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a b s t r a c t

An inhomogeneous layer is sandwiched between homogeneous half-spaces. The layer contains a defect.

There are incident waves and the problem is to calculate the scattered waves. Five recent publications are

criticised, mainly because of their misuse of the method of images.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The method of images is a classical technique whereby the ef-

fects of a boundary are found by introducing certain image solu-

tions (Jackson, 1975, Section 2.1). The simplest applications

concern Laplace’s equation,

@
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@x2
þ
@
2u

@y2
¼ 0;

in the region x > 0 with a rigid wall at x = 0, so that @u/@x = 0 on the

wall. For example, for a source at (x,y) = (x0,0), with x0 > 0, a solu-

tion is

uðx; yÞ ¼ Uðx; yÞ þ Uð�x; yÞ with Uðx; yÞ

¼ log ðx� x0Þ
2 þ y2

n o

; ð1Þ

the term U(x,y) is the solution in the absence of the wall and the

term U(�x,y) is the (mirror) image. In generalizing the method to

other partial differential equations (PDEs) (but the same boundary

condition), it should be noted that the image term, U(�x,y), must

also satisfy the same PDE as U(x,y), for x > 0. Overlooking this con-

dition implies that several published treatments of scattering by de-

fects in graded materials are incorrect. Undoubtedly, the associated

physical problems are of interest, so it seems worthwhile to discuss

how they can be solved correctly: this is the main purpose of this

short note.

The first paper to be criticised is by Fang (2008) in this journal.

It was followed by three more with co-authors (Fang et al., 2009,

2010b; Yang et al., 2010). All four papers concern the scattering

of waves by circular defects in an inhomogeneous layer. The layer

is bonded to one or two homogeneous half-spaces, and a plane

wave is normally incident on the layer from one of the half-spaces.

The materials themselves are piezoelectric (Fang, 2008; Fang et al.,

2009, 2010b) or purely elastic (Yang et al., 2010). (Most of our dis-

cussion will focus on the slightly simpler elastic problem, with

antiplane motions (Yang et al., 2010).) Within the layer, the mate-

rial properties are assumed to vary exponentially. It is claimed that

the scattering problems have been solved exactly: we show below

that this is false. The problems themselves can be solved by exact

methods, but the solutions would be extremely complicated: it is

unclear whether or not they would be valuable. In the process of

discussing the four cited papers, we also extract a sensible physical

problem and we outline how it could be treated.

2. Formulation and critique

2.1. Formulating a problem

To start the discussion, we fix labels using Cartesian coordinates

(x,y): the ‘‘left half-space’’ occupies x < �h1 whereas the ‘‘right half-

space’’ occupies x > h2, with h1 > 0 and h2 > 0; see Fig. 1 for a sketch

of the geometry.

According to Fig. 1 in each of the four cited papers, the incident

wave comes from the left half-space. Two of the papers (Fang,

2008; Fang et al., 2010b) state that the layer is bonded to one

homogeneous ‘‘material’’, whereas the other two (Fang et al.,

2009; Yang et al., 2010) state that the layer is bonded to homoge-

neous ‘‘materials’’. All include the homogeneous right half-space.

The scattering problem is easier if the left half-space is absent be-

cause then the continuity conditions across the left (welded) inter-

face at x = �h1 are replaced by a boundary condition at x = �h1.
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However, if the left half-space is absent, we cannot then have a

wave incident from the left!

2.2. Simple images

All four papers describe the line x = �h1 as a free surface, and

two of them (Fang et al., 2010b; Yang et al., 2010) state the bound-

ary condition there. This condition suggests the introduction of

images. Explicitly, an appeal is made to the following fact: the

combination

uðx; yÞ ¼ Uðxþ h1; yÞ þ Uð�x� h1; yÞ

satisfies
@u

@x
¼ 0 on x ¼ �h1; ð2Þ

for any smooth function U. (Compare with Eq. (1).) However, to use

this fact, we must also ensure that both U(x + h1,y) and U(�x � h1,y)

satisfy the governing PDE in the region of interest, which in our case

is x > �h1. We shall see that the nature of the inhomogeneity in the

layer (see Eq. (3) below) means that, in general, if u(x,y) is a solu-

tion, then u(�x,y) is not a solution (see Eq. (5) below): simple

images cannot be used, not even at the free surface of a graded

material.

2.3. Exponential grading

At this stage, it appears that we have discarded the left-half

space. However, all four papers proceed as follows. Suppose that

the shear modulus, l(x), and the density, q(x), vary exponentially

in the layer,

lðxÞ ¼ l0e
2bx and qðxÞ ¼ q0e

2bx; ð3Þ

where l0, q0 and b are constants. (This is the formulation in Yang

et al. (2010); the other three papers consider piezoelectic materials,

so there are then four material properties to be modelled as expo-

nentials.) Suppose that the right half-space has shear modulus l2

and density q2. Enforcing continuity of the material properties

across the right interface gives

l2 ¼ l0e
2bh2 and q2 ¼ q0e

2bh2 : ð4Þ

Now, let us define l1 = l(�h1) and q1 = q(�h1). Then, a short calcu-

lation gives 2b(h1 + h2) = log(l2/l1) = log(q2/q1). All four papers re-

gard the second equality as implying an assumption on the material

properties. This would be correct if l1 and q1 represented specified

properties of the left half-space and continuity was being enforced

across x = �h1 (or if one wanted to specify the values of both l and

q at the boundary, x = �h1).

