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Mirzade [J. Appl. Phys. 110, 064906 (2011)] developed a linear theory for the propagation of

waves in an elastic solid with atomic point defects, and then sought time-harmonic solutions. It is

shown that Mirzade’s analysis is incomplete: substantial corrections are required.VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4747830]

The title problem concerns waves in an isotropic solid in

which there are atomic point defects. The density of the

defects is n(r, t), where r ¼ ðx1; x2; x3Þ is a point in the solid.

(Although Ref. 1 starts with two kinds of defects, most of the

analysis is restricted to one type.) The constitutive relation

between the stresses rij, n, and the displacement compo-

nents, uiðr; tÞ (i¼ 1,2,3), is

rij ¼ kdijDþ l
@ui
@xj

þ
@uj
@xi

� �

� #dndij; (1)

where k and l are Lam�e moduli, D ¼ @ui=@xi is the dilata-

tion (with the usual summation convention), and the constant

#d controls the strain-defect interaction. We note, in passing,

that Eq. (1) has the same structure as the constitutive relation

for thermoelasticity, with n playing the role of temperature.

The governing equations of motion are

q
@2ui

@t2
¼

@rij
@xj

; i ¼ 1; 2; 3; (2)

@n

@t
¼ �

@Qi

@xi
þ g� cn: (3)

Here, q is the mass density, and g and c are nonlinear func-

tions of the dilatation,

g ¼ G expð#gD=kTÞ; c ¼ s�1expð#mD=kTÞ; (4)

where G, #g, kT ¼ kBT, s, and #m are constants. (In another

paper, Mirzade2 has considered a simpler problem, with g¼G
and c¼s�1.) The defect flux has components Qi given by

3

Qi ¼ �D
@n

@xi
þ vin; (5)

where D is a diffusion constant and the components of the

defect-drift velocity are (see above Eq. (3) in Ref. 1 or above

Eq. (4) in Ref. 2)

vi ¼
D

kT
Fi ¼ �

D

kT

@Uint

@xi
¼

D#d

kT

@D

@xi
:

Thus,

@Qi

@xi
¼ �Dr2nþ

D#d

kT

@

@xi
n
@D

@xi

� �

: (6)

To make progress, Mirzade linearizes Eq. (3). Thus, assume

small strains and put n ¼ n0ðx; y; zÞ þ n1ðx; y; z; tÞ with

jn1=n0j � 1. For Eq. (2) to be satisfied at leading order, we

must have n0 ¼ constant. Then, from Eq. (3) at leading

order, we obtain n0 ¼ Gs.
At next order, Eqs. (1) and (2) give

q
@2ui

@t2
¼ ðkþ lÞ

@D

@xi
þ lr2ui � #d

@n1
@xi

; i ¼ 1; 2; 3: (7)

From Eqs. (3), (4), and (6), we obtain

@n1
@t

¼ geD� ~gdr
2
Dþ Dr2n1 � s�1n1; (8)

where ~gd ¼ Dn0#d=kT and ge ¼ Gð#g � #mÞ=kT . Equation

(8) should be compared with Eq. (9) in Ref. 1. Notationally,

our ge and ~gd are Mirzade’s g and gd, respectively. As ge and

~gd have different dimensions, for later use, we define

gd ¼ G#d=kT giving ~gd ¼ Dsgd: (9)

Using our notation, Mirzade’s equation (9) has c instead of

the constant s�1; see Eq. (4). For a consistent linearization,

the approximation c ’ s�1 should be used.

PLANE WAVES

Mirzade1 considers waves in a layer, in a half-space,

and in an unbounded space. Here, we focus on the simplest

problem of determining plane waves in an unbounded space.

Mirzade introduces various potentials; we bypass this step.

