − ν)π/2]

λπ
(log λ − ψµν) + O(λ−3/2)

as λ → ∞, where

ψµν = γ + ψ

(

1 + µ + ν

2

)

+
1

2
ψ

(

1 + µ − ν

2

)

+
1

2
ψ

(

1 − µ + ν

2

)

and ψ(w) = Ŵ′(w)/Ŵ(w). In particular, ψ00 = −γ − 4 log 2, ψ22 = −γ + 8
3

− 4 log 2 and

ψ02 = −γ + 4 − 4 log 2. Thus,

S00(λ) ∼
log λ − ψ00

λπ
, S22(λ) ∼

log λ − ψ22

λπ
, S02(λ) ∼ −

log λ − ψ02

λπ
,

5
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whence

S00(λ) + 2S02(λ) + S22(λ) ∼ (λπ)−1(2ψ02 − ψ00 − ψ22) = (16/3)(λπ)−1.

Thus, (25) gives

S1(x) ∼
16

3π2x
as x → ∞. (27)

This estimate agrees well with direct numerical evaluation of the infinite series defining S1.

The fact that the logarithmic terms cancel suggests that the leading behaviour of S1(x)

could be obtained more directly. Indeed, inspection of (24) suggests that the dominant

contribution comes from a neighbourhood of θ = 0, so following Stoyanov and Farrell [9],

we have

S1(x) ≃
2

π

∫ x−1/2

0

[

J1(2x sin θ)

x sin θ

]2

dθ ≃
2

π

∫ x−1/2

0

[

J1(2xθ)

xθ

]2

dθ

=
4

xπ

∫ 2x1/2

0

t−2J 2
1 (t) dt ≃

4

xπ

∫ ∞

0

t−2J 2
1 (t) dt. (28)

Note that the last approximation could not have been made in a similar calculation for S3,

because
∫ ∞

0
J 2

0 (t)dt is divergent: it is this divergence that generates the logarithmic terms. It

remains to calculate the value of the infinite integral in (28). We recognize it as a critical case

of the Weber–Schafheitlin integrals. Thus, it is known that [12, p 403]
∫ ∞

0

y2s−2J 2
1 (y) dy =

22s−2Ŵ
(

s + 1
2

)

Ŵ(2 − 2s)
[

Ŵ
(

3
2

− s
)]2

Ŵ
(

5
2

− s
)

=
Ŵ

(

s + 1
2

)

Ŵ(1 − s)
√

π(3 − 2s)
[

Ŵ
(

3
2

− s
)]2

(29)

for − 1
2

< Re s < 1; this reduces to 4/(3π) when s = 0, and then (28) agrees with (27). We

shall use this method when we estimate S2(x;µ) in the following section.

3.2. Application to the double sum S2(x;µ)

The series S2(x;µ), defined by (1), is more complicated than S1 for two reasons: it is a double

sum and it involves Bessel functions with different arguments.

Let us start with the latter complication. From the addition theorem for J0, (6), we have

Jn(x)Jn(µx) =
1

2π

∫ π

−π

f (θ; x) cos nθ dθ,

with f (θ; x) = J0(x
√

1 + µ2 − 2µ cos θ). Application of (16) gives

S3(x;µ) ≡
∑

n

J 2
n (x)J 2

n (µx) =
1

π

∫ π

0

J 2
0 (x

√

1 + µ2 − 2µ cos θ) dθ.

When µ = 1, this formula reduces to (20). When µ �= 1, the argument of the square root does

not vanish; consequently, it can be shown that S3(x;µ) = O(x−1) as x → ∞ in this case.

More generally, using (21),

Jn−m(µx) =
1

2π

∫ π

−π

g(θ;µx) ei(n−m)θ dθ =
1

2π

∫ π

−π

hm(θ; x) einθ dθ,

where hm(θ; x) = g(θ;µx) e−imθ and g is defined by (22). Hence, from (17) (with h = hm

therein, and noting that g is real),

∑

n

Jn(x)Jn−m(µx) =
1

2π

∫ π

−π

g(θ; x)g(θ;µx) eimθ dθ.

6
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Multiplying by Jm(x), using (21) again, and then summing over m, using (17) again, we

obtain

S2(x;µ) =
∑

m,n

Jm(x)Jn(x)Jn−m(µx) =
1

2π

∫ π

−π

[g(θ; x)]2g(θ;µx) dθ.

