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The effective mass density of an inhomogeneous medium is discussed. Random configurations of
circular cylindrical scatterers are considered, in various physical contexts: fluid cylinders in another
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case, time-harmonic waves are scattered, and an expression for the effective wavenumber due to
Linton and Martin �J. Acoust. Soc. Am. 117, 3413–3423 �2005�� is used to derive the effective
density in the low frequency limit, correct to second order in the area fraction occupied by the
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I. INTRODUCTION

Methods for estimating the effective properties of ran-
dom composites have been of interest for many decades. In
recent years, some of this interest has been directed at the
effective mass density, �eff. In some circumstances, a simple
�static� mixture rule is found. Thus, for a two-phase compos-
ite �matrix of density � and inclusions of density �0�, the
static estimate is �eff

st = �1−���+��0, where � is the fraction
of space �area density or volume density� occupied by the
inclusions. Evidently, �eff

st could be determined by weighing
samples.

However, one can also consider dynamic problems, fol-
lowed by taking a low-frequency limit. This is appropriate if
one wants to estimate effective wavespeeds. In some circum-
stances, this “quasistatic” limit gives a different estimate,
namely,

�eff

�
=

� + �0 − ��� − �0�
� + �0 + ��� − �0�

. �1�

The three-dimensional version of this formula is due to
Ament.1 Wavespeed estimates based on Eq. �1� have been
shown to agree with experiments.2 One purpose of this paper
is to provide independent analytical verification of Eq. �1�.

When is the static effective density inappropriate? If the
matrix is a fluid, inertia is important, and so one might not
expect to obtain the static effective density. On the other

hand, if the matrix is solid, there is a well-defined static
limit, and so one may expect to recover �eff

st . Indeed, this is
what has been found in the literature, as reviewed in Sec. II.

In this paper, a variety of two-dimensional problems is
considered, and the low-frequency limit is examined. The
prototype problem consists of the Helmholtz equation, ��2

+k2�u=0, outside circular cylinders. Inside each cylinder,
there is another Helmholtz equation, ��2+k0

2�u0=0, with
various transmission conditions connecting u and u0 across
the circular boundaries. For simplicity, it is assumed that
each circle has radius a.

To analyze multiple scattering by random configurations
of small scatterers, a formula for the effective wavenumber,
K, obtained recently by Linton and Martin3 is used. Their
formula �see Eq. �21� in Sec. IV� uses the Lax quasicrystal-
line approximation �QCA�, it compares favorably with
experiments,4 and it has been confirmed by an independent
method that is valid for weak scattering.5 The Linton-Martin
formula is accurate to second order in �. It requires the so-
lution of a scattering problem for one scatterer; this scalar
�transmission� problem is discussed briefly in Sec. III.

The Linton-Martin formula is applied to four problems.
The first �Sec. V� concerns fluid cylinders in a fluid matrix.
Agreement with the Ament formula, Eq. �1�, is found, correct
to second order in �. Then, in Sec. VI, antiplane motions
�SH waves� in a solid-solid composite are considered: the
static estimate for �eff is obtained. In Sec. VII, elastic cylin-
ders in a fluid matrix are considered, whereas movable rigid
cylinders in a fluid are considered in Sec. VIII. In both of
these cases, agreement with the Ament formula, Eq. �1�, is
found, correct to second order in �.
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The methods used herein can be extended to three-
dimensional problems, with random configurations of
spheres. The appropriate estimate for the effective wavenum-
ber is the Lloyd-Berry formula.6,7 The basic scattering prob-
lems for one sphere can be solved by standard methods. For
one elastic sphere in a fluid, see Faran’s paper.8 For one
movable rigid sphere in a fluid, see the paper by Hickling
and Wang.9

II. REVIEW

Consider acoustic scattering in two dimensions. In the
exterior, there is a homogeneous compressible fluid with
density �. The scatterers are homogeneous with density �0.
Scattering by random configurations of scatterers is of inter-
est.

The main focus of this paper is on formulas for the
effective density of the random medium, �eff. There are many
such formulas. The simplest is the static estimate,

�eff
st = �1 − ��� + ��0 = � + ��, where � = �0 − � �2�

is the density difference and � is the area fraction occupied
by the cylinders. In three dimensions �many identical spheri-
cal scatterers�, � is the volume fraction occupied by the
spheres. Although 0���1, � is usually regarded as being
small.

