Comment on "Elastic wave propagation in a solid layer with laser-induced point defects" [J. Appl. Phys. 110, 064906 (2011)]

P. A. Martin^{a)}

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401-1887, USA

(Received 25 October 2011; accepted 20 June 2012; published online 5 September 2012)

Mirzade [J. Appl. Phys. **110**, 064906 (2011)] developed a linear theory for the propagation of waves in an elastic solid with atomic point defects, and then sought time-harmonic solutions. It is shown that Mirzade's analysis is incomplete: substantial corrections are required. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747830]

The title problem concerns waves in an isotropic solid in which there are atomic point defects. The density of the defects is $n(\mathbf{r}, t)$, where $\mathbf{r} = (x_1, x_2, x_3)$ is a point in the solid. (Although Ref. 1 starts with two kinds of defects, most of the analysis is restricted to one type.) The constitutive relation between the stresses σ_{ij} , n, and the displacement components, $u_i(\mathbf{r}, t)$ (i = 1, 2, 3), is

$$\sigma_{ij} = \lambda \delta_{ij} \Delta + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \vartheta_{\mathsf{d}} n \delta_{ij},\tag{1}$$

where λ and μ are Lamé moduli, $\Delta = \partial u_i / \partial x_i$ is the dilatation (with the usual summation convention), and the constant ϑ_d controls the strain-defect interaction. We note, in passing, that Eq. (1) has the same structure as the constitutive relation for thermoelasticity, with *n* playing the role of temperature.

The governing equations of motion are

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_j}, \quad i = 1, 2, 3, \tag{2}$$

$$\frac{\partial n}{\partial t} = -\frac{\partial Q_i}{\partial x_i} + g - \gamma n.$$
(3)

Here, ρ is the mass density, and g and γ are nonlinear functions of the dilatation,

$$g = \mathcal{G} \exp(\vartheta_{\rm g} \Delta/k_T), \quad \gamma = \tau^{-1} \exp(\vartheta_{\rm m} \Delta/k_T), \quad (4)$$

where \mathcal{G} , ϑ_g , $k_T = k_B T$, τ , and ϑ_m are constants. (In another paper, Mirzade² has considered a simpler problem, with $g = \mathcal{G}$ and $\gamma = \tau^{-1}$.) The defect flux has components Q_i given by³

$$Q_i = -D\frac{\partial n}{\partial x_i} + v_i n, \tag{5}$$

where *D* is a diffusion constant and the components of the defect-drift velocity are (see above Eq. (3) in Ref. 1 or above Eq. (4) in Ref. 2)

$$v_i = \frac{D}{k_T} F_i = -\frac{D}{k_T} \frac{\partial U_{\text{int}}}{\partial x_i} = \frac{D \vartheta_{\text{d}}}{k_T} \frac{\partial \Delta}{\partial x_i}.$$

0021-8979/2012/112(5)/056101/2/\$30.00

Thus,

$$\frac{\partial Q_i}{\partial x_i} = -D\nabla^2 n + \frac{D\vartheta_{\rm d}}{k_T} \frac{\partial}{\partial x_i} \left(n \frac{\partial \Delta}{\partial x_i} \right). \tag{6}$$

To make progress, Mirzade linearizes Eq. (3). Thus, assume small strains and put $n = n_0(x, y, z) + n_1(x, y, z, t)$ with $|n_1/n_0| \ll 1$. For Eq. (2) to be satisfied at leading order, we must have $n_0 = \text{constant}$. Then, from Eq. (3) at leading order, we obtain $n_0 = \mathcal{G}\tau$.

At next order, Eqs. (1) and (2) give

$$\rho \frac{\partial^2 u_i}{\partial t^2} = (\lambda + \mu) \frac{\partial \Delta}{\partial x_i} + \mu \nabla^2 u_i - \vartheta_{\rm d} \frac{\partial n_1}{\partial x_i}, \quad i = 1, 2, 3.$$
(7)

