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An exact analysis of the field radiated by tonal and random non-axisymmetric sources
distributed over a disc or cylinder is presented. The analysis is exact, without recourse
to near- or far-field approximations, and leads to a direct relationship between source
frequency and the nature of the radiated field. The implications of the analysis for a
number of applications are discussed, finding in particular that source identification is
inherently ill-conditioned as a result of a ‘filtering’ effect that removes information from
the radiation field; low-frequency sources generate fields that are indistinguishable from
each other; jet noise fields are inherently simpler than the flow that gives rise to them, a
finding that has previously been noted for experimental data.
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1. Introduction

A common problem in the prediction of acoustic, and other, radiation is that of
calculating the field produced by a source distributed over a disc or a cylinder,
such as loudspeakers, rotors, duct terminations and turbulent jets. There is an
extensive literature on these fields, in acoustics, as well as in allied fields such
as electromagnetism and optics. This paper presents an exact analysis of such
fields, which can be used to draw conclusions about the nature of the field and
about a number of problems that arise from it. The analysis was motivated by
problems in acoustics, and will be described in these terms, but it should apply
to any system governed by a retarded potential.
In the first part of the analysis, a disc source whose strength varies periodically

in azimuth is considered, corresponding to the problem of a tonal sound field. This
is a generalization of the familiar problem of radiation from an axisymmetric
circular baffled piston (Pierce 1989) that has led to the division of the field
into a near and far, or radiation, field. The nature of these regions for a
non-axisymmetric source has been examined previously (Chapman 1993), with
application to high-speed rotor noise. It was found that an exponentially small
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amount of energy ‘tunnels’ across the boundary between the near and far
fields, with the form of the field being set by the relationship of source radius
and frequency.
This analysis has been extended to consider the ‘information content’ of the

field (Carley 2011), showing that the radiated field has a limited number of degrees
of freedom, the number being fixed by the source frequency. This is especially
relevant to the inverse problem, where acoustic field measurements are used to
attempt to infer the nature of the source, such as for aircraft engines (Holste &
Neise 1997; Gérard et al. 2007; Castres & Joseph 2007a,b; Lewy 2008). It has
been recognized that the inverse problem is poorly conditioned, requiring special
numerical methods for its treatment. Our analysis will demonstrate that this ill
conditioning is an unavoidable result of the nature of the source and that there is
a limit on the information available for source identification. It is well-known that
owing to the arbitrary nature of source terms (Ffowcs Williams 1984), and the
filtering effect of propagation, which removes source terms with subsonic phase
velocity (Carley 2010), there is no unambiguous relationship that characterizes a
source using only field information.
Acoustic field measurements have also been used to try to characterize the

noise source in turbulent jets, such as in the near- to far-field correlation
technique (Laurendeau et al. 2008), where it is assumed that the near-field
data ‘encode’ source information, so that they can be used to draw inferences
about the relationship between the source and the radiated noise field. The
nature of the jet noise field, and of its relationship to the acoustic source, has
long been of interest, and a number of recent experimental and computational
studies have produced unexpected results on the relationship between the source
and field.
It has long been accepted that turbulent jets are inefficient acoustic radiators,

but it is only recently that it has been possible to quantify the simplicity of the
noise field, compared with the complexity of the turbulent velocity field of the
jet proper. In these studies (Jordan et al. 2007; Schlegel et al. 2012), it has been
found that in a Mach 0.9 jet, 90 per cent of the acoustic field energy could be
resolved using 24 orthogonal modes, while 350 were required to capture only 50
per cent of the flow energy. A number of explanations have been given for this
relative simplicity of the acoustic field such as source cancellation (Michel 2007,
2009) and spatial filtering of the source (Freund 2001).
Our analysis gives an exact formulation for the field radiated by tonal and

by random sources, which gives a framework for the understanding of these
questions, without requiring assumptions about the nature of the source. In
particular, it explains the limits on the source information radiated into the field
and allows us to explain many of the features that we have just described.