Ament1 obtained another estimate in 1953, incorporating
dynamic and viscous effects. In the absence of viscosity, his
estimate, �eff

A , becomes �see Eq. �9� in Ref. 1 or Eq. �1.5� in
Ref. 10�

�eff
A = �eff

st −
2�2��1 − ��

2��1 − �� + 3�
. �3�

This formula is for three-dimensional problems. Substituting
for �eff

st and �, Eq. �3� reduces �exactly� to

�eff
A

�
=

1 − �Q3

1 + 2�Q3
with Q3 =

� − �0

� + 2�0
; �4�

the subscript 3 denotes three dimensions. Also, if Eq. �4� is
approximated for small ��Q3�,

�eff
A � ��1 − 3�Q3 + 6�2Q3

2� . �5�

In 1961, Waterman and Truell �Eq. �3.35� in Ref. 11�
obtained the estimate

�eff
WT = ��1 − 3�Q3� , �6�

using a Foldy-type method, including effects of multiple
scattering. Thus, they obtained the linear term in Eq. �5� �but
did not cite Ament’s paper1�. Later, Fikioris and Waterman
�Eq. �4.15� in Ref. 12� obtained precisely Eq. �4�.

In 1974, Kuster and Toksöz �Eq. �25� in Ref. 13� used a
different argument in which multiple scattering was ignored.
Their estimate, �eff

KT, is defined by

�eff
KT − �

� + 2�eff
KT = �

�0 − �

� + 2�0
, �7�

which gives �eff
KT=�eff

A , exactly, as they noted. Kuster and
Toksöz considered elastic spheres in a fluid, and they “em-

phasized that ��eff
KT� is an effective inertial density” �see p.

593 of Ref. 13�.
Berryman �Eq. �32� of Ref. 14� also considered elastic

spheres in a compressible fluid. He used a self-consistent
method and he ignored multiple scattering. His estimate, �eff

B ,
is given by

1

3�eff
B =

1 − �

�eff
B + 2�

+
�

�eff
B + 2�0

.

This equation can be rewritten as

�eff
B − �

3�eff
B = �

�0 − �

�eff
B + 2�0

, �8�

which may be compared with Eq. �7�. Equation �8� is a qua-
dratic equation for �eff

B . For small �, it gives

�eff
B = ��1 − 3�Q3 + 6�2Q3

2 3�0

� + 2�0
� ,

which differs from Eq. �5� in the �2 term.
More recently, Sheng and his colleagues2,15,16 have

given a new derivation of the two-dimensional version of Eq.
�7�, which is

�eff − �

�eff + �
= �

�0 − �

�0 + �
. �9�

They derive Eq. �9� by starting from a consideration of
waves in a periodic square arrangement of cylinders. They
also mistakenly refer to Eqs. �7� and �9� as defining the “Ber-
ryman effective mass density:” Berryman’s formula is differ-
ent. The same mis-attribution of Eq. �9� has also been made
by Torrent and Sánchez-Dehesa;17 these authors have also
given a generalization of Eq. �9� covering non-random dis-
tributions of cylinders.

Solving Eq. �9� gives

�eff

�
=

1 − �Q2

1 + �Q2
with Q2 =

� − �0

� + �0
. �10�

This can be seen as the two-dimensional version of Ament’s
formula, Eq. �4�. For small ��Q2�, Eq. �10� gives

�eff 	 ��1 − 2�Q2 + 2�2Q2
2� . �11�

This formula defines what is called the small-� Ament esti-

mate below.