From Eqs. (3), (4), and (6), we obtain

$$\frac{\partial n_1}{\partial t} = g_{\rm e}\Delta - \tilde{g}_{\rm d}\nabla^2\Delta + D\nabla^2 n_1 - \tau^{-1}n_1, \qquad (8)$$

where $\tilde{g_d} = Dn_0\vartheta_d/k_T$ and $g_e = \mathcal{G}(\vartheta_g - \vartheta_m)/k_T$. Equation (8) should be compared with Eq. (9) in Ref. 1. Notationally, our g_e and $\tilde{g_d}$ are Mirzade's g and g_d , respectively. As g_e and $\tilde{g_d}$ have different dimensions, for later use, we define

$$g_{\rm d} = \mathcal{G}\vartheta_{\rm d}/k_T$$
 giving $\tilde{g}_{\rm d} = D\tau g_{\rm d}$. (9)

Using our notation, Mirzade's equation (9) has γ instead of the constant τ^{-1} ; see Eq. (4). For a consistent linearization, the approximation $\gamma \simeq \tau^{-1}$ should be used.

PLANE WAVES

Mirzade¹ considers waves in a layer, in a half-space, and in an unbounded space. Here, we focus on the simplest problem of determining plane waves in an unbounded space. Mirzade introduces various potentials; we bypass this step. Thus, we try $\boldsymbol{u} = \operatorname{Re} \{A\mathcal{E}\}$ and $n_1 = \operatorname{Re} \{\mathcal{N}\mathcal{E}\}$ with $\mathcal{E} = \exp \{i(\boldsymbol{K} \cdot \mathbf{r} - \omega t)\}$. The constant vectors \boldsymbol{A} and \boldsymbol{K} are allowed to be complex: they are *bivectors*.⁴ Also, \mathcal{N} is a complex constant. We have $\Delta = \operatorname{Re} \{i(\boldsymbol{A} \cdot \boldsymbol{K})\mathcal{E}\}$ and $\nabla^2 \mathcal{E} = -q^2 \mathcal{E}$, where

$$q^{2} = \mathbf{K} \cdot \mathbf{K} = K_{1}^{2} + K_{2}^{2} + K_{3}^{2}$$

= $\mathbf{K}^{+} \cdot \mathbf{K}^{+} - \mathbf{K}^{-} \cdot \mathbf{K}^{-} + 2i\mathbf{K}^{+} \cdot \mathbf{K}^{-}$

© 2012 American Institute of Physics

112, 056101-1

^{a)}Electronic mail: pamartin@mines.edu.

and we have written $\mathbf{K} = (K_1, K_2, K_3) = \mathbf{K}^+ + i\mathbf{K}^-$ (see p. 16 of Ref. 4). We have used the notation q^2 so that we can compare with Ref. 1, but we emphasise that q^2 is complex unless \mathbf{K} is real ($\mathbf{K} = \mathbf{K}^+$, $\mathbf{K}^- = \mathbf{0}$). Substitution in Eqs. (7) and (8) gives

$$-\rho\omega^{2}\boldsymbol{A} = -(\lambda + \mu)(\boldsymbol{A}\cdot\boldsymbol{K})\boldsymbol{K} - \mu q^{2}\boldsymbol{A} - i\vartheta_{d}\mathcal{N}\boldsymbol{K},$$

$$-i\omega\mathcal{N} = -Dq^{2}\mathcal{N} + i(g_{e} + \tilde{g_{d}}q^{2})(\boldsymbol{A}\cdot\boldsymbol{K}) - \tau^{-1}\mathcal{N}.$$

We seek non-trivial solutions of this system. Simplify the notation by putting $X = \mu q^2 - \rho \omega^2$, $L = \lambda + \mu$, $G = g_e + \tilde{g}_d q^2$, and $H = i\omega - \tau^{-1} - Dq^2$. Then, the system becomes

$$L(\mathbf{A} \cdot \mathbf{K})\mathbf{K} + X\mathbf{A} + i\vartheta_{\mathrm{d}}\mathcal{N}\mathbf{K} = \mathbf{0},$$

$$iG(\mathbf{A} \cdot \mathbf{K}) + H\mathcal{N} = 0.$$

Write this system in matrix form as $C\mathbf{x} = \mathbf{0}$ with $\mathbf{x}^T = (\mathcal{N}, A_1, A_2, A_3)$ and

$$C = \begin{pmatrix} H & iGK_1 & iGK_2 & iGK_3 \\ i\vartheta_{\rm d}K_1 & X + LK_1^2 & LK_1K_2 & LK_1K_3 \\ i\vartheta_{\rm d}K_2 & LK_1K_2 & X + LK_2^2 & LK_2K_3 \\ i\vartheta_{\rm d}K_3 & LK_1K_3 & LK_2K_3 & X + LK_3^2 \end{pmatrix}$$

Direct calculation gives

det
$$C = X^2 \Lambda$$
 with $\Lambda = H(X + Lq^2) + \vartheta_d Gq^2$.