So, now we have discarded the left half-space, and we use Eqs.

(3) and (4) within the layer, with continuity across the welded

interface at x = h2 and a boundary condition at x = �h1.

2.4. An incident field

To obtain a meaningful scattering problem, we define a sensible

incident field. For a plane wave coming from the right, we can

write (the antiplane component of the displacement as)

uðx; yÞ ¼ e�ikðx�h2Þ þReikðx�h2Þ; x > h2;

where k2 = q2x
2/l2 = q0x

2/l0, the time-dependence is e�ixt and R

is the reflection coefficient: energy conservation implies that

jRj ¼ 1. Within the layer,

@
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þ
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þ 2b
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@x
þ k

2
u ¼ 0; ð5Þ

solutions have the form u(x,y) = e�bxw(x,y) where w solves a two-

dimensional Helmholtz equation, (r2 + j2)w = 0, j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2
� b2

q

and it is assumed that j is real and positive. Thus, we write

uðx; yÞ ¼ A ðbþ ijÞe�ðb�ijÞðxþh1Þ � ðb� ijÞe�ðbþijÞðxþh1Þ
� �

;

� h1 < x < h2;

this satisfies @u/@x = 0 at x = �h1 for any choice of the constant A.

Then, we enforce continuity of u and @u/@x across x = h2 so as to

obtain

R ¼
ðib� kÞ sinjhþ ij cosjh
ðibþ kÞ sinjhþ ij cosjh

and

A ¼
ebh

ðibþ kÞ sinjhþ ij cosjh
;

where h = h1 + h2 is the thickness of the layer. This defines a sensible

incident field, one that can be scattered by any defects that are

introduced into the bimaterial structure.

It is worth noting that the solution we have constructed is not of

the ‘‘image form’’, given in Eq. (2). By contrast, in the four cited pa-

pers, the authors take their incident field as

e�ðb�ijÞðxþh1Þ þ eðb�ijÞðxþh1Þ; ð6Þ

this is of the form Eq. (2) but the second term does not satisfy the

governing PDE, Eq. (5). The authors also use simple mirror images

to represent the field scattered by the circular defect in the presence

of the free surface; again, this is erroneous.

2.5. Two special cases

We are going to consider scattering by a circular defect within

the inhomogeneous layer. However, let us begin by examining

two special cases. First, suppose we let h2?1, giving a defect bur-

ied in a single inhomogeneous half-space with a free surface at

x = �h1. This problem was considered by Fang et al. (2010a). How-

ever, their use of images is erroneous; in particular, they take Eq.

(6) for their incident field.

For a second special case, suppose instead that we let h1?1,

giving two half-spaces with an interface at x = h2: the defect is

within an inhomogeneous half-space. This problem has been con-

sidered in many earlier papers by Fang and his colleagues: seven of

these papers are cited by Martin (2009). The emphasis is on using

images to account for the presence of the interface at x = h2. It was

pointed out by Martin (2009) that simple images are inadequate

(the interface does not behave like a mirror), and it was shown

how to construct a proper image system: this system is compli-

cated, involving various contour integrals, but it could be used to

actually construct solutions, if desired.

left half-space right half-space

x = −h 1 x = h2

x

y

Fig. 1. The scattering problem. There is a circular cavity in an inhomogeneous layer,

�h1 < x < h2. The right half-space is homogeneous, and the material properties are

continuous across the interface at x = h2. Initially, the left half-space is also

homogeneous (with continuity conditions across x = �h1). Later, it is discarded and

then boundary conditions are imposed at x = �h1, with a plane wave incident from

the right.
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2.6. The four cited papers

Finally, let us return to the problem of an inhomogeneous layer

bonded to a homogeneous (right) half-space. Surprisingly, the four

cited papers hardly mention any effects of the interface. There is

one explicit statement on p. 235 of Yang et al. (2010): ‘‘At x = h2,

the structure is continuous, no boundary condition exists.’’ Thus,

although the earlier papers (discussed by Martin (2009)) tried to

account for the interface, the later papers simply ignore it. We note

that, although the material properties are continuous across the

interface, their derivatives are not, and this discontinuity cannot

be ignored.

3. Discussion

One could develop the approach described in Martin (2009), so

as to construct special solutions that are singular at a point in the

layer and that satisfy the boundary condition at x = �h1 and the

interface conditions at x = h2. These multipole solutions would be

more complicated than the multipole solutions given in Martin

(2009) (because of the additional boundary condition to be satis-

fied). It is unclear if the effort would be worthwhile, mainly be-

cause the underlying physical model is rather simplified.

While this paper was being reviewed, another erroneous paper

(Fang et al., 2011) appeared.
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