III. SCATTERING BY ONE CYLINDER

For one circular scatterer, the exact solution can be con-
structed by separation of variables. Thus, consider one circle
of radius a, centered at the origin. Then ��2+k2�u=0 for r

�a and ��2+k0
2�u0=0 for r�a. The interface conditions are

u = u0 and
1

�

�u

�r
=

1

�0

�u0

�r
on r = a . �12�

These are appropriate for a fluid cylinder surrounded by a
different fluid; u is the pressure. Outside the cylinder, u

=uin+usc where uin=eikx and usc satisfies the Sommerfeld ra-
diation condition. Then3
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uin�r,�� = 

n=−�

�

inJn�kr�ein�, �13�

usc�r,�� = 

n=−�

�

AnZnHn�kr�ein�,

u0�r,�� = 

n=−�

�

BnJn�k0r�ein�, �14�

where Jn is a Bessel function, Hn=H
n

�1� is a Hankel function
and

Zn =
��0/��Jn��ka�Jn�k0a� − �k0/k�Jn��k0a�Jn�ka�

��0/��Hn��ka�Jn�k0a� − �k0/k�Jn��k0a�Hn�ka�
. �15�

Also, Zn=Z−n. The interface conditions, Eq. �12�, yield equa-
tions for An and Bn; in particular, An=−in. Note that, from
Eq. �14�, AnZn could have been replaced by a single quantity.
However, Zn is retained for two reasons. First, it was used in
Ref. 3. Second, Zn characterizes scattering by a single cylin-
der, for any incident field, and so it arises naturally when
scattering by many identical cylinders is considered.

The far-field pattern, f���, is defined by

usc 	 �2/��kr�f���exp�ikr − i�/4� as r → � .

Hence, Eq. �14� gives

f��� = − 

n=−�

�

Znein�. �16�

A. Behavior of Zn for small ka

The behavior of Zn �defined by Eq. �15�� is studied for
small ka, in various situations, starting with n=0:

Z0 =
��0/��J1�ka�J0�k0a� − �k0/k�J1�k0a�J0�ka�

��0/��H1�ka�J0�k0a� − �k0/k�J1�k0a�H0�ka�
.

For �0=0,

Z0 =
J0�ka�
H0�ka�

�
1

H0�ka�
; �17�

this corresponds to a soft scatterer �Dirichlet condition�.
For �0�0, one uses J1�x�	x /2 and H1�x�	2 / ��ix� as

x→0, giving

Z0 	
�i

4
�ka�2�1 −

�k0
2

�0k2� . �18�

For n�0, one can use the approximations

Jn�x� 	
xn

2nn!
, Jn��x� 	

xn−1

2n�n − 1�!
,

Hn�x� 	
2n�n − 1�!

�ixn
, Hn��x� 	 −

2nn!

�ixn+1 ,

as x→0. Then

Zn 	
�i�ka/2�2n

n!�n − 1�!
� − �0

� + �0
, �19�

with no dependence on k0 at leading order. In particular,
when �0=0, comparison with Eq. �17� shows that Z0 is domi-
nant in this case.

When �0�0 and �0��, Z0 and Z1 are both O��ka�2� as
ka→0: in general, small cylinders behave as a combination
of a source and a dipole. This is the generic situation. It
includes sound-hard scatterers �Neumann condition� by set-
ting �=0.

Exceptionally, when �=�0�0, one must use

Jn�x� 	
xn

2nn!
�1 −

�x/2�2

n + 1
� ,

Jn��x� 	
xn−1

2n�n − 1�!
�1 −

�n + 2�x2

4n�n + 1�
� ,

as x→0, giving

Zn 	
�i

2

�ka/2�2n+2

n!�n + 1�!
�1 −

k0
2

k2� .

Comparison with Eq. �18� shows that Z0 is dominant when
the density is constant, �=�0. �These results are consistent
with a paper by Exner and Šeba,18 who consider only the two
special cases �=�0 and �0=0.�

As is well known, the sound-soft case, �0=0, is atypical:
the scattering is isotropic. This suggests that care is needed
with the commutativity of the two limits �0→0 and ka→0.
For investigations in this direction, see Refs. 19 and 20.

IV. SCATTERING BY RANDOM ARRANGEMENTS OF

CIRCULAR CYLINDERS

For scattering by random arrangements of scatterers, one
can use Foldy-type theories.21 If n0 is the number of scatter-
ers per unit area, the effective wavenumber, K, is given by

K2 = k2 − 4in0f�0� . �20�

This formula is linear in n0 and it is derived using Foldy’s
“closure assumption.”

