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a b s t r a c t

In the direct boundary integral equation method, boundary-value problems are reduced to integral

equations by an application of Green’s theorem to the unknown function and a fundamental solution

(Green’s function). Discretization of the integral equation then leads to a boundary element method.

This approach was pioneered by Jaswon and his students in the early 1960s. Jaswon’s work is reviewed

together with his influence on later workers.
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1. Introduction

Professor Maurice Jaswon, who died on 24th November 2011,

aged 89, was a pioneer in advocating the use of direct boundary

integral equations, and in the use of boundary elements for their

numerical treatment. We shall review his contributions and

discuss his influence.

For biographical information, see the obituary in the London Daily

Telegraph [1]. For a history of boundary integral methods, see [3].

2. Early years: metal physics

The early part of Jaswon’s research career was in metal physics

and crystallography. He began as a PhD student in the Depart-

ment of Metallurgy at the University of Birmingham, publishing

his first paper in 1947 [J01].1 His thesis [J02] was written under

Alan Cottrell’s guidance. They have one much-cited joint paper

[J04] introducing what is now known as the Cottrell–Jaswon

mechanism for the drag on a moving dislocation. Indeed, Jaswon

would return to the theory of dislocations throughout his career,

right up to his last published paper in 2001 [J45].

In 1949, Jaswon became a lecturer in the Department of

Mathematics, Imperial College, London. He remained there until

1967 when he moved to City University London.

At Imperial College, Jaswon continued his researches in phy-

sical metallurgy, dislocations and crystallography. He published

three books during this period [J09J18J25] and he supervised

many PhD students.

One project concerned modifications to the Peierls–Nabarro

equation [5, p. 61]. This nonlinear integrodifferential equation can

be written as

Z 1

�1

u0ðxÞ

x�x
dx¼ l sinðpuÞ, �1oxo1, ð1Þ

where l is a constant. It is to be solved for u(x) subject to the

conditions uðxÞ-71 as x-71. Surprisingly, the exact solution

is known: uðxÞ ¼ ð2=pÞarctanðlxÞ. Foreman, Jaswon and Wood
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[J07] investigated modifications of the sinusoidal force-law on the

right-hand side of (1), obtaining better agreement with

experiments.

Since his first paper [J01], Jaswon had been interested in

martensitic transformations [J03J14]. ‘‘Usually the transformed

region has the shape of a thin lenticular plate, of approximately

elliptic cross-section normal to its plane, and may be regarded as

approximately rigid compared with the surrounding austenitic

matrix’’ [J20, p. 678]. Jaswon wanted to calculate the stresses

around these regions or inclusions. He began with analytical

methods but soon moved to computational methods based on

integral equations.

In 1961, Jaswon published a paper with his student, Bhargava

(Fig. 1), on two-dimensional inclusion problems [J20]. They began

with ‘‘an account of Eshelby’s point-force method for solving

elastic inclusion problems’’ [8,9]. ‘‘The main limitation of Eshel-

by’s solution concerns the formidable nature of the point-force

integrals. Only for problems exhibiting spherical or circular

symmetry can these be handled analytically. It was in an effort

to overcome this practical limitation, at least for two-dimensional

systems, that the complex variable approach was initiated’’ [J20,

p. 671]. Thus, they formulated the plane-strain elasticity problem

in terms of biharmonic functions which were then represented

using analytic functions of a complex variable. After writing down

point-force solutions (taken from [10]), ‘‘a continuous distribution

of forces round a contour’’ was introduced. Explicit solutions for

elliptical inclusions were obtained.

3. Boundary integral equations and boundary elements

Jaswon and two of his students, Alan Ponter and George

Symm, published three papers in 1963 in the Proceedings of the

Royal Society on boundary integral equations. The first, by Jaswon

and Ponter [J22], is on the torsion problem. This can be reduced to

an interior Dirichlet problem for Laplace’s equation, r2
u¼ 0, in

two dimensions.