2. Disc source

The problem is initially formulated as that of calculating the acoustic field
radiated by a monopole source distributed over a circular disc. The system for
the analysis is shown in figure 1, with cylindrical coordinates (r , q, z) for the
observer and (a,j, 0) for the source. All lengths are non-dimensionalized on disc
radius. The field from one azimuthal mode of the acoustic source, specified as
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Figure 1. Coordinate system for disc radiation calculations.

sn(a) exp i[nj − ut], has the form Pn(k, r , z) exp i[nq − ut], with Pn given by the
Rayleigh integral (Goldstein 1974; Carley 2009),

Pn(k, r , z)=
∫ 1
0

∫p

−p

ei(kR+nj)

4pR
sn(a) a dj da, (2.1)

where R=
√

r2 + a2 − 2ra cosj + z2 and k is non-dimensional wavenumber.
The analysis that follows gives an exact formulation for the field radiated

by tonal and by random sources, similar to previous work, but with efficient
series expansions for radiation calculations (§2a), explicit integral and asymptotic
formulae for the source terms (§2b, and extension to arbitrary frequency and
azimuthal mode number for random sources (§2d).

(a)Tonal disc source

The analysis of the nature of the sound field from an arbitrary disc source is
based on a transformation of the disc to an exactly equivalent line source, shown
in figure 2, which shows the new coordinate system (s2, q2, z) centred on a sideline
of constant radius r > 1. Under this transformation (Carley 2009), which gathers
terms of constant phase to reduce the double integral to a set of single integrals:

Pn(k, r , z)=
∫ r+1
r−1

eik
√
s22+z2

√

s22 + z2
Kn(r , s2)s2 ds2 (2.2)

and

Kn(r , s2)=
1

4p

∫ 2p−q
(0)
2

q
(0)
2

einjsn(a) dq2, (2.3)

with q
(0)
2 = cos−1 [(1− r2 − s22)/(2rs2)]. Functions of the form of Kn(r , s2) have

been analysed in previous work (Carley 2010) and can be written as

Kn(r , s2)=
∞

∑

q=0

unq (r)Uq(s)(1− s2)1/2, (2.4)
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Figure 2. Transformation to equivalent line source.

where Uq(s) is a Chebyshev polynomial of the second kind, s = s2 − r and the
coefficients unq (r) are functions of r but not of z . Inserting (2.4) into (2.2) gives

Pn(k, r , z)=
∞

∑

q=0

unq (r)Lq(k, r , z) (2.5)

and

Lq(k, r , z)=
∫ 1
−1

eikR

R
Uq(s)(r + s)(1− s2)1/2 ds, (2.6)

with R=
√

(r + s)2 + z2.
For z = 0, Lq can be evaluated in closed form (Carley 2010):

Lq(k, r , 0)= iq(q + 1)peikrk−1Jq+1(k). (2.7)

For z �= 0, there is no closed form solution for Lq , but a series expansion is
readily derived, based on a related integral containing the Chebyshev polynomial
of the first kind,

Fq(k, r , z)=
∫ 1
−1

eikR

R
Tq(s)(1− s2)−1/2 ds. (2.8)

Put r = 9 cos4 and z = 9 sin4; note that 4 is not the usual spherical polar
coordinate. Then, using 8.533(1) from G&R (Gradshteyn & Ryzhik 1980),

Fq = ik
∞

∑

n=0

(2n + 1)h(1)n (k9)Jq,n(k)Pn(cos4)[(−1)
q + (−1)n], (2.9)

where h
(1)
n is a spherical Hankel function, Pn is a Legendre polynomial,

Jq,n =
∫ 1
0

Tq(s)jn(ks)(1− s2)−1/2ds =
∫p/2

0

jn(k cosa) cos qa da (2.10)

and jn is a spherical Bessel function. Expanding jn and integrating (G&R, 7.346)
termwise gives an expansion for Jq,n(k) in powers of k.
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Given a means of computing Fq , Lq can be evaluated using standard relations
for Chebyshev polynomials:

Lq(k, r , z)=
r

2
(Fq − Fq+2)+

1

4
(Fq−1 − Fq+3). (2.11)

One motivation for working with the integral involving a Chebyshev polynomial
of the first, rather than of the second, kind is that the form of the series (2.9)
is simpler for Chebyshev polynomials of the first kind. Second, if Lq is to be
computed for various values of q, it is computationally simpler to compute Fq
for the appropriate values of q and combine them as required in (2.11).