Linton and Martin3 obtained a second-order correction
to Eq. �20�:

K2 = k2 − 4in0f�0� +
8n0

2

�k2�
0

�

cot��/2�
d

d�
�f����2d� . �21�

This formula is derived using the Lax QCA as the closure
assumption. It was derived in the limit b→0, where b is the
“hole radius” in the hole correction used to ensure that
circles do not overlap during the averaging process. There-
fore, as b	2a, it is natural to approximate the far-field pat-
tern f��� assuming that ka is small. Assuming that �0�0 and
�0��, Z0 and Z1=Z−1 are retained �see Sec. III A�, giving

f��� � − Z0 − 2Z1 cos � �22�

with Z0 given by Eq. �18�,
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Z1 =
�i

4
�ka�2Q2 and Q2 =

� − �0

� + �0
. �23�

As �f����2=Z0
2+4Z0Z1 cos �+4Z1

2 cos2 �, the integral term
in Eq. �21� is

�
0

�

cot��/2�
d

d�
�f����2d�

= − 8Z1�
0

�

cos2��/2��Z0 + 2Z1 cos ��d�

− 16Z1�
0

�/2

�Z0 − 2Z1 + 4Z1 cos2 
�cos2 
d


= − 4�Z1�Z0 − 2Z1� − 12�Z1
2

= − 4�Z1�Z0 + Z1� .

Hence, Eq. �21� becomes

K2 = k2 + 4in0�Z0 + 2Z1� − 32n0
2k−2Z1�Z0 + Z1� . �24�

This is the formula that is used below to estimate the effec-
tive mass density.

It is worth recalling the estimate for K obtained by Wa-
terman and Truell,11

KWT, given by

KWT
2 = k2 − 4in0f�0� + �2n0/k�2�f����2 − �f�0��2� . �25�

It is known that the term in n0
2 is incorrect6 but, nevertheless,

Eq. �25� has been used to estimate effective properties. Using
Eq. �22� gives

KWT
2 = k2 − 4in0�Z0 + 2Z1� − 16n0

2k−2Z0Z1. �26�

Evidently, Eqs. �24� and �26� agree when 2�Z0+Z1�=Z0, that
is, when f�0�=0 according to the approximation Eq. �22�.

V. EFFECTIVE MASS DENSITY IN FLUID-FLUID

SYSTEMS

Define the area fraction occupied by the cylinders, �:

� = n0�a2.

Then, as already noted, a �static� effective density could be
defined by Eq. �2�. However, other definitions are possible,
especially in a dynamic context, and it is these that are of
interest here. Expressions for �eff will be extracted from the
small-ka approximations to the effective wavenumber, K,
and these will be compared with Eq. �11�. Notice that, in this
section, sound waves in a compressible fluid are considered.
�SH-waves in an elastic composite will be considered in Sec.
VI� Thus, k=� /c and c2=M /�, where � is the frequency, c

is the wavespeed and M is the bulk modulus. Then, using
obvious notation,

K2 = �2�eff/Meff, k2 = �2�/M, k0
2 = �2�0/M0,

and, from Eq. �18�, Z0= ��i /4��ka�2�1−M /M0�. Evidently,
Z0 involves the bulk moduli only whereas Z1 �defined by Eq.
�23�� involves the densities only.

Start with the Foldy estimate,

�K/k�2 = 1 + 4in0k−2�Z0 + 2Z1� + O�n0
2� = �1 + 4in0k−2Z0�

��1 + 8in0k−2Z1� + O�n0
2� . �27�

As �K /k�2= ��eff /���M /Meff�, this suggests that

1

Meff
=

1

M
�1 + 4in0k−2Z0� =

1 − �

M
+

�

M0
�28�

and

�eff = ��1 + 8in0k−2Z1� = ��1 − 2�Q2� . �29�

Thus, Eq. �28� gives Meff as the harmonic average of M and
M0, whereas Eq. �29� agrees with the small-� Ament esti-
mate, Eq. �11�, to first order in �.

It is noteworthy that Waterman and Truell11 used the
same argument �but in three dimensions� and obtained the
estimate Eq. �6�. They regarded their estimate as “not so
readily interpretable” as Eq. �28�, and went on to consider
the limit �0→�.