After some discussion of the torsion problem itself, Jaswon and

Ponter start; we quote from [J22, p. 239], including their section

heading:

Integral equation formulation: Green’s formula, adapted to two-

dimensional potential theory, appears as

1

2p

Z
L

w0ðqÞ ln9q�P9 dq�
1

2p

Z
L

wðqÞln09q�P9 dq¼wðPÞ, ð2Þ

where P is a vector variable specifying points within [the

bounded region] D, q is a vector variable specifying points on

[the boundary] L and dq denotes the arc differential at q;

ln09q�P9 denotes the inward normal derivative of ln9q�P9 at q
keeping P fixed, and w0ðqÞ stands for the inward normal

derivative of w at q. This formula means that a harmonic

function w within D, exhibiting boundary values wðqÞ and

boundary normal derivatives w0ðqÞ, may be represented

throughout D by the left-hand side of (2). For a point P outside

D, the left-hand side gives zero identically. For a point p on L

itself, it gives 1
2wðpÞ owing to the jump in the double-layer

integral on crossing L, from which we see that wðqÞ, w0ðqÞ

satisfies the linear functional relationZ
L

wðqÞ ln
09q�p9 dqþpwðpÞ ¼

Z
L

w0ðqÞ ln9q�p9 dq: ð3Þ

This important relation, which we term Green’s boundary

formula, will be recognised as the real-variable analogue of

Plemelj’s well-known complex-variable formula. Its impor-

tance stems from the fact that we may view it as a compat-

ibility relation between wðqÞ and w0ðqÞ which, under

appropriate circumstances, ensures that they both appertain

to the same harmonic function w. Thus, given wðqÞ on L

(Dirichlet problem), the formula (3) becomes a Fredholm

equation of the first kind for w0ðqÞ. Conversely, given w0ðqÞ

on L (Neumann problem), it becomes a Fredholm equation of

the second kind for wðqÞ.

We have given this lengthy quotation because it shows that

Jaswon already had the essence of the direct boundary integral

equation method. No references are given. By way of comparison,

Jaswon and Ponter [J22, p. 240] observe that the ‘‘conventional

formulation of the Neumann problem [7] proceeds by writing

wðPÞ ¼

Z
L

sðqÞ ln9q�P9 dq, ð4Þ

and noting that

w0ðpÞ ¼

Z
L

sðqÞ ln9q�p90 dqþpsðpÞ, ð5Þ

where ln9q�p90 denotes the inward normal derivative of ln9q�p9
at p keeping q fixed. This formulation, in which (5) appears as

Fredholm equation of the second kind for sðqÞ is inferior to the

preceding in not directly yielding the wanted boundary function

wðqÞ.’’ Thus, the classical ‘‘indirect’’ method was recognised as

being less attractive when the goal is to calculate the missing

boundary data (although the left-hand side of (5) is simpler than

the right-hand side of (3)).

(Jaswon’s preferred notation for the two normal derivatives of

the logarithmic fundamental solution, namely, ln09q�p9 for the

normal derivative at q and ln9q�p90 for the normal derivative at p,

did not become popular.)

Jaswon and Ponter gave some numerical results, obtained

using a straightforward method. They divided L into n arcs, Li,

i¼ 1;2, . . . ,n. Let wðqiÞ ¼wi and w0ðqiÞ ¼wi
0 where qi is theFig. 1. Jaswon (left) and R.D. Bhargava.

P.A. Martin / Engineering Analysis with Boundary Elements 36 (2012) 1699–17041700



midpoint of Li. ‘‘Our fundamental approximation is to assume that

wðqÞ, w0ðqÞ remain constant within each interval [Li] so that (3)

becomes’’

Xn
i ¼ 1

wi

Z
Li

ln09q�qj9 dqþpwj ¼
Xn
i ¼ 1

wi
0

Z
Li

ln9q�qj9 dq ð6Þ

for j¼ 1;2, . . . ,n. There is a discussion of how to compute the

remaining integrals over Li. Simpson’s rule is used when ia j,

using the locations of the endpoints of each Li (denoted by qi71=2).

When i¼ j, the logarithmic integral on the right-hand side of (6) is

evaluated analytically having first approximated Li by two

straight lines, joining the endpoints qi71=2 to the midpoint qi.