(b)Line source coefficients

Given the formulation of the radiation problem in terms of the equivalent
line source, it remains to find the coefficients unq in the expansion (2.4). These
have been found previously (Carley 2011) as the solution of an infinite system of
equations, which, although correct, is poorly conditioned and does not have an
obvious explicit form. Here, we derive explicit, closed-form expressions for unq as
weighted integrals of the source term sn(a). This is done by equating two exact
expressions for the field in the plane z = 0, using (2.7),

∫ 1
0

∫p

−p

ei(kS+nj)

4pS
djsn(a)a da = peikr

∞
∑

q=0

iq(q + 1)unq
Jq+1(k)

k
, (2.12)

with S =
√

r2 + a2 − 2ar cosj. Note that, as r > 1, |S − r | < 1.
To derive an integral expression for the coefficients unq , we begin by considering

the corresponding expression for a ring source,

1

4p

∫p

−p

1

S
eik(S−r) einj dj =

∞
∑

q=0

iqK nq (r , a)
Jq+1(k)

k
, (2.13)

so that the line source coefficients for a disc source are given by

unq (r)=
1

4(q + 1)

∫ 1
0

K nq (r , a)sn(a)a da. (2.14)

Let us split (2.13) into even and odd functions of k. We obtain

1

2p

∫p

0

1

S
cos {k(S − r)} cosnj dj =

∞
∑

q=0

(−1)qK n2q(r , a)
J2q+1(k)

k
(2.15)

and

1

2p

∫p

0

1

S
sin {k(S − r)} cosnj dj =

∞
∑

q=0

(−1)qK n2q+1(r , a)
J2q+2(k)

k
. (2.16)

These show that K nq is real. Letting k→ 0 in (2.15) gives

K n0 (r , a)=
1

p

∫p

0

1

S
cosnj dj. (2.17)
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Similarly, (2.16) gives

K n1 (r , a)=
4

p

∫p

0

S − r
S
cosnj dj. (2.18)

More generally, let us use the orthogonality integral (G&R, 6.538.2)

∫∞

0

J2m+n(k)J2n+n(k)
dk

k
=

dmn

4n + 2n
, n > 0.

Thus, multiplying (2.15) by J2p+1(k) and integrating over k gives

K n2q(r , a)=
1

p
(2q + 1)(−1)q

∫p

0

cosnq

S

∫∞

0

J2q+1(k) cos {k(S − r)}dk dq.

The inner integral is a Weber–Schafheitlin integral (G&R, 6.671.2): as |S − r | < 1,
put S − r = sin b with |b| < 1

2
p, and then we obtain

K n2q(r , a)=
1

p
(2q + 1)(−1)q

∫p

0

cosnj

S

cos (2q + 1)b
cos b

dj, (2.19)

which reduces to (2.17) when q = 0.
For (2.16), we multiply by J2p+2(k) and integrate over k giving

K n2q+1(r , a)=
(q + 1)
2p

(−1)q
∫p

0

cosnj

S

∫∞

0

J2q+2(k) sin {k(S − r)} dk dj.

Evaluating the inner integral (G&R, 6.671.1) gives

K n2q+1(r , a)=
(q + 1)
2p

(−1)q
∫p

0

cosnj

S

sin (2q + 2)b
cos b

dj, (2.20)

with b defined as before. When q = 0, this formula reduces to (2.18).
Expanding cosnb and sin nb in powers of sin b and thus in powers of S and r

(G&R, 1.332) gives expressions for K nq (r , a) in terms of elliptic-type integrals,

K2q =
(−1)q

8p

q
∑

u=0

(−1)u
[(2q + 1)2 − 12] . . . [(2q + 1)2 − (2u − 1)2]

(2u)!
r2u−1

×
2u
∑

v=0

(

2u

v

) (

−
r + a
r

)v−1

Hn,1−v(l), (2.21)