Next, consider the Linton-Martin small-ka estimate for
K, Eq. �24�. It gives

�K/k�2 = �1 + 4in0k−2Z0��1 + 8in0k−2Z1 − 32n0
2k−4Z1

2� ,

�30�

correct to order n0
2. Note that the first factor on the right-hand

side is exactly the same as in Eq. �27�, so that the estimate
for Meff, Eq. �28�, is unchanged. The second factor gives a
refined estimate for �eff; it agrees precisely with the small-�
Ament estimate, Eq. �11�.

Aristégui and Angel �Eq. �21� in Ref. 22� used the
Waterman-Truell estimate, Eq. �25�, to obtain an estimate,
�eff

AA, for the effective density,

�eff
AA

/� = 1 − 2in0k−2�f�0� − f���� . �31�

It is noted that Eq. �31� is linear in �=n0�a2; it gives �eff
AA

	1−2�Q2 as ka→0. Aristégui and Angel �Eq. �18� in Ref.
23� have obtained a similar estimate for SH waves in a ran-
dom composite: this problem is discussed in Sec. VI.

One of the advantages of using formulas such as those
above, involving the far-field pattern f , is that they often
transpire to be useful well beyond the regime of small ka

under which they were derived. However they are, of course,
limited to the regime of small �. An alternative approach in
classical multiple scattering methods is to use the assumption
of small ka earlier on in the analysis and retain the leading
order terms in ka: classically this was done for two-
dimensional elasticity problems by Bose and Mal.24,25 This
approach gives an effective wavenumber which is physically
viable �meaning that predictions of effective properties re-
side inside strict variational bounds� for all �. Using such an
approach leads to Meff as in Eq. �28� and �eff as in Eq. �10�.

VI. SH WAVES IN A SOLID-SOLID COMPOSITE

Here, anti-plane �SH� motions in a solid composite are
considered. The problem of scattering by one cylinder is al-
most the same as for the fluid-fluid problem discussed in Sec.
III. Thus, ��2+k2�u=0 for r�a and ��2+k0

2�u0=0 for r�a,
where u and u0 are the out-of-plane displacement compo-
nents. The shear wavenumbers, k and k0, are given by
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k2 = �2�/ and k0
2 = �2�0/0,

where  and 0 are the shear moduli. The interface condi-
tions differ from Eq. �12�; they are

u = u0 and 
�u

�r
= 0

�u0

�r
on r = a . �32�

Outside the cylinder, u=uin+usc �as before� where uin=eikx

and usc satisfies the Sommerfeld radiation condition.
Comparing Eq. �32� with Eq. �12� shows that all the

results of Sec. III can be reused: replace �0 /� by  /0

therein. Thus, for small ka, Eqs. �18� and �23� give

Z0 	 ��i/4��ka�2�1 − �0/�� and Z1 	 ��i/4��ka�2Q

with Q= �0−� / �0+�, in agreement with Bose and Mal
�Eq. �16� in Ref. 24�. Then, proceeding as in Sec. V, one
defines an effective shear modulus eff by K2=�2�eff /eff.
Working correct to order n0

2, the Linton-Martin estimate, Eq.
�30�, gives

�eff = ��1 + 4in0k−2Z0� = �1 − ��� + ��0 �33�

and

/eff = 1 + 8in0k−2Z1 − 32n0
2k−4Z1

2 = 1 − 2�Q + 2�2Q2.

�34�

Thus, one obtains the static estimate for �eff, Eq. �2�, whereas
Eq. �34� gives

eff/ 	 1 + 2�Q + 2�2Q2

which agrees with the formula of Bose and Mal �Eq. �39� in
Ref. 24�, namely,

eff


=

1 + �Q

1 − �Q
, �35�

correct to second order in �Q. The expression Eq. �35� was
derived in Ref. 24 using the assumption of ka�1 from the
outset, as described at the end of Sec. V. Also, it is noted that
Eq. �35� is the well-known static result of Hashin and Rosen
�Eq. �71� in Ref. 26�. Yang and Mal27 have noted that it
cannot be obtained from the Waterman-Truell estimate, KWT,
defined by Eq. �25�.