The integral on the left-hand side of (6) when i¼ j is evaluated by

a now-familiar observation: as wðPÞ ¼ 1 solves r2w¼ 0 in D, (6)

gives

Xn
i ¼ 1

Z
Li

ln
09q�qj9 dqþp¼ 0, j¼ 1;2, . . . ,n, ð7Þ

which allows the integral with i¼ j to be expressed as a sum of all

the off-diagonal integrals with ia j.

The numerical results are all for Dirichlet problems, which

means that Fredholm integral equations of the first kind are being

solved. ‘‘Generally speaking, the accuracy increases with n until a

limiting value is reached, specific to each contour L, above which

inherent ill-conditioning develops unless the numerical techni-

ques become considerably more refined’’ [J22, p. 242]. Never-

theless, results are given for a variety of cross-sections D,

including ellipses, triangles, squares and notched circles. For

non-smooth L, the collocation nodes, qi, are not taken at corners.

The authors conclude by noting that ‘‘the integral equation

method compares favourably, both in scope and effectiveness,

with any analytical or numerical method so far devised. An

examination of inhomogeneous torsion and plastic torsion on

similar lines will be taken up in subsequent papers’’; see [14,15].

Later in 1963, Jaswon [J23] and Symm [18] published a pair of

consecutive papers, with Jaswon covering theoretical issues and

Symm concentrating on numerical procedures. Jaswon starts by

investigating the first-kind equation
Z
L

sðqÞ ln9p�q9 dq¼ f ðpÞ, pAL, ð8Þ

‘‘with a view to preparing the ground for [its] exploitation in the

numerical solution of difficult boundary-value problems’’. He

shows that the homogeneous form of (8) (with f � 0) can have

non-trivial solutions for a certain scaled version of L (called a

G-contour in [J31]). He then turns to consequences of Green’s

boundary formula, recalling (2) and (3), and he notes that these

formulas can be generalised to three dimensions. Next, he

observes that ‘‘Green’s boundary formula (3) provides a fresh

means of attacking the mixed boundary-value problems of

potential theory’’, in which w is prescribed on a part of L and w0

is prescribed on the rest of L. He also allows the possibility of

more complicated boundary conditions where awþbw0 is pre-

scribed (a and b are given functions, defined on L).

Symm’s paper [18] applies the numerical methods described

by Jaswon and Ponter [J22] to a range of harmonic problems

(including a mixed boundary-value problem), using both direct

and indirect formulations. His subsequent paper [19] has led to

(8) being known as ‘‘Symm’s integral equation’’.

The last part of Jaswon’s paper [J23] concerns two-dimensional

problems governed by the biharmonic equation, r4w¼ 0, moti-

vated by elasticity problems. Jaswon writes wðx,yÞ ¼ r2fþc,

where r2 ¼ x2þy2, r2f¼ 0 and r2c¼ 0. Then, he proposes to

use formulas such as (3), one for f and one for c. In two later

papers [J26J28], this approach was abandoned in favour of single-

layer representations, (4). For problems involving corners, such as

a V-shaped notch in a plate, ill-conditioning was observed: ‘‘the

trouble can to a large extent be eliminated by ‘rounding off’ the

corner’’ [J26, p. 316]. John Willis, another one of Jaswon’s students

in the early 1960s, began his PhD studies with the V-shaped notch

problem. Willis managed to resolve the ill-conditioning but his

approach was not as simple as Jaswon would have liked. Jaswon

suggested to Willis that he switch to analytic work: his first paper

extended [J20] to anisotropic inclusions [20].

Alan Ponter has described his experiences as one of Jaswon’s

PhD students:

John Willis and I began in the autumn of 1961. George Symm

was already Jaswon’s student, a year ahead, and Bhargava had

just finished and returned to India. Maurice gave John and I a

series of talks about potential theory and integral equations.