K2q+1 = (−1)q
(q + 1)
4p

q
∑

u=0

(−1)u
[(2q + 2)2 − 22] . . . [(2q + 2)2 − (2u)2]

(2u + 1)!
r2u

×
2u+1
∑

v=0

(

2u + 1
v

) (

−
r + a
r

)v−1

Hn,1−v(l) (2.22)
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and Hn,m(l)=
∫p

−p

cos 2na

(1− l2 cos2 a)m/2
da, l2 =

4ra

(r + a)2
, (2.23)

where the elliptic-type integral Hn,m(l) can be evaluated using published methods
(Björkberg & Kristensson 1987).

(c)Asymptotic behaviour of Knq for large q

To estimate K n2q for large q, we use the method of stationary phase (Bender &

Orszag 1978). This shows that

∫ b
a

f (x) eilf(x) dx ∼
(

2p

l|f′′(x0)|

)1/2

f (x0) e
ilf(x0)±ip/4 as l → ∞, (2.24)

where f′(x0)= 0, a < x0 < b and we take the+ if f′′(x0)> 0 and the− if f′′(x0)< 0.
If there are several points of stationary phase, each one contributes. If x0 = a or
b, the contribution is halved.
With (2.24) in mind, we write (2.19) as

K n2q =
1

p
(2q + 1)(−1)q Re{I (2q + 1)} with I (l)=

∫p

0

f (j) eilb(j) dj, (2.25)

where f (j)= (cosnj)/{S(j) cos b(j)}. We have sin b = S(j)− r so b′(j) cos b =
S ′(j)= (ra/S) sinj. Thus, the two endpoints, j = 0 and j = p, are points of
stationary phase (where b′ = 0). For the second derivatives, we have

b′′(j) cos b − (b′)2 sin b = S ′′(j)=
( ra

S2

)

(S cosj − S ′ sinj).

Calculating, at j = 0, S(0)= r − a, sin b = −a, cos b =
√
1− a2, S ′′ = ra/S(0) and

b′′(0)> 0. Similarly, at j = p, S(p)= r + a, sin b = a, cos b =
√
1− a2, S ′′(p)=

−ra/S(p) and b′′(p)< 0. Hence,

I (l)∼
1

2

(

2p

l

)1/2
(

f (0)
√

|b′′(0)|
eilb(0)+ip/4 +

f (p)
√

|b′′(p)|
eilb(p)−ip/4

)

=
( p

2lra

)1/2 1

(1− a2)1/4

(

1
√
r − a

e−ilb1+ip/4 +
(−1)n
√
r + a

eilb1−ip/4

)

as l → ∞, where b1 = arcsin a so that b(0)= −b1 and b(p)= b1. Thus, I (l)

decays as 1/
√

l and so, from (2.25), K n2q grows as
√
q:

K n2q ∼
√

2q + 1
2pra

(−1)q

(1− a2)1/4

(

1
√
r − a

+
(−1)n
√
r + a

)

cos
{

(2q + 1)b1 −
p

4

}

. (2.26)

From (2.20), we have K n2q+1(r , a)= 8(q + 1)(−1)q Im{I (2q + 2)}, with I (l)
defined by (2.25), and so we obtain a similar estimate for K n2q+1 as q→ ∞.
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(d)Random disc source

The analysis given above can be extended to the case of a random source
distributed over a disc. The starting point is an expression for the pressure
radiated from a source distributed over a unit disc,

p(r , q, z , t)=
∫ 1
0

∫p

−p

q(a,j, t − R/c)

4pR
dA, (2.27)

where dA= a dj da, R=
√

r2 + a2 − 2ar cos(q − j)+ z2 and c is the speed of
sound. Then, the correlation between p measured at two points (r1, q1, z1) and
(r2, q2, z2) is

p(r1, q1, z1, t)p(r2, q2, z2, t + t)

=
∫ 1
0

∫p

−p

∫ 1
0

∫p

−p

q(a1,j1, t − R1/c)q(a2,j2, t − R2/c + t)