This is our integral representation for S2. Substituting for g from (22), we obtain

S2(x;µ) =
2

π

∫ π/2

0

[

J1(2x sin θ)

x sin θ

]2
J1(2µx sin θ)

µx sin θ
dθ.

To estimate this integral for large values of x, we proceed as at the end of section 3.1.

Thus, we have

S2(x;µ) ≃
2

π

∫ x−1/2

0

[

J1(2xθ)

xθ

]2
J1(2µxθ)

µxθ
dθ ≃

8

xµπ
I (µ), (30)

say, where

I (µ) =
∫ ∞

0

t−3J 2
1 (t)J1(µt) dt. (31)

This integral can be evaluated. We make the following steps. First, we use a Mellin–Barnes

integral to represent J1(µt). Then, we integrate with respect to t, using a critical case of

the Weber–Schafheitlin integral. The remaining integral is evaluated by residue calculus.

The result is proportional to a generalized hypergeometric function, 3F2. This function has

argument 1 when µ = 2; in this special case, the 3F2 can be evaluated in terms of gamma

functions. Some details of this calculation follow.

We start with the Mellin–Barnes integral [1, 9.1.26],

J1(µt) =
1

2π i

∫ c+i∞

c−i∞

Ŵ(−s)(µt/2)2s+1

Ŵ(s + 2)
ds, c = Re s < 0. (32)

We substitute in (31), interchange the order of integration and then integrate with respect to t

using (29); the result is

I (µ) =
1

2π i

∫ c+i∞

c−i∞

Ŵ(−s)Ŵ
(

s + 1
2

)

Ŵ(1 − s)(µ/2)2s+1

√
πŴ(s + 2)(3 − 2s)

[

Ŵ
(

3
2

− s
)]2

ds, −
1

2
< c < 0.

We move the integration contour to the left. There are simple poles at s + 1
2

= −N , where

Ŵ
(

s + 1
2

)

≃ (−1)N
/[

N !
(

s + 1
2

+ N
)]

, N = 0, 1, 2, . . .. Evaluating the residues gives

I (µ) =
∞

∑

N=0

Ŵ
(

N + 1
2

)

Ŵ
(

N + 3
2

)

(µ/2)−2N

√
πŴ

(

3
2

− N
)

(2N + 4)[Ŵ(N + 2)]2

(−1)N

N !
.

Use of the reflection formula, Ŵ(z)Ŵ(1 − z) = π/ sin πz, with z = N − 1
2
, gives

I (µ) = −
1

2π3/2

∞
∑

N=0

Ŵ
(

N − 1
2

)

Ŵ
(

N + 1
2

)

Ŵ
(

N + 3
2

)

Ŵ(N + 2)Ŵ(N + 3)

(2/µ)2N

N !

= −
Ŵ

(

− 1
2

)

Ŵ
(

1
2

)

Ŵ
(

3
2

)

2π3/2Ŵ(2)Ŵ(3)
3F2

(

− 1
2
, 1

2
, 3

2
; 2, 3; 4/µ2

)

;

the factor in front of the 3F2 reduces to 1
4
. Thus,

S2(x;µ) ∼
2

xµπ
3F2

(

− 1
2
, 1

2
, 3

2
; 2, 3; 4/µ2

)

as x → ∞. (33)

7
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When µ = 2, the generalized hypergeometric function is ‘well poised’ and can be

evaluated using Dixon’s theorem [3, 4.4(5)],

3F2(a, b, c; 1 + a − b, 1 + a − c; 1)

=
Ŵ(1 + a/2)Ŵ(1 + a − b)Ŵ(1 + a − c)Ŵ(1 − b − c + a/2)

Ŵ(1 + a)Ŵ(1 − b + a/2)Ŵ(1 − c + a/2)Ŵ(1 + a − b − c)
,

with a = 3
2
, b = 1

2
and c = − 1

2
; the result is

I (2) =
1

4

[

Ŵ(7/4)

Ŵ(5/2)

]2
Ŵ(2)Ŵ(3)

Ŵ(5/4)Ŵ(9/4)
=

16

5π3
[Ŵ(3/4)]4.

Thus,

S2(x; 2) ∼
4

5x

[

2

π
Ŵ(3/4)

]4

as x → ∞. (34)

This estimate (34) agrees well with direct numerical evaluation of the original double sum.
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