The main text was Kellogg’s book [11]. The plan was that I

should work on potential problems associated with elasticity

problems. George was working on biharmonic problems and

John should look at crack-like problems. The motivation for

such an assault on the numerical solution of integral equations

was the availability of a Ferranti Mercury computer, run

jointly for all the London University colleges. It occupied two

large rooms in a house in Gordon Square, Bloomsbury. The

Mercury was a valve computer. It had a high-speed store able

to hold 256 numbers to six significant figures. It had a slow

store on a massive rotating drum that could hold a further 16k

numbers. Programs were written in Autocode, and were typed

onto eight-holed telex tape on standard machines in the

Department. The original plan was to transmit the programs

to Bloomsbury where the resulting tape would be run on the

Mercury and the results then sent back to Imperial. However,

the failure rate was high and program development was

desperately slow. Consequently, I took to riding my bicycle

through central London between Imperial and Bloomsbury

(about three miles) in a daily routine, which allowed me to

have two short runs on the computer each day instead of one.

Maurice wanted the method to be as simple as possible and

defined the approximations I should use. By the end of 1961, I

had obtained good results for the torsion of an oval. Working

through the following months, I produced the results for the

first paper [J22]. Maurice was very keen to get them published.

I suggested we improve the numerical method but Maurice

wanted to demonstrate the method in its simplest form. The

paper was submitted in October 1962. By this time, George

was producing results, and his paper [18], together with

Maurice’s [J23], were finished not long afterwards. The reason

our paper was published first was due, I suppose, to my fixed-

wheel sports bicycle.

Much of the work described above found its way into the 1977

book by Jaswon and Symm [J31]. It was the first book on the

numerical solution of boundary integral equations [3].

It is striking that Jaswon recognised that one strength of direct

boundary integral formulations is that they do not depend,

essentially, on the number of spatial dimensions. However, he

chose to tackle elasticity problems using biharmonic functions,

thus limiting his scope to two-dimensional static problems.

Perhaps this choice was due to his successful simplification of

Eshelby’s method for two-dimensional inclusion problems,

described above [J20].

4. America

Jaswon spent the academic year 1963–1964 as Visiting Pro-

fessor of Engineering at Brown University (Fig. 2). He taught a
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graduate course on crystallography that led to a book [J25]. The

book is dedicated to the memory of his young son, David, who

was hit by a car and killed [1].

Marc Richman has recalled Jaswon’s visit:

When Maurice came to Brown, I had just joined the faculty. He

came because of the fantastic group of people working in

Materials and Solid Mechanics. William Prager and Dan

Drucker in Solid Mechanics, John Gilman and Joseph Gurland

in Materials, as well as Harry Kolsky and Charles Elbaum in

Applied Mathematics. Brown had just received a large grant

from the Advanced Research Projects Agency and was setting

up an interdisciplinary research and teaching group.

Maurice contributed greatly to both research and graduate

education in Materials. At Brown we were trying to tie

together the continuum approach and the microscopic

approach. Maurice was able to bring world class expertise in

the latter and interface with world class experts in the former.

I was just a newly arrived assistant professor who had studied

physical metallurgy at MIT and mechanics and dislocation

theory with Egon Orowan at that school. I benefited greatly

from my interactions with Maurice and was proud to be asked

to coauthor the paper in Applied Mechanics Reviews [J24].

Ponter spent the first half of 1964 in the Mechanics Depart-

ment, University of Iowa, where he gave a course on integral

equation methods. ‘‘During the time I gave the course, Maurice

was flying through Chicago and I met up with him in the

departure lounge with his wife. Maurice passed over to me a

paper containing the Somigliana equations [6] and, either then or

earlier, a report of a US government laboratory with solutions for

sonar transmitter problems (Helmholtz equation). At the time, I

regarded this sonar work as the only solutions comparable with

our own work.’’ The 1960 paper by Roland de Wit [6] does not

contain any integral equations. It is likely that the sonar report

was by George Chertock at the David Taylor Basin, Washington,

DC; his 1964 paper [4] uses a direct boundary integral equation

for the exterior Neumann problem (a Fredholm equation of the

second kind) specialised to an axisymmetric boundary.