(4p)2R1R2
dA1 dA2, (2.28)

where the correlation function is defined by

p1(t)p2(t + t)= lim
T→∞

1

2T

∫T
−T
p1(t)p2(t + t)dt. (2.29)

Fourier transforming (2.28) with respect to t gives the cross spectrum as

W12(k)=
∫ 1
0

∫p

−p

∫ 1
0

∫p

−p

eik(R2−R1)

(4p)2R1R2
Q12(k; a1,j1; a2,j2) dA1 dA2 (2.30)

and

Q12(k; a1,j1; a2,j2)=
∫∞

−∞
q(a1,j1, t)q(a2,j2, t + t) ei2pf t dt, (2.31)

where Q12 is the correlation between the source at two points (a1,j1) and (a2,j2),
and k = 2pf /c.
On the assumption of statistical axial symmetry, the source correlation can

depend only on the angular separation between two points j2 − j1, so that Q12
and W12 can be expanded in Fourier series in azimuth,

Q12 =
∞

∑

n=−∞
Q
(n)
12 (a1, a2) e

in(j2−j1) and W12 =
∞

∑

n=−∞
W
(n)
12 (r1, z1; r2, z2)e

in(q2−q1),

with

W
(n)
12 =

∫ 1
0

∫p

−p

ei(kR2+nj2)

4pR2

[∫ 1
0

∫p

−p

e−i(kR1+nj1)

4pR1
Q
(n)
12 (a1, a2) dA1

]

dA2

=
∞

∑

q=0

Lq(k, r2, z2)

∫ 1
0

∫p

−p

e−i(kR1+nj1)

4pR1
vnq (a1, r2) dA1

=
∞

∑

q=0

∞
∑

m=0

Lq(k, r2, z2)L
∗
m(k, r1, z1)v

n
qm(r1, r2), (2.32)
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where Rj =
√

r2j + a2j − 2ajrj cosjj + z2j (j = 1, 2),

vnq (a1, r2)=
1

4(q + 1)

∫ 1
0

K nq (r2, a2)Q
(n)
12 (a1, a2)a2 da2 (2.33)

and

vnqm(r1, r2)=
1

4(m + 1)

∫ 1
0

K nm(r1, a1)v
n
q (a1, r2)a1 da1 (2.34)

and an asterisk denotes complex conjugation.

(e)Low-frequency behaviour

While the theory that has been presented so far is general and exact, it is worth
examining the properties of the acoustic field at low frequency, k � 2, which have
been examined before using an earlier version of the method (Carley 2011). From
(2.17) and (2.18), we have, exactly,

K n1 (r , a)= 4dn0 − 4rK n0 (r , a) (2.35)

so that the resulting line source coefficients un0 and u
n
1 are not linearly

independent. This has been noted previously (Carley 2011), using a different
argument, and has an implication for the complexity of the low-frequency acoustic
fields. When k � 2, the field is dominated by the contributions of the first two line
source modes. The fact that these modes will have the same coefficients, to within
a scaling factor, means that the low-frequency acoustic fields of disc sources are
identical, whatever might be the details of the source proper. The implications of
this finding for jet noise are considered in §4d.

3. Random cylindrical source

As a model problem for jet noise, and in particular of the modal decomposition
methods and the near-to-far field correlation method used in studies of jet
noise (Laurendeau et al. 2008; Schlegel et al. 2012), we consider a random
source distributed over a cylindrical domain. The analysis for a random disc
can be extended to the case of a cylindrical source of length 2L with axial
coordinate −L≤ z ≤ L, using the same non-dimensionalization as used previously.
The source cross-spectrum is Q12(k; a1,j1, b1; a2,j2, b2), with b1 and b2 source
axial coordinates. Using the same symmetry arguments as previously, the
cross-spectrum is decomposed,

Q12(k; a1,j1, b1; a2,j2, b2)=
∞

∑

n=−∞
Q
(n)
12 (k; a1, b1; a2, b2)e

in(j2−j1), (3.1)
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and the azimuthal components of the cross-spectrum between two field points are
given by

W
(n)
12 (k; r1, z1; r2, z2)