Allowable solutions follow by setting detC = 0. Thus, $X^2 = 0$ or $\Lambda = 0$. The first of these gives $\omega^2 = c_T^2 q^2$, where $c_T^2 = \mu/\rho$ and c_T is the speed of transverse (shear) waves in an isotropic elastic solid: such waves propagate independently of any atomic point defects. This result was found by Mirzade; see Eq. (25) in Ref. 1.

The second option, $\Lambda = 0$, gives

$$[(\lambda + 2\mu)q^2 - \rho\omega^2](Dq^2 + \tau^{-1} - i\omega) - \vartheta_{\rm d}q^2(g_{\rm e} + \tilde{g}_{\rm d}q^2) = 0.$$
(10)

We compare this with Mirzade's equation (25b). Thus, introduce a length ℓ defined by $D\tau = \ell^2$ and let $c_{\rm L}^2 = (\lambda + 2\mu)/\rho$ so that $c_{\rm L}$ is the speed of longitudinal (compressional) waves in an isotropic elastic solid. In addition, introduce two independent dimensionless parameters, δ_e and δ_d , defined by (recall Eq. (9))

$$\delta_{\rm e} = \frac{\vartheta_{\rm d} g_{\rm e} \tau}{\lambda + 2\mu} \quad \text{and} \quad \delta_{\rm d} = \frac{\vartheta_{\rm d} g_{\rm d} \tau}{\lambda + 2\mu}.$$
 (11)

Mirzade's δ is our δ_e ; see below Eq. (19) in Ref. 1. Then, Eq. (10) becomes

$$(q^2 - \omega^2 c_{\rm L}^{-2})[q^2 + (1 - i\omega\tau)\ell^{-2}] - \delta_{\rm e}\ell^{-2}q^2 - \delta_{\rm d}q^4 = 0.$$
(12)

This should be compared with Eq. (25b) in Ref. 1, namely,

$$(q^2 - \omega^2 c_{\rm L}^{-2})[q^2 + (1 + i\omega\tau)\ell^{-2}] - \delta_{\rm e}\ell^{-2}q^2 = 0.$$
 (13)

The difference between $(1 - i\omega\tau)$ in Eq. (12) and $(1 + i\omega\tau)$ in Eq. (13) is simply due to us assuming $e^{-i\omega t}$ and Mirzade taking $e^{+i\omega t}$. However, the most striking difference is the absence of the last term in Eq. (12). This error can be traced to Eq. (13) in Ref. 1, where a term proportional to $\nabla^4 \varphi$ has been omitted. This omission implies that much of the analysis and computation in Ref. 1 for layers and half-spaces will require correction.

One could regard Eq. (13) as a special case of Eq. (12), obtained by putting $\delta_d = 0$. However, this case is not very interesting because it implies that $\vartheta_d = 0$, which means that there is no strain-defect interaction; see Eq. (7). In addition, $\vartheta_d = 0$ implies that $\delta_e = 0$ (see Eq. (11)), in which case Eq. (12) factors.

Mirzade also gives a perturbation analysis of Eq. (13) in which it is assumed that $\delta_e \ll 1$. One could presumably give a similar analysis of Eq. (12), but this would require both $\delta_e \ll 1$ and $\delta_d \ll 1$.

Further analysis of the dispersion relation Eq. (12) could be interesting. It can be regarded as a cubic equation for ω , given q, or as a quadratic equation for q^2 , given the frequency ω . (Recall that q^2 need not be real.) It is noted that the case $\delta_d = 1$ is special because Eq. (12) contains a term $(1 - \delta_d)q^4$.

¹F. Mirzade, J. Appl. Phys. **110**, 064906 (2011).

²F. K. Mirzade, Physica B 406, 119 (2011).

³Equation (4) in Ref. 1 and Eq. (3b) in Ref. 2 give $-v_i n$ in Eq. (5), but these are typographical errors, F. Mirzade, private communication (2011).

⁴P. Boulanger and M. Hayes, *Bivectors and Waves in Mechanics and Optics* (Chapman and Hall, 1993).