In May 1964, Jaswon visited the University of Illinois in

Urbana, where he met Frank Rizzo, a graduate student of Marvin

Stippes. Rizzo recalls as follows [17]:

Marvin was very fond of classical work such as to be found in

Kellogg’s Potential Theory [11] and Love’s treatise [12] on

elasticity theoryyHe wanted his students to be acquainted

with the fundamental contributions of the early Italian elasti-

cians such as Betti, Lauricella, and SomiglianayIn spring 1963

Marvin suggested that ‘‘something with integral equations’’

might be fruitful for me. He pointed me in the direction of

Lovitt [13], Fredholm [as cited on [12, p. 266]], a recent paper

by Jaswon [and Ponter] [J22] and promptly left to go on

sabbatical for a year.

yThat work on potential theory was the model, motivation,

and springboard for everything I did that year for elasticity

theory and, indeed, for any other topic that I have subse-

quently worked onyIn retrospect, all three of those papers

[J22J2318] represent at once the birth and quintessence of

what has become known as the ‘‘direct’’ boundary element or

boundary integral equation method for problems of every

description.

Rizzo knew that the analogue of the formula (2) in elasticity

theory is the Somigliana formula (the three-dimensional version

is in Section 169 of Love’s book [12]); it gives an expression for

the displacement vector uðPÞ in the region D in terms of

displacements and tractions on the boundary L. Letting P-pAL

would lead to the analogue of (3) which Rizzo could then try to

solve numerically [17]:

I saw what I wanted to do, but I was worried. Why hadn’t

Jaswon already done what I intended to do since he was

clearly interested in elasticity also?y[I asked him when he

visited Urbana. His answer] was simple—he hadn’t thought of

it!

Eventually, Rizzo’s first paper was published [16]. In it, he

derives the two-dimensional elastostatic analogue of (3), a vector

equation containing Cauchy principal-value integrals, and he

gives some numerical results. Jaswon persevered with vector

potential theory; see chapter 5 of [J31] and some of his later

papers [J33J39].

Later in 1964, Jaswon returned to London and Rizzo became

Assistant Professor of Civil Engineering at the University of

Washington, Seattle.

Jaswon returned to the US during 1965–1966 as Chairman of

the Department of Engineering Mechanics, University of Ken-

tucky, and Director of its Institute for Theoretical and Applied

Mechanics. Rizzo spent the first quarter of 1966 at the Institute,

and then moved to Kentucky permanently in the fall of 1966 as

Assistant Professor of Engineering Mechanics. Two final quotes

from Rizzo [17]:

It is curious, and to my mind regrettable, that while Maurice,

Tom [Cruse], and I were all so very interested in the same

things in the middle to late sixties, no two of us were

physically in the same place for very longyJaswon, whose

appointment at Kentucky had originally made me aware of

opportunities there, had exited for England not long after I

moved from Seattle. He has been in England ever since.

5. City University London

Jaswon returned to London. In 1967, he accepted the position

of Professor and Head of the Department of Mathematics at City

University London. For the next 20 years, he directed his efforts atFig. 2. Maurice Jaswon, circa 1964.
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building the department, improving its teaching and research

activities. He described his activities as follows: ‘‘primarily

responsible for guiding the development of the Department from

polytechnic towards university status, i.e., staff were encouraged

to achieve PhD’s and to engage with research students; actuarial

science unit successfully integrated into the Department; and

hosted the annual British Theoretical Mechanics Colloquium in

1981’’.

Maurice Jaswon retired in 1987. Throughout the 80s and 90s,

he was a regular participant at conferences on boundary element

methods. ‘‘Maurice will always be remembered by the Boundary

Elements community for his patience and tolerance. He was

generous with his time and knowledge and has the unique

qualities that define an ‘academic gentleman’’’ [2].

6. Discussion

Looking back at Jaswon’s contributions in the context of

boundary integral equations, we see that he clearly saw the

advantages of the direct method over the indirect method. He

did not flinch from using integral equations off the first kind,

despite the extensive literature of classical potential theory in

which second-kind equations are used exclusively. The classical

indirect approach does have its virtues, of course, especially if one

is interested in mathematical questions such as proving that

solutions to boundary-value problems exist.

Jaswon missed the natural step of using Somigliana’s formula

for elasticity problems, and he was reluctant to go beyond

piecewise-constant approximations. Nevertheless, with his stu-

dents, he showed that many potential and elastic boundary-value

problems could be solved numerically using what are now called

boundary element methods.
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