=
∫L
−L

∫ 1
0

∫p

−p

ei(kR2+nj2)

4pR2

×

[∫L
−L

∫ 1
0

∫p

−p

e−i(kR1+nj1)

4pR1
Q
(n)
12 (k; a1, b1; a2, b2) dA1 db1

]

dA2 db2,

=
∞

∑

q=0

∞
∑

m=0

∫L
−L

∫L
−L

Lq(k, r2, z2 − b2)L∗
m(k, r1, z1 − b1)unqm db1 db2 (3.2)

and

unqm(r1, b1; r2, b2)=
∫ 1
0

∫ 1
0

K nq (r2, a2)K
n
m(r1, a1)

16(q + 1)(m + 1)
Q
(n)
12 a1 da1a2 da2. (3.3)

4. Results

(a)Nature of acoustic field

A first set of conclusions can be drawn from the results for the radiation function
Lq(k, r , z), in §2a. For large order q, the Bessel function Jq(k) is exponentially
small for k < q so that the line source modes with order q > k generate noise fields
of exponentially small amplitude. Since Lq(k, r , z) has a maximum in the plane
z = 0, (2.7) says that the whole field is of exponentially small amplitude. This gives
an indication of how much of a given source distribution radiates into the acoustic
field, as a function of wavenumber k and source order q, without recourse to near-
field, far-field or other approximations. Section 4b, giving sample calculations
using full numerical evaluation of the appropriate integrals, when compared with
the line source method, shows that indeed the radiated field contains only terms
owing to line modes with q � k.
To demonstrate the character of the acoustic field of the line source modes,

we plot Lq for k = 1.5, figure 3, and k = 6, figure 4, for various values of q. The
plots show logarithmically spaced contours of the real and imaginary parts of the
radiated field, similar to those of Chapman (1993), demonstrating the propagating
wave character of the acoustic field, and the variation of amplitude with k.
Figure 3 shows the cut-off behaviour as q is increased above k. The q = 0 and

q = 1 modes radiate efficiently into the whole field, as shown by the first two rows
of contour plots. At q = 2, the field is already reduced in amplitude (note that the
contour levels are the same in all plots) and the radiation pattern is becoming
more directive, with less radiation into the near-axis region. At q = 3, the bottom
row of figure 3, the field has almost disappeared, having only a small amplitude
and being concentrated in a region near the source plane.
Figure 4 shows similar behaviour, but with the higher wavenumber k = 6, the

cut-off happens at a higher mode order, q = 8, and the lower order modes,
especially q = 0 and q = 1, have a more complicated field pattern, with a
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Figure 3. The function Lq(k, r , z) for k = 1.5, q = 0, 1, 2, 3—(a) real part, (b) imaginary part.
Contour levels ±2−5,−3,−1,1—positive contours shown solid, negative shown dashed.

pronounced null on a line through the origin. The q = 4 mode has a simpler
directivity, but a greater amplitude, shown by the larger number of contours
present: again, the same contour levels have been used in all plots.

(b)Numerical performance

As a check on the calculation method and on the convergence to the correct
value of (2.1), figure 5 shows a sample evaluation of Pn(k, r , z) using full numerical
evaluation of the integral and the line source method with an increasing number
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Figure 4. The function Lq(k, r , z) for k = 6, q = 0, 1, 4, 8—(a) real part; (b) imaginary part. Contour
levels ±2−3,−2,−1—positive contours shown solid, negative shown dashed.

of line source modes included, for k = 6 and n = 4. The radial source term
sn(a)≡ 1. As predicted, the results for two and four modes do not capture the
behaviour correctly, while six modes are sufficient to come very close to the correct
result. When eight modes are included, the result is indistinguishable from full
numerical evaluation.
For a random source, we assume a valid functional form for the source

correlation, based on that given by Michalke (1983) for ring sources, with the
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addition of a radial correlation term,

Q12(a1,j1; a2,j2)= q(a1)q(a2) exp
[

−
(a1 − a2)2

b2
−
1− cos(j1 − j2)

a2

]