The static effective density in Eq. �33� is recovered by
employing asymptotic homogenization for elasticity prob-
lems, e.g., the SH problem solved by Parnell and
Abrahams.28 In this case, because the arrangement of scat-
terers was periodic, the effective shear modulus was aniso-
tropic in general. Reciprocity between the SH and acoustics
problems, as described above, therefore gives a static effec-
tive bulk modulus and an anisotropic effective density in the
case of acoustics. This latter point is particularly pertinent to
note, considering recent comments regarding possible appli-
cations in metamaterials.29 The static effective density is also
recovered by application of a recently proposed scheme of
homogenization applied to the SH problem: the so-called
integral equation method proposed by Parnell and
Abrahams.30 This method also recovers Eq. �35� at leading
order, with successive lattice corrections for materials where
scatterers are positioned on a periodic lattice. Finally, as

should be expected, for the in-plane two-dimensional elastic-
ity problem �the so-called P/SV problem� the static effective
density �eff, as in Eq. �33�, is recovered.25,31

VII. FLUID-SOLID PROBLEM

Consider an elastic cylinder in a compressible inviscid
fluid. The transmission conditions at r=a are

1

�

�u

�r
= �2

r̂ · u0 and − ur̂ = T0u0,

where � is the fluid density, r̂ is a unit vector in the radial
direction, u0 is the elastic displacement in the cylinder and
T0 is the traction operator. With u0= �ur

0 ,u�
0�, these conditions

become

1

�

�u

�r
= �2ur

0, �rr
0 = − u and �r�

0 = 0 on r = a .

The problem of plane-wave scattering by an elastic cyl-
inder in a fluid can be solved by standard methods.8 For a
convenient resolution, see p. 46 in Ref. 32, where the total
pressure field in the fluid is given by

u = 

n=0

�

�ninJn�kr� − ZnHn�kr��cos n� , �36�

where �0=1, �n=2 for n	1, Zn=bn /Dn,

bn = �
��/�0�xT

2Jn�x� a12
n a13

n

xJn��x� a22
n a23

n

0 a32
n a33

n � ,

Dn = �
��/�0�xT

2Hn�x� a12
n a13

n

xHn��x� a22
n a23

n

0 a32
n a33

n � ,

a12
n = − 2xLJn��xL� + �2n2 − xT

2�Jn�xL� ,

a22
n = − xLJn��xL�, a32

n = 2n�xLJn��xL� − Jn�xL�� ,

a13
n = − 2n�xTJn��xT� − Jn�xT�� ,

a23
n = nJn�xT�, a33

n = 2xTJn��xT� − �2n2 − xT
2�Jn�xT� ,

x=ka, xT=kTa, xL=kLa, kT is the shear wavenumber, kL is
the compressional wave-number and �0 is the solid density.
Note that Zn=Z−n, so that Eq. �16� remains valid.

For n	1, all aij
n are O�xn� as x→0. Hence, a rough

calculation gives

Zn 	
Jn��x�

Hn��x�
	 −

�i�x/2�2n

n!�n − 1�!
.

This is a correct estimate for n	2 but there is some cancel-
lation for n=1. Thus,

�a22
1 a23

1

a32
1 a33

1 � 	
1

8
xLxT�xL

2 − xT
2�

and

J. Acoust. Soc. Am., Vol. 128, No. 2, August 2010 Martin et al.: Estimating effective density of random composites 575

Downloaded 01 Nov 2010 to 138.67.22.171. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



�a12
1 a13

1

a32
1 a33

1 � 	
1

8
xLxT

3�xL
2 − xT

2� ,

which are both smaller than first expected. Hence, a more
careful calculation gives