Thus, we try u ¼ Re fAEg and n1 ¼ Re fNEg with E ¼ exp

fiðK � r� xtÞg. The constant vectors A and K are allowed to

be complex: they are bivectors.4 Also, N is a complex con-

stant. We have D ¼ Re fiðA � KÞEg and r2E ¼ �q2E, where

q2 ¼ K � K ¼ K2
1 þ K2

2 þ K2
3

¼ K
þ � Kþ � K

� � K� þ 2iKþ � K�a)Electronic mail: pamartin@mines.edu.
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and we have written K ¼ ðK1;K2;K3Þ ¼ K
þ þ iK� (see

p. 16 of Ref. 4). We have used the notation q2 so that we can

compare with Ref. 1, but we emphasise that q2 is complex

unless K is real (K ¼ K
þ, K� ¼ 0). Substitution in Eqs. (7)

and (8) gives

�qx2
A ¼ �ðkþ lÞðA � KÞK � lq2A� i#dNK;

�ixN ¼ �Dq2N þ iðge þ ~gdq
2ÞðA � KÞ � s�1N :

We seek non-trivial solutions of this system. Simplify

the notation by putting X ¼ lq2 � qx2, L ¼ kþ l,

G ¼ ge þ ~gdq
2, and H ¼ ix� s�1 � Dq2. Then, the system

becomes

LðA � KÞK þ XAþ i#dNK ¼ 0;

iGðA � KÞ þ HN ¼ 0:

Write this system in matrix form as Cx ¼ 0 with x
T

¼ðN ;A1;A2;A3Þ and

C ¼

H iGK1 iGK2 iGK3

i#dK1 X þ LK2
1 LK1K2 LK1K3

i#dK2 LK1K2 X þ LK2
2 LK2K3

i#dK3 LK1K3 LK2K3 X þ LK2
3

0

B

B

@

1

C

C

A

:

Direct calculation gives

detC ¼ X2
K with K ¼ HðX þ Lq2Þ þ #dGq

2:

Allowable solutions follow by setting detC ¼ 0. Thus, X2 ¼ 0

or K ¼ 0. The first of these gives x2 ¼ c2Tq
2, where c2T ¼ l=q

and cT is the speed of transverse (shear) waves in an isotropic

elastic solid: such waves propagate independently of any

atomic point defects. This result was found by Mirzade; see

Eq. (25) in Ref. 1.

The second option, K ¼ 0, gives

½ðkþ 2lÞq2�qx2�ðDq2þ s�1� ixÞ�#dq
2ðgeþ ~gdq

2Þ ¼ 0:

(10)

We compare this with Mirzade’s equation (25b). Thus, intro-

duce a length ‘ defined by Ds ¼ ‘2 and let c2L ¼ ðkþ 2lÞ=q
so that cL is the speed of longitudinal (compressional)

waves in an isotropic elastic solid. In addition, introduce two

independent dimensionless parameters, de and dd, defined by

(recall Eq. (9))

de ¼
#dges

kþ 2l
and dd ¼

#dgds

kþ 2l
: (11)

Mirzade’s d is our de; see below Eq. (19) in Ref. 1. Then,

Eq. (10) becomes

ðq2 � x2c�2
L Þ½q2 þ ð1� ixsÞ‘�2� � de‘

�2q2 � ddq
4 ¼ 0:

(12)

This should be compared with Eq. (25b) in Ref. 1, namely,

ðq2 � x2c�2
L Þ½q2 þ ð1þ ixsÞ‘�2� � de‘

�2q2 ¼ 0: (13)

The difference between ð1� ixsÞ in Eq. (12) and ð1þ ixsÞ
in Eq. (13) is simply due to us assuming e�ixt and Mirzade tak-

ing eþixt. However, the most striking difference is the absence

of the last term in Eq. (12). This error can be traced to Eq. (13)

in Ref. 1, where a term proportional to r4u has been omitted.

This omission implies that much of the analysis and computa-

tion in Ref. 1 for layers and half-spaces will require correction.

One could regard Eq. (13) as a special case of Eq. (12),

obtained by putting dd ¼ 0. However, this case is not very

interesting because it implies that #d ¼ 0, which means that

there is no strain-defect interaction; see Eq. (7). In addition,

#d ¼ 0 implies that de ¼ 0 (see Eq. (11)), in which case Eq.

(12) factors.

Mirzade also gives a perturbation analysis of Eq. (13) in

which it is assumed that de � 1. One could presumably give

a similar analysis of Eq. (12), but this would require both

de � 1 and dd � 1.

Further analysis of the dispersion relation Eq. (12) could

be interesting. It can be regarded as a cubic equation for x,

given q, or as a quadratic equation for q2, given the frequency

x. (Recall that q2 need not be real.) It is noted that the case

dd ¼ 1 is special because Eq. (12) contains a term ð1� ddÞq4.
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