(4.1)

with a being an azimuthal length scale and b controlling the correlation in radius.
Equation (4.1) can be interpreted as the product of the local source strengths
q(a1) and q(a2) with a coherence function, given by the exponentials, which is
symmetric in source position and has unit value when the source points coincide.
For the calculations that follow, q(a)≡ 1. The azimuthal components of Q12 can
be evaluated (Michalke 1983) as

Q
(n)
12 (a1, a2)= q(a1)q(a2) exp

[

−
(a1 − a2)2

b2

]

exp

[

−
1

a2

]

In

(

1

a2

)

(4.2)

where In is a modified Bessel function.
Figure 6 shows similar results for a random disc source with the same

parameters as in figure 5 and the correlation function parameters set to a =
b = 1/2. Again the effect of the number of line source modes included is
demonstrated by the convergence to the full numerical evaluation, with the
computed correlation given by a truncated series,

W
(n)
12 =

Q
∑

q=0

Q
∑

m=0

Lq(k, r2, z2)L
∗
m(k, r1, z1)u

n
qm(r1, r2),

where Q = 2, 4, 6, 8. As before, when Q→ k, the line source results converge to
the full numerical evaluation, with the higher order modes being ‘cut-off’ by the
exponentially small amplitude of their radiated field.

Finally, we present a check on the evaluation of W
(n)
12 for a random cylindrical

source. Here the correlation function has a Gaussian axial correlation term added,

Q12(a1,j1, b1; a2,j2, b2)= e−U exp [−a−2{1− cos(j1 − j2)}], (4.3)
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with U = [(b1 − b2)/g]2 + [(a1 − a2)/b]2

and Q
(n)
12 (a1, b1; a2, b2)= e

−U−a−2
In

(

1

a2

)

. (4.4)

Again, figure 7, the line source approach gives results indistinguishable from full
numerical evaluation for n � k. A last point to note is that the decomposition
technique is very much faster than full numerical evaluation of the radiation
integrals, especially if the field is to be evaluated at a large number of points,
making it a practical noise prediction technique, as well as an analytical tool.

(c) Implications

The analysis presented so far has a number of implications for noise control
and for source identification methods; jet noise is considered in §4d. The main
point of the work presented is that it disconnects source from radiation effects,
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by condensing all of the information about the source into the coefficients unq
and all information about radiation into the function Lq . It is then clear that
the radiated acoustic field depends only on the non-dimensional wavenumber k,
which fixes the number of line source modes that radiate, in effect fixing the
number of source coefficients (unq ) that contribute to the final field.
The implication of this finding is that acoustic sources whose line source

coefficients unq differ only for n � k generate acoustic fields that cannot be
distinguished from each other. In source identification problems, this means that
the acoustic field, near or far, has only a finite number of degrees of freedom.
Thus, any attempt to infer details of the source beyond this number of degrees
of freedom is probably futile: the information about the source is not available in
the acoustic field, even without considering the effects of background noise and
other measurement errors. This may well explain the poor conditioning of many
source identification methods, where the addition of large numbers of sensors has
failed to improve the inversion technique.
The obverse of this observation is that if the acoustic field is to be controlled,

only a finite number of degrees of freedom are required of an active controller,
because only those parts of the source that actually contribute to the acoustic
field need be controlled for. Similarly, if noise is to be reduced at source, the
reduction effort should concentrate on reducing the contribution of those, lower
order, modes that generate the perceptible acoustic field.

(d) Jet noise

An issue that has been of some interest for many years in studies of jet noise is
the disparity between the complexity of the turbulent flow that gives rise to the
noise field, and the relative simplicity of the field itself, exemplified by the finding
that for a Mach 0.9 jet, 24 orthogonal modes were sufficient to capture 90 per cent
of the energy of the acoustic field, but 350 were required to resolve 50 per cent of
the flow energy (Jordan et al. 2007). Various explanations have been put forward
for this disparity, concentrating on the whole on mechanisms that affect radiation
efficiency (Michalke 1983; Freund 2001; Michel 2007, 2009), or discussing the
distinction between a ‘source’ term, which radiates, and a ‘flow’ term, which does
not (Sinayoko & Agarwal 2012). The analysis presented in this paper gives an
interpretation of the sources in terms of radiating and non-radiating terms, purely
on the basis of the properties of the acoustic source term, and the wavenumber
of the radiation.
A first point to note is that the maximum noise level for a subsonic jet lies in a