Z1 	

�xT
2x

2�0
�a22

1 a23
1

a32
1 a33

1 � −
x

2
�a12

1 a13
1

a32
1 a33

1 �
2�xT

2

�0�ix
�a22

1 a23
1

a32
1 a33

1 � +
2

�ix
�a12

1 a13
1

a32
1 a33

1 �
	

�i

4
x2Q2,

exactly as in Eq. �23�.
For n=0, a13

0 =a23
0 =a32

0 =0, and so Z0= b̃0 / D̃0, where

b̃0 = ���/�0�xT
2J0 a12

0

− xJ1�x� a22
0 �, D̃0 = ���/�0�xT

2H0 a12
0

− xH1�x� a22
0 � ,

a12
0 =2xLJ1�xL�−xT

2J0�xL� and a22
0 =xLJ1�xL�. Then, a12

0 	xL
2

−xT
2 , a22

0 	xL
2

/2,

b̃0 	 ���/�0�xT
2 xL

2 − xT
2

− x2
/2 xL

2
/2
� ,

D̃0 	 ���/�0�xT
2H0�x� xL

2 − xT
2

2i/� xL
2
/2
� 	

2

�i
�xL

2 − xT
2� ,

Z0 	
�i

4
x2�1 +

��/�0�xT
2xL

2

x2�xL
2 − xT

2�
� .

To simplify, x2= �ka�2= ��a�2� /M, xT
2 = �kTa�2= ��a�2�0 /0

and xL
2 = �kLa�2= ��a�2�0 / ��0+20�. Hence

��/�0�xT
2xL

2

x2�xL
2 − xT

2�
= −

M

�0 + 0
.

In summary, the dominant terms are Z0 and Z1=Z−1,
where

Z0 =
�i

4
x2�1 −

M

�0 + 0
� and Z1 =

�i

4
x2Q2,

with Q2 given by Eq. �23�. Using these estimates in Eq. �30�
gives

1

Meff
=

1 − �

M
+

�

�0 + 0
�37�

for Meff and the small-� Ament estimate, Eq. �11�, for �eff.
Notice that, in Eq. �37�, the quantity �0+0 is the plane-
strain bulk modulus for the solid.

VIII. MOVABLE RIGID CYLINDERS IN A FLUID

Consider a rigid cylinder in a compressible inviscid
fluid. The cylinder is free to move, so that its equation of
motion is needed. The corresponding scattering problem has
been solved by Zhuk.33

As before, let u be the total pressure field in the fluid,
and suppose that it is expanded as Eq. �36�. The resultant
force per unit length on the cylinder due to the incident wave
uin=eikx is in the x-direction, and it is given by

Fx = − �
0

2�

u�a,��cos � ad� = − 2�iaJ1�ka�

− Z1H1�ka�� .

The cylinder oscillates in the x-direction with velocity U.
Thus, Newton’s law gives Fx=−i�U��a2�0�, and so

U = 2��a�0�−1J1�ka� − Z1H1�ka�� .

As the fluid velocity is �i���−1grad u,

1

i��

�u

�r
= U cos � on r = a .

Applying this boundary condition, using Eq. �36�, deter-
mines Zn. For n�1, Zn=Jn��ka� /Hn��ka�, which is the same as
would be obtained for a sound-hard cylinder; in particular
Z0	��i /4��ka�2 as ka→0. For n=1,

Z1 =
��0/��kaJ1��ka� − J1�ka�

��0/��kaH1��ka� − H1�ka�
.

For small ka, one finds that Z1 behaves precisely as in Eq.
�23�, implying that the effective properties for movable rigid
cylinders in a fluid are exactly the same as for the fluid-fluid
problem discussed in Sec. V.

IX. CONCLUSION

According to Ament,1 the dynamic �low-frequency
limit� effective mass density of a random composite, �eff, is
given by Eq. �1�. This formula gives �eff→� as �→0 and
�eff→�0 as �→1, both of which are physically correct lim-
its. In this paper, the small-� behavior has been explored in
more detail, retaining terms correct to second order in �. It
was found that, to this order, Ament’s formula agrees pre-
cisely with the predictions of an independent multiple-
scattering theory,3 for several �two-dimensional� physical
systems. These systems have in common that the exterior
medium ��=0� is a compressible fluid. For SH waves in a
solid, however, the familiar static estimate, Eq. �2�, was re-
covered.

The detailed agreement between the two theories is
gratifying, given that the precise conditions for validity of
the Ament formula or the Linton–Martin multiple-scattering
formalism are unknown, at present. However, the same de-
gree of agreement would not have been found if Ament’s
formula had been replaced with Berryman’s formula, Eq. �8�,
for example, or if the Linton–Martin theory had been re-
placed with the Waterman–Truell theory,11 for example. Con-
sequently, analogous three-dimensional investigations are
warranted.
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