frequency range k � 2, with k based on the jet exhaust diameter. This means, as
has been noted in experimental work, that the noise field is composed of azimuthal
modes of order n � 2, as would be expected from the analysis this far. Thus, the
observations made in §2e can be used to help explain certain features that have
been noted in experimental studies of jet noise fields.
A recent paper (Schlegel et al. 2012) generalizes the standard technique of

proper orthogonal decomposition (POD) to identify orthogonal modes of an
aerodynamic field that contribute most to the observed, acoustic field. In a study
of a Mach 0.9 jet, it was found (Schlegel et al. 2012, fig. 9) that 24 modes
contribute 90 per cent of the correlated noise. We tentatively propose, on the
basis of the analysis given here, that such a small number of modes is a result
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of the radiation properties of the source, and that certain other features of the
acoustic field can be explained using arguments based on the radiation properties
outlined so far.
The standard theory of radiation from turbulent flows remains that of Lighthill

(1952, 1954), although a number of theories modified for particular purposes or
insights have been developed. The essential principle remains the same, however,
in that the radiated noise, which here we view in terms of the cross-spectrum of
the acoustic signal measured at two points in the field, is given, exactly, by an
integral over the source region, where the source includes all mean and fluctuating
flow effects (Lighthill 1952, eqn 15), subject to some differential operator,

W12(k)=
∑

i

Di

∫
b1

∫
b2

∫ 1
0

∫p

−p

∫ 1
0

∫p

−p

eik(R2−R1)

R1R2
Q
(i)
12 dA1 dA2 db1 db2, (4.5)

where Q
(i)
12 is the cross-spectrum of the source at two points in the source

volume, and index i runs over the different combinations of source term
available, with Di being the spatial differential operator corresponding to a given
source combination. This approach, which lumps source and propagation effects
together, is supported by computational results (Bogey et al. 2001). The source
terms are given by the two-point, second- and fourth-order velocity correlations
in the flow, and are not mutually uncorrelated. The analysis presented so far
demonstrates that only a finite number of modes can radiate to the acoustic field,
imposing a limit on the complexity of that field, without recourse to assumptions
about the nature of the acoustic source or of the flow that gives rise to it.
Secondly, in another experimental study, ‘the first POD mode is shown to give

a near-perfect representation of the fluctuation energy radiation at low angles’,
i.e. near the jet axis, ‘larger numbers of modes being necessary to completely
reproduce the radiation characteristics at higher angles’, i.e. nearer the jet exhaust
plane (Koenig et al. 2010). These findings are readily explained by examination
of figure 3, bearing in mind that the noise field is dominated by two line source
modes, whose coefficients are not linearly independent, so that the field radiated
by the source effectively has only one orthogonal mode per source term. In
figure 3, the radiation pattern of the first four line source modes is shown, and
it is clear that the near-axis field contains contributions only from the first two
modes, while L2 and L3 only appear nearer the source plane, and L3 then only
very weakly. Again, we note that this is purely a result of the radiation properties
of the source decomposition employed, and does not require that any assumptions
be made about the nature of the source, of the aerodynamic processes which give
rise to it, or whether the observer is in the near or far field, as in the earlier
analysis of Michalke & Fuchs (1975).

5. Conclusions

We have presented an analysis which gives the radiated field of tonal and
random disc sources without requiring near- or far-field approximations, splitting
the problem into purely source-related terms and functions that affect only
radiation. The nature and complexity of the radiated field are then fixed by
the non-dimensional wavenumber of the source, showing, among other things,
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that low-frequency sources generate indistinguishable fields. We conclude that
many effects reported in the literature, such as the poor conditioning of source
identification methods and the relative simplicity of jet noise fields, can be
explained via our analysis, on the basis of the radiation characteristics of circular
and cylindrical sources, without recourse to other arguments or